The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer
Abstract
:1. Introduction
2. Tumorigenic Regulation of Circular RNA–miRNA Axis in Five Major Mortality Cancers
2.1. Lung Cancer
2.2. Colon Cancer
2.3. Liver Cancer
2.4. Gastric Cancer
2.5. Breast Cancer
Cancer Type | CircRNA Symbol /CircBase ID | Oncogenic /Tumor-Suppressive | MicroRNA | Target Gene | Cancer Related Biological/Regulatory Process | Ref. |
---|---|---|---|---|---|---|
Lung cancer | Circ_0000284 | oncogenic | miR-377-3p | PD-L1 | - | [47] |
Circ_0000376 | oncogenic | miR-1182 | NOVA2 | glycolysis, viability, migration, and invasion | [93] | |
Circ_0000677 | oncogenic | miR-106b-5p | CCND1 | proliferation | [94] | |
Circ_0020123 | oncogenic | miR-144 | ZEB1, EZH2 | growth and metastasis | [95] | |
Circ_0087862 | oncogenic | miR-1253 | RAB3D | tumor growth | [96] | |
Circ_BANP | oncogenic | miR-503 | LARP1 | cancer growth, migration and invasion | [97] | |
Circ_MAN2B2 | oncogenic | miR-1275 | FOXK1 | cell proliferation and invasion | [98] | |
Circ_PIP5K1A | oncogenic | miR-600 | HIF-1α | proliferation and metastasis | [99] | |
Circ_PVT1 | oncogenic | miR-125b | E2F2 | Proliferation and Invasion | [100] | |
Circ_CDR1 | oncogenic | miR-641 | HOXA9 | cell stemness | [101] | |
Circ_103809 | oncogenic | miR-4302 | MYC | cell proliferation and invasion | [63] | |
ZNF121 | ||||||
Circ_HIPK3 | oncogenic | miR-124 | SphK1, STAT3, CDK4 | cell survival, proliferation, cell death and apoptosis | [64] | |
miR-149 | FOXM1 | cell proliferation and apoptosis | [65] | |||
Circ_PVT1 | oncogenic | miR-497 | Bcl-2 | aggressive clinicopathological characteristics and poor prognosis | [66] | |
Circ_ZNF208 | oncogenic | miR-7-5p | SNCA | radio-sensitivity of patients to X-rays | [67] | |
Circ_0046264 | Tumor-suppressive | miR-1245 | BRCA2 | apoptosis, proliferation and invasion | [102] | |
Circ_100395 | Tumor-suppressive | miR-1228 | TCF21 | proliferation, migration and invasion | [103] | |
Circ_cESRP1 | Tumor-suppressive | miR-93-5p | CDKN1A | sensitivity to chemotherapy | [68] | |
Circ_FOXO3 | Tumor-suppressive | miR-155 | FOXO3 | cell proliferation, migration and invasion | [104] | |
Colon cancer | Circ_ERBIN | oncogenic | miR-125a-5p, miR-138-5p | 4EBP-1 | growth and metastasis | [105] |
Circ_0000467 | oncogenic | miR-4766-5p | KLF12 | proliferation, metastasis, and angiogenesis | [106] | |
Circ_0001313 | oncogenic | miR-510-5p | AKT2 | proliferation and apoptosis | [71] | |
Circ_0001946 | oncogenic | miR-135a-5p | - | proliferation and metastasis | [107] | |
Circ_0001982 | oncogenic | miR-144 | - | metastasis and poor prognosis | [69] | |
Circ_0004277 | oncogenic | miR-512-5p | PTMA | cell apoptosis and cell proliferation | [108] | |
Circ_0005963 | oncogenic | miR-122 | PKM2 | chemoresistance | [109] | |
Circ_0007843 | oncogenic | mIR-518c-5p | MMP2 | migration and invasion | [110] | |
Circ_000984 | oncogenic | miR-106b | CDK6 | cancer growth and metastasis | [75] | |
