Sulfonic Cryogels as Innovative Materials for Biotechnological Applications: Synthesis, Modification, and Biological Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Cryogels
2.2. Effect of the Additional Agents
2.3. Influence of the Gel on the Germination of Watercress Seeds
3. Materials and Methods
3.1. Materials
3.2. Preparation of Cryogels
3.3. Characterizations of Cryogels
Scanning Electron and Optic Microscopies
3.4. Dynamic Light Scattering
3.5. ATR-FTIR and 13C NMR Spectroscopies
3.6. Swelling Tests in Different Solutions
3.7. Water Retention
3.8. Ion Exchange Capacity
3.9. Measurement of Mechanical Properties of Cryogel by Dynamic Mechanical Analyzer (DMA)
3.10. Biological Activity
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Begum, R.; Naseem, K.; Farooqi, Z.H. A Review of Responsive Hybrid Microgels Fabricated with Silver Nanoparticles: Synthesis, Classification, Characterization and Applications. J. Sol-Gel Sci. Technol. 2016, 77, 497–515. [Google Scholar] [CrossRef]
- Behera, S.; Mahanwar, P.A. Superabsorbent Polymers in Agriculture and Other Applications: A Review. Polym. Technol. Mater. 2020, 59, 341–356. [Google Scholar] [CrossRef]
- Chang, L.; Xu, L.; Liu, Y.; Qiu, D. Superabsorbent Polymers Used for Agricultural Water Retention. Polym. Test. 2021, 94, 107021. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Shevchenko, N.; Tomšík, E.; Laishevkina, S.; Iakobson, O.; Pankova, G. Cross-Linked Polyelectrolyte Microspheres: Preparation and New Insights into Electro-Surface Properties. Soft Matter 2021, 17, 2290–2301. [Google Scholar] [CrossRef]
- Rong, Q.; Lei, W.; Liu, M. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices. Chem.–A Eur. J. 2018, 24, 16930–16943. [Google Scholar] [CrossRef]
- Laishevkina, S.; Shevchenko, N.; Iakobson, O.; Dobrodumov, A.; Chelibanov, V.; Tomšík, E. Influence of the Nature and Structure of Polyelectrolyte Cryogels on the Polymerization of (3,4-Ethylenedioxythiophene) and Spectroscopic Characterization of the Composites. Molecules 2022, 27, 7576. [Google Scholar] [CrossRef]
- Tomšík, E.; Laishevkina, S.; Svoboda, J.; Gunar, K.; Hromádková, J.; Shevchenko, N. Preparation of Smart Surfaces Based on PNaSS@PEDOT Microspheres: Testing of E. Coli Detection. Sensors 2022, 22, 2784. [Google Scholar] [CrossRef]
- Gleick, P.H.; Cooley, H. Freshwater Scarcity. Annu. Rev. Environ. Resour. 2021, 46, 319–348. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, Y.; Yang, G.; Zhang, A. Water- and Fertilizer-Integrated Hydrogel Derived from the Polymerization of Acrylic Acid and Urea as a Slow-Release N Fertilizer and Water Retention in Agriculture. J. Agric. Food Chem. 2018, 66, 5762–5769. [Google Scholar] [CrossRef]
- Abdallah, A.M. The Effect of Hydrogel Particle Size on Water Retention Properties and Availability under Water Stress. Int. Soil Water Conserv. Res. 2019, 7, 275–285. [Google Scholar] [CrossRef]
- Beig, B.; Niazi, M.B.K.; Jahan, Z.; Hussain, A.; Zia, M.H.; Mehran, M.T. Coating Materials for Slow Release of Nitrogen from Urea Fertilizer: A Review. J. Plant Nutr. 2020, 43, 1510–1533. [Google Scholar] [CrossRef]
- Lenka, S.; Lenka, N.K.; Singh, A.B.; Singh, B.; Raghuwanshi, J. Global Warming Potential and Greenhouse Gas Emission under Different Soil Nutrient Management Practices in Soybean–Wheat System of Central India. Environ. Sci. Pollut. Res. 2017, 24, 4603–4612. [Google Scholar] [CrossRef] [PubMed]
- Oladosu, Y.; Rafii, M.Y.; Arolu, F.; Chukwu, S.C.; Salisu, M.A.; Fagbohun, I.K.; Muftaudeen, T.K.; Swaray, S.; Haliru, B.S. Superabsorbent Polymer Hydrogels for Sustainable Agriculture: A Review. Horticulturae 2022, 8, 605. [Google Scholar] [CrossRef]