Circ_0053277 | oncogenic | miR-2467-3p | MMP14 | cell proliferation, migration, and EMT | [111] | |
Circ_0055625 | oncogenic | miR-106b-5p | ITGB8 | cell growth | [72] | |
Circ_0060745 | oncogenic | miR-4736 | CSE1L | proliferation and metastasis | [112] | |
Circ_CTNNA1 | oncogenic | miR-149-5p | FOXM1 | proliferation and invasion | [113] | |
Circ_HIPK3 | oncogenic | miR-7 | c-Myb | cancer growth and metastasis | [114] | |
Circ_HUWE1 | oncogenic | miR-486 | - | cell proliferation, migration and invasion | [70] | |
Circ_NSD2 | oncogenic | miR-199b-5p | DDR1, JAG1 | migration and metastasis | [76] | |
Circ_PRMT5 | oncogenic | miR-377 | E2F3 | proliferation | [115] | |
Circ_PTK2 | oncogenic | miR-136-5p | YTHDF1 | proliferation, migration, invasion and chemoresistance | [116] | |
Circ_UBAP2 | oncogenic | miR-199a | VEGFA | cell proliferation, migration, and invasion | [77] | |
Circ_ACAP2 | Tumor-suppressive | miR-21-5p | Tiam1 | proliferation, migration, and invasion | [117] | |
Liver cancer | Circ_0003141 | oncogenic | miR-1827 | UBAP2 | proliferation and invasion | [118] |
Circ_0056836 | oncogenic | miR-766-3p | FOSL2 | cell migration, proliferation and invasion | [119] | |
Circ_0061395 | oncogenic | miR-877-5p | PIK3R3 | proliferation, invasion, and migration | [120] | |
Circ_FBLIM1 | oncogenic | miR-346 | FBLIM1 | cell proliferation, apoptosis and invasion | [121] | |
Circ_MAST1 | oncogenic | miR-1299 | CTNND1 | cell proliferation and migration | [122] | |
Circ_MET | oncogenic | miR-30-5p | Snail, DPP4, CXCL10 | epithelial to mesenchymal transition | [78] | |
Circ_ZNF566 | oncogenic | miR-4738-3p | TDO2 | cell migration, invasion, and proliferation | [123] | |
circ_0000673 | oncogenic | miR-767-3p | SET | cell proliferation and invasion | [124] | |
Circ_0001955 | oncogenic | miR-516a-5p | TRAF6, MAPK11 | tumor growth | [79] | |
Circ_0016788 | oncogenic | miR-486 | CDK4 | proliferation, invasion and apoptosis | [125] | |
Circ_0067934 | oncogenic | miR-1324 | FZD5 | proliferation, migration and invasion | [126] | |
Circ_103809 | oncogenic | miR-377-3p | FGFR1 | proliferation, cycle progression and migration | [127] | |
Circ_104348 | oncogenic | miR-187-3p | RTKN2 | proliferation, migration, invasion and apoptosis | [128] | |
Circ_Cdr1as | oncogenic | miR-7 | CCNE1, PIK3CD | proliferation and invasion | [129] | |
Circ_GFRA1 | oncogenic | miR-498 | NAP1L3 | growth and invasion | [130] | |
Circ_HIPK3 | oncogenic | miR-124 | AQP3 | cell proliferation and migration | [131] | |
Circ_MAT2B | oncogenic | miR-338-3p | PKM2 | glycolysis | [132] | |
Circ_5692 | Tumor-suppressive | miR-328-5p | DAB2IP | tumor growth | [80] | |
Circ_C3P1 | Tumor-suppressive | miR-4641 | PCK1 | tumor growth and metastasis | [81] | |
Circ_HIAT1 | Tumor-suppressive | miR-3171 | PTEN | cell growth | [82] | |
Gastric cancer | ciRS-133 | oncogenic | miR-133 | PRDM16 | white adipose browning | [133] |
Circ_0006282 | oncogenic | miR-155 | FBXO22 | cell growth, proliferation and metastasis | [134] | |
Circ_0008035 | oncogenic | miR-375 | YBX1 | proliferation and invasion | [135] | |
Circ_0002360 | oncogenic | miR-629-3p | PDLIM4 | proliferation, invasion and oxidative stress | [85] | |
Circ_AKT3 | oncogenic | miR-198 | PIK3R1 | DNA damage repair and apoptosis | [136] | |
Circ_CACTIN | oncogenic | miR-331-3p | TGFBR1 | tumor growth and EMT | [137] | |
Circ_DLG1 | oncogenic | miR-141-3p | CXCL12 | proliferation, migration, invasion and immune evasion | [138] | |
Circ_MTO1 | oncogenic | miR-199a-3p | PAWR | tumor growth, apoptosis, invasion and migration | [139] | |
Circ_NHSL1 | oncogenic | miR-1306-3p | SIX1, vimentin | cell mobility, invasion and metastasis. | [86] | |
Circ_NRIP1 | oncogenic | miR-149-5p | AKT1 | proliferation, migration and invasion | [140] | |
Circ_PDSS1 | oncogenic | miR-186-5p | NEK2 | cell cycle and apoptosis | [141] | |
Circ_PVRL3 | oncogenic | miR-203, miR-1272, miR-1283, miR-31, miR-638, miR-496, miR-485-3p, miR-766, and miR-876-3p | - | proliferation and migration | [84] | |
Circ_0000039 | oncogenic | miR-1292-5p | DEK | proliferation, migration and invasion | [142] | |
Circ_RanGAP1 | oncogenic | miR-877–3p | VEGFA | invasion and metastasis | [143] | |
ciRS-7 | oncogenic | miR-7 | PTEN, PI3K | poor survival rate | [144] | |
Circ_0026344 | Tumor-suppressive | miR-590-5p | PDCD4 | cell proliferation, migration and invasion | [145] | |
Circ_CCDC9 | Tumor-suppressive | miR-6792-3p | CAV1 | tumor size, lymph node invasion, advanced clinical stage and survival rate | [87] | |
Circ_LARP4 | Tumor-suppressive | miR-424-5p | LATS1 | cell proliferation and invasion | [146] | |
Circ_MCTP2 | Tumor-suppressive | miR-99a-5p | MTMR3 | proliferation while promoting apoptosis of CDDP-resistant GC cells | [147] | |
Circ_PSMC3 | Tumor-suppressive | miR-296-5p | - | the proliferation and metastasis | [148] | |
Breast cancer | Circ_0001982 | oncogenic | miR-1287-5p | MUC19 | glycolysis, proliferation, migration, and invasion | [149] |
Circ_0001429 | oncogenic | miR-205 | KDM4A | metastasis | [150] | |
Circ_0005230 | oncogenic | miR-618 | CBX8 | prognostic predictor | [151] | |
Circ_0008039 | oncogenic | miR-515-5p | CBX4 | proliferation, migration and invasion | [89] | |
Circ_0008039 | oncogenic | miR-432-5p | E2F3 | proliferation, cell-cycle progression and migration | [90] | |
Circ_0136666 | oncogenic | miR-1299 | CDK6 | proliferation, migration and invasion | [152] | |
Circ_100219 | oncogenic | miR-485-3p | NTRK3 | proliferation and migration | [153] | |
Circ_ANKS1B | oncogenic | miR-148a-3p, miR-152-3p | USF1 | metastasis | [154] | |
Circ_BCBM1 | oncogenic | miR-125a | BRD4 | breast cancer brain metastasis | [92] | |
Circ_CER | oncogenic | miR-136 | MMP13 | cell proliferation and migration | [155] | |
Circ_FOXK2 | oncogenic | miR-370 | IGF2BP3 | migration and invasion | [156] | |
Circ_MYO9B | oncogenic | miR-4316 | FOXP4 | cell proliferation and invasion | [157] | |
Circ_PLK1 | oncogenic | miR-4500 | IGF1 | cell proliferation, migration and invasion | [158] | |