- Wichterle, O.; Lim, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, L.; Xie, F.; Bao, X.; Liu, H.; Ji, Z.; Chen, L. One-Step Method to Prepare Starch-Based Superabsorbent Polymer for Slow Release of Fertilizer. Chem. Eng. J. 2017, 309, 607–616. [Google Scholar] [CrossRef]
- Supare, K.; Mahanwar, P.A. Starch-Derived Superabsorbent Polymers in Agriculture Applications: An Overview. Polym. Bull. 2022, 79, 5795–5824. [Google Scholar] [CrossRef]
- Meng, Y.; Ye, L. Synthesis and Swelling Property of Superabsorbent Starch Grafted with Acrylic Acid/2-Acrylamido-2-Methyl-1-Propanesulfonic Acid. J. Sci. Food Agric. 2017, 97, 3831–3840. [Google Scholar] [CrossRef]
- Cheng, B.; Pei, B.; Wang, Z.; Hu, Q. Advances in Chitosan-Based Superabsorbent Hydrogels. RSC Adv. 2017, 7, 42036–42046. [Google Scholar] [CrossRef] [Green Version]
- Shahid, S.A.; Qidwai, A.A.; Anwar, F.; Ullah, I.; Rashid, U. Improvement in the Water Retention Characteristics of Sandy Loam Soil Using a Newly Synthesized Poly(Acrylamide-Co-Acrylic Acid)/AlZnFe2O4 Superabsorbent Hydrogel Nanocomposite Material. Molecules 2012, 17, 9397–9412. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, M.; Liu, Z.; Guo, Y.; Zhang, Q. Salt-Tolerant Superabsorbent Polymer with High Capacity of Water-Nutrient Retention Derived from Sulfamic Acid-Modified Starch. ACS Omega 2019, 4, 5923–5930. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.L.; Yong, D.L.; Fan, M.X.; Yu, X.L.; Wang, Z.; Liu, J.J.; Li, J.B. Sodium Humate Modified Superabsorbent Resin with Higher Salt-Tolerating and Moisture-Resisting Capacities. J. Appl. Polym. Sci. 2018, 135, 1–7. [Google Scholar] [CrossRef]
- Kim, S.; Iyer, G.; Nadarajah, A.; Frantz, J.M.; Spongberg, A.L. Polyacrylamide Hydrogel Properties for Horticultural Applications. Int. J. Polym. Anal. Charact. 2010, 15, 307–318. [Google Scholar] [CrossRef]
- Lozinsky, V.I. Cryogels on the Basis of Natural and Synthetic Polymers: Preparation, Properties and Application. Russ. Chem. Rev. 2002, 71, 489–511. [Google Scholar] [CrossRef]
- Scognamillo, S.; Alzari, V.; Nuvoli, D.; Illescas, J.; Marceddu, S.; Mariani, A. Thermoresponsive Super Water Absorbent Hydrogels Prepared by Frontal Polymerization of N-Isopropyl Acrylamide and 3-Sulfopropyl Acrylate Potassium Salt. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 1228–1234. [Google Scholar] [CrossRef]
- Laishevkina, S.; Skurkis, Y.; Shevchenko, N. Preparation and Properties of Cryogels Based on Poly(Sulfopropyl Methacrylate) or Poly(Sulfobetaine Methacrylate) with Controlled Swelling. J. Sol-Gel Sci. Technol. 2022, 102, 343–356. [Google Scholar] [CrossRef]
- Zaborina, O. Cryopolymerization of N,N-Dimethylacrylamide in Shallowly Frozen Aqueous and Organic Media. PhD Thesis, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia, 2013. [Google Scholar]
- Zhang, M.; Cheng, Z.; Zhao, T.; Liu, M.; Hu, M.; Li, J. Synthesis, Characterization, and Swelling Behaviors of Salt-Sensitive Maize Bran-Poly(Acrylic Acid) Superabsorbent Hydrogel. J. Agric. Food Chem. 2014, 62, 8867–8874. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Cheng, S.; Zhen, J.; Lei, Z. Superabsorbent Polymer with Excellent Water/Salt Absorbency and Water Retention, and Fast Swelling Properties for Preventing Soil Water Evaporation. J. Polym. Environ. 2022, 31, 1–13. [Google Scholar] [CrossRef]
- Zhao, D.; Fang, Z.; Tang, Y.; Tao, J. Graphene Oxide as an Effective Soil Water Retention Agent Can Confer Drought Stress Tolerance to Paeonia Ostii without Toxicity. Environ. Sci. Technol. 2020. 54, 8269–8279.