Circ_RHOT1 | oncogenic | miR-106a-5p | STAT3 | malignant progression and ferroptosis | [159] | |
Circ_RNF20 | oncogenic | miR-487a | HIF-1α | proliferation, Warburg effect | [91] | |
Circ_RPPH1 | oncogenic | miR-556-5p | YAP1 | proliferation, migration, invasion, and angiogenesis | [160] | |
Circ_HIPK3 | oncogenic | miR-193a | HMGB1, PI3K, AKT | cell proliferation and invasion | [161] | |
Circ_0000442 | Tumor-suppressive | miR-148b-3p | PTEN | tumor growth | [162] | |
Circ_CCDC85A | Tumor-suppressive | miR-550a-5p | MOB1A | proliferation, migration and invasion | [163] |
3. MDTEs Regulated by Oncogenic CircRNAs and Tumor-Suppressive circ RNAs in Various Cancers
3.1. MDTEs That Play a Common Role in Various Types of Cancer
3.2. MDTEs That Play Diverse Roles Depending on Regulation of Specific CircRNAs in Several Cancers
Type of Circular RNA | Cancer Type | CircRNA Symbol /CircBase ID | MicroRNA | Subclass | Super Family | Target Gene | Cancer-Related Regulatory Process | Ref. |
---|---|---|---|---|---|---|---|---|
Oncogenic circular RNA | Bladder cancer | Circ_FARSA | miR-330-5p | SINE | MIR | - | cell proliferation, invasion, apoptosis and migration | [182] |
Breast cancer | Circ_0007255 | miR-335-5p | SINE | MIR | SIX2 | inhibition of oxygen consumption, colony formation, cell migration and invasion | [183] | |
Circ_0061825 (circ-TFF1) | miR-326 | DNA transposon | hAT-Tip100 | TFF1 | cell proliferation, migration, invasion and EMT | [170] | ||
Circ_ABCB10 | miR-1271 | LINE | L2 | - | proliferation and apoptosis | [184] | ||
Cervical cancer | Circ_0067934 | miR-545 | LINE | L2 | EIF3C | proliferation, colony formation, migration, invasion and EMT | [185] | |
Circ_0141539 (Circ_8924) | miR-518d-5p | LINE | RTE-BovB | CBX8 | cell proliferation, migration and invasion | [186] | ||
Cholangiocarcinoma | Circ_0000284 | miR-637 | LINE | L1 | - | migration, invasion and proliferation | [171] | |
Chronic lymphocytic leukemia | Circ_CBFB | miR-607 | SINE | MIR | FZD3 | proliferation and apoptosis | [187] | |
Colon cancer | Circ_PIP5K1A | miR-1273a | SINE | Alu | AP-1, IRF-4, CDX-2, Zic-1 | cell viability, cell invasion and migration | [188] | |
Circ_FARSA | miR-330-5p | SINE | MIR | LASP1 | cell growth | [181] | ||
Circ_ALG1 | miR-342-5p | SINE | tRNA-RTE | PGF | metastasis | [189] | ||
Circ_102958 | miR-585 | LTR | ERVL-MaLR | CDC25B | growth, migration and invasion | [190] | ||
Glioma | Circ_0001982 | miR-1205 | SINE | MIR | E2F1 | cell proliferation, migration, invasion and cell cycle progression | [191] | |
Circ_0034642 | miR-1205 | SINE | MIR | BATF3 | cell proliferation and invasion | [192] | ||
Liver cancer | Circ_0000517 | miR-326 | DNA transposon | hAT-Tip100 | IGF1R | cell viability, colony formation, migration, invasion and glycolysis | [169] | |
Circ_G004213 | miR-513b-5p | DNA transposon | hAT-Tip100 | PRPF39 | cisplatin sensitivity and prognosis | [193] | ||
Circ_ 001306 | miR-584-5p | DNA transposon | hAT-Blackjack | CDK16 | cell proliferation and growth | [194] | ||