- Wang, Z.; Ning, A.; Xie, P.; Gao, G.; Xie, L.; Li, X.; Song, A. Synthesis and Swelling Behaviors of Carboxymethyl Cellulose-Based Superabsorbent Resin Hybridized with Graphene Oxide. Carbohydr. Polym. 2017, 157, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Cumont, A.; Pitt, A.R.; Lambert, P.A.; Oggioni, M.R.; Ye, H. Properties, Mechanism and Applications of Diamond as an Antibacterial Material. Funct. Diam. 2021, 1, 1–28. [Google Scholar] [CrossRef]
- Aprà, P.; Mino, L.; Battiato, A.; Olivero, P.; Sturari, S.; Valsania, M.C.; Varzi, V.; Picollo, F. Interaction of Nanodiamonds with Water: Impact of Surface Chemistry on Hydrophilicity, Aggregation and Electrical Properties. Nanomaterials 2021, 11, 2740. [Google Scholar] [CrossRef] [PubMed]
- Zaborina, O.E.; Gasanov, R.G.; Peregudov, A.S.; Lozinsky, V.I. Cryostructuring of Polymeric Systems. 38. The Causes of the Covalently-Cross-linked Cryogels Formation upon the Homopolymerization of N,N-Dimethylacrylamide in Moderately-Frozen Aqueous Media. Eur. Polym. J. 2014, 61, 226–239. [Google Scholar] [CrossRef]
- Chandel, A.; Nutan, B.; Raval, I.; Jewrajka, S. Self-Assembly of Partially Alkylated Dextran-graft-poly[(2-dimethylamino)ethyl methacrylate] Copolymer Facilitating Hydrophobic/Hydrophilic Drug Delivery and Improving Conetwork Hydrogel Properties. Biomacromolecules 2018, 19, 1142–1153. [Google Scholar] [CrossRef]
- Chandel, A.; Kannan, D.; Nutan, B.; Singh, S.; Jewrajka, S. Dually crosslinked injectable hydrogels of poly(ethylene glycol) and poly[(2-dimethylamino)ethyl methacrylate]-b-poly(N-isopropyl acrylamide) as a wound healing promoter. J. Mater. Chem. B. 2017, 5, 4955–4965. [Google Scholar] [CrossRef]
- Nutan, B.; Chandel, A.; Jewrajka, S. Liquid Prepolymer-Based in Situ Formation of Degradable Poly(ethylene glycol)-Linked-Poly(caprolactone)-Linked-Poly(2-dimethylaminoethyl)methacrylate Amphiphilic Conetwork Gels Showing Polarity Driven Gelation and Bioadhesion. ACS Appl. Bio Mater. 2018, 1, 1606–1619. [Google Scholar] [CrossRef]
- Qin, C.-C.; Abdalkarim, S.Y.H.; Zhou, Y.; Yu, H.-Y.; He, X. Ultrahigh water-retention cellulose hydrogels as soil amendments for early seed germination under harsh conditions. J. Clean. Prod. 2022, 370, 133602. [Google Scholar] [CrossRef]
- Sahmat, S.; Rafii, M.; Oladosu, Y.; Jusoh, M.; Hakiman, M.; Mohidin, H. A Systematic Review of the Potential of a Dynamic Hydrogel as a Substrate for Sustainable Agriculture. Horticulturae 2022, 8, 1026. [Google Scholar]
- Yildiz, S.; Aktas, N.; Sahiner, N. Metal Nanoparticle-Embedded Super Porous Poly(3-Sulfopropyl Methacrylate) Cryogel for H 2 Production from Chemical Hydride Hydrolysis. Int. J. Hydrogen Energy 2014, 39, 14690–14700. [Google Scholar] [CrossRef]
- Schmidlin, L.; Pichot, V.; Comet, M.; Josset, S.; Rabu, P.; Spitzer, D. Identification, Quantification and Modification of Detonation Nanodiamond Functional Groups. Diam. Relat. Mater. 2012, 22, 113–117. [Google Scholar] [CrossRef]
- Ji, S.; Jiang, T.; Xu, K.; Li, S. FTIR Study of the Adsorption of Water on Ultradispersed Diamond Powder Surface. Appl. Surf. Sci. 1998, 133, 231–238. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.; Hilhorst, H.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Woodhouse, J.M.; Johnson, M.S. The effect of gel-forming polymers on seed germination and establishment. J. Arid. Environ. 1991, 20, 375–380. [Google Scholar]
Sample | SPM/HEMA, mol.% | ∑Cmonomer, mol/L | SO3, 10−3 mol−eq/g | Swelling Degree, g/g |
---|---|---|---|---|
Effect of temperature | ||||
1 * | 50/50 | 1 | No gel formation | |
2 | 50/50 | 1 | 2.61 ± 0.17 | 435 ± 35 |
Effect of monomer concentration | ||||
3 | 50/50 | 0.5 | 2.67 ± 0.18 | 650 ± 45 |
2 | 50/50 | 1 | 2.61 ± 0.16 | 435 ± 32 |
4 | 50/50 | 2.5 | 2.76 ± 0.21 | 400 ± 36 |
5 | 50/50 | 5 | 2.66 ± 0.17 | 320 ± 22 |
Effect of monomer ratio | ||||
6 ** | 100/0 | 1 | No gel formation | |
7 | 80/20 | 1 | 3.05 ± 0.22 | 1070 ± 85 |
8 | 70/30 | 1 | 3.53 ± 0.23 | 725 ± 50 |
9 | 60/40 | 1 | 2.73 ± 0.19 | 575 ± 46 |
2 | 50/50 | 1 | 2.61 ± 0.15 | 435 ± 30 |
10 ** | 50/50 | 1 | 2.67 ± 0.17 | 350 ± 24 |
11 | 20/80 | 1 | 1.21 ± 0.11 | 250 ± 17 |
Sample No. | Agent, (3 wt%) | Emergence rate | Germination | Sprout Length | Root Length | ||||
---|---|---|---|---|---|---|---|---|---|
% | % to Control | % | % to Control | cm | % to Control | cm | % to Control | ||
1 | - | 88 | 101 | 96 | 103 | 5.1 ± 0.3 | 111 | 4.5 ± 0.4 | 102 |
2 | Urea | 87 | 100 | 93 | 100 | 5.1 ± 0.3 | 111 | 4.8 ± 0.5 | 109 |
3 | Starch | 87 | 100 | 97 | 104 | 4.8 ± 0.4 | 104 | 4.2 ± 0.5 | 95 |
4 | HPC | 91 | 105 | 100 | 108 | 5.2 ± 0.5 | 113 | 4.7 ± 0.5 | 107 |
5 | DNDs | 90 | 104 | 99 | 106 | 5.1 ± 0.4 | 111 | 4.4 ± 0.4 | 100 |
6 | (control sample) without cryogel | 87 | 100 | 93 | 100 | 4.6 ± 0.4 | 100 | 4.4 ± 0.4 | 100 |
Sample No. | Agent, (3 wt%) | Wet Weight 100 Sprouts | Dry Weight 100 Sprouts | Dry Matter of Sprouts | |||
---|---|---|---|---|---|---|---|
g | % to Control | g | % to Control | % | % to Control | ||
1 | - | 2.48 | 133 * | 0.12 | 80 * | 5.0 | 63 * |
2 | Urea | 2.08 | 112 * | 0.12 | 80 * | 5.7 | 71 * |
3 | Starch | 1.82 | 98 | 0.14 | 93 | 7.9 | 99 |
4 | HPC | 2.46 | 132 * | 0.15 | 100 | 6.1 | 76 * |
5 | DNDs | 2.50 | 134 * | 0.14 | 93 | 5.6 | 70 * |
6 | (control sample) | 1.86 | 100 | 0.15 | 100 | 8.0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laishevkina, S.; Kuleshova, T.; Panova, G.; Ivan’kova, E.; Iakobson, O.; Dobrodumov, A.; Shevchenko, N.; Yakimansky, A. Sulfonic Cryogels as Innovative Materials for Biotechnological Applications: Synthesis, Modification, and Biological Activity. Int. J. Mol. Sci. 2023, 24, 2949. https://doi.org/10.3390/ijms24032949
Laishevkina S, Kuleshova T, Panova G, Ivan’kova E, Iakobson O, Dobrodumov A, Shevchenko N, Yakimansky A. Sulfonic Cryogels as Innovative Materials for Biotechnological Applications: Synthesis, Modification, and Biological Activity. International Journal of Molecular Sciences. 2023; 24(3):2949. https://doi.org/10.3390/ijms24032949
Chicago/Turabian StyleLaishevkina, Svetlana, Tatiana Kuleshova, Gayane Panova, Elena Ivan’kova, Olga Iakobson, Anatoly Dobrodumov, Natalia Shevchenko, and Alexander Yakimansky. 2023. "Sulfonic Cryogels as Innovative Materials for Biotechnological Applications: Synthesis, Modification, and Biological Activity" International Journal of Molecular Sciences 24, no. 3: 2949. https://doi.org/10.3390/ijms24032949
APA StyleLaishevkina, S., Kuleshova, T., Panova, G., Ivan’kova, E., Iakobson, O., Dobrodumov, A., Shevchenko, N., & Yakimansky, A. (2023). Sulfonic Cryogels as Innovative Materials for Biotechnological Applications: Synthesis, Modification, and Biological Activity. International Journal of Molecular Sciences, 24(3), 2949. https://doi.org/10.3390/ijms24032949