Circ_ 104075 | miR-582-3p | LINE | CR1 | HNF4a | YAP-dependent tumorigenesis | [195] | ||
Lung cancer | Circ_ FOXM1 | miR-1304-5p | SINE | Alu | PPDPF, MACC1 | proliferation and invasion | [196] | |
Circ_ ZKSCAN1 | miR-330-5p | SINE | MIR | FAM83A | tumor growth | [180] | ||
Circ_ 0004015 | miR-1183 | LINE | L2 | PDPK1 | proliferation, invasion, TKI drug resistance | [197] | ||
Circ_ 0014130 | miR-493-5p | LINE | L2 | - | - | [198] | ||
Circ_ POLA2 | miR-326 | DNA transposon | hAT-Tip100 | GNB1 | cell stemness and progression | [168] | ||
Circ_ 0003998 | miR-326 | DNA transposon | hAT-Tip100 | Notch1 | cell proliferation and invasion | [167] | ||
Osteosarcoma | Circ_ HIPK3 | miR-637 | LINE | L1 | HDAC4 | proliferation and migration and invasion | [173] | |
Papillary thyroid cancer | Circ_ ZFR | miR-1261 | DNA transposon | TcMar-Tigger | C8orf4 | cell proliferation and invasion | [199] | |
Stomach cancer | Circ-LDLRAD3 | miR-224-5p | DNA transposon | DNA transposon | - | cell growth, migration invasion and apoptosis | [178] | |
Circ_HIPK3 | miR-637 | LINE | L1 | AKT1 | cell growth and metastasis | [172] | ||
Circ_ATXN7 | miR-4319 | SINE | MIR | ENTPD4 | proliferation, invasion and apoptosis | [200] | ||
Circ_0008287 | miR-548c-3p | DNA transposon | TcMar-Mariner | CLIC1 | immune escape of cancer cell | [201] | ||
Tumor- Suppressive circular RNA | Bladder cancer | Circ_ITCH | miR-224 | DNA transposon | DNA transposon | p21, PTEN | cell proliferation, migration, invasion and metastasis | [176] |
Circ_HIPK3 | miR-558 | LTR | ERVL-MaLR | HPSE | migration, invasion, and angiogenesis | [202] | ||
Breast cancer | Circ_AHNAK1 | miR-421 | LINE | L2 | RASA1 | proliferation and metastasis | [175] | |
Colon cancer | Circ_SMARCA5 | miR-552 | LINE | L1 | - | growth, migration and invasion | [203] | |
Liver cancer | Circ_SETD3 (circ_0000567) | miR-421 | LINE | L2 | MAPK14 | tumor cell growth | [174] | |
Lung cancer | Circ_0078767 | miR-330-5p | SINE | MIR | RASSF1A | cancer cell viability, cell cycle progression and invasion | [179] | |
Circ_0007059 | miR-378 | SINE | MIR | p53, CyclinD1, Bax, Cleaved-Caspase-3, E-cadherin, Vimentin, Twist, Zeb1 | proliferation and EMT | [204] | ||
Osteosarcoma | Circ_0002052 | miR-1205 | SINE | MIR | APC2 | cell proliferation, migration, invasion and apoptosis | [205] | |
Stomach cancer | Circ_FAT1(e2) | miR-548g | DNA transposon | TcMar-Mariner | YBX1 | cell proliferation, migration and invasion | [206] | |
Circ_ZFR | miR-130a | LINE | RTE-BovB | PTEN | cell proliferation and apoptosis | [207] | ||
Circ_0000096 | miR-224 | DNA transposon | DNA transposon | cyclin D1, CDK6, MMP-2, MMP-9 | cell growth and migration | [177] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, Y.; Xu, S.; Liu, J.; Ponnusamy, M.; Zhao, Y.; Zhang, Y.; Wang, Q.; Li, P.; Wang, K. Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. Int. J. Biol. Sci. 2018, 14, 1133. [Google Scholar]
- Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar]
- Lekka, E.; Hall, J. Noncoding RNA s in disease. FEBS Lett. 2018, 592, 2884–2900. [Google Scholar]
- Li, M.; Duan, L.; Li, Y.; Liu, B. Long noncoding RNA/circular noncoding RNA–miRNA–mRNA axes in cardiovascular diseases. Life Sci. 2019, 233, 116440. [Google Scholar]
- Su, Q.; Lv, X. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics 2020, 112, 1680–1685. [Google Scholar]
- Guo, L.; Jia, L.; Luo, L.; Xu, X.; Xiang, Y.; Ren, Y.; Ren, D.; Shen, L.; Liang, T. Critical roles of circular RNA in tumor metastasis via acting as a sponge of miRNA/isomiR. Int. J. Mol. Sci. 2022, 23, 7024. [Google Scholar]
- Cheng, D.; Wang, J.; Dong, Z.; Li, X. Cancer-related circular RNA: Diverse biological functions. Cancer Cell Int. 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Marinescu, M.-C.; Lazar, A.-L.; Marta, M.M.; Cozma, A.; Catana, C.-S. Non-Coding RNAs: Prevention, Diagnosis, and Treatment in Myocardial Ischemia–Reperfusion Injury. Int. J. Mol. Sci. 2022, 23, 2728. [Google Scholar]
- Paul, S.; Ruiz-Manriquez, L.M.; Ledesma-Pacheco, S.J.; Benavides-Aguilar, J.A.; Torres-Copado, A.; Morales-Rodríguez, J.I.; De Donato, M.; Srivastava, A. Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: A review. Arch. Biochem. Biophys. 2021, 699, 108763. [Google Scholar]
- Pandey, M.; Mukhopadhyay, A.; Sharawat, S.K.; Kumar, S. Role of microRNAs in regulating cell proliferation, metastasis and chemoresistance and their applications as cancer biomarkers in small cell lung cancer. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 2021, 1876, 188552. [Google Scholar]
- Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Campo-Paysaa, F.; Sémon, M.; Cameron, R.A.; Peterson, K.J.; Schubert, M. microRNA complements in deuterostomes: Origin and evolution of microRNAs. Evol. Dev. 2011, 13, 15–27. [Google Scholar] [CrossRef]
- Piriyapongsa, J.; Mariño-Ramírez, L.; Jordan, I.K. Origin and evolution of human microRNAs from transposable elements. Genetics 2007, 176, 1323–1337. [Google Scholar] [CrossRef]
- Rani, V.; Sengar, R.S. Biogenesis and mechanisms of microRNA-mediated gene regulation. Biotechnol. Bioeng. 2022, 119, 685–692. [Google Scholar] [CrossRef]
- Hill, M.; Tran, N. Global miRNA to miRNA interactions: Impacts for miR-21. Trends Cell Biol. 2021, 31, 3–5. [Google Scholar]
- Gong, Y.; Zhang, X. RNAi-based antiviral immunity of shrimp. Dev. Comp. Immunol. 2021, 115, 103907. [Google Scholar]
- Chen, C.; Zeng, Z.; Liu, Z.; Xia, R. Small RNAs, emerging regulators critical for the development of horticultural traits. Hortic. Res. 2018, 5, 63. [Google Scholar]
- Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.; Lenhof, H.-P. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019, 47, 3353–3364. [Google Scholar]
- Fernández-Hernando, C.; Suárez, Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr. Opin. Hematol. 2018, 25, 227. [Google Scholar]
- Zhang, Y.; Li, S.; Jin, P.; Shang, T.; Sun, R.; Lu, L.; Guo, K.; Liu, J.; Tong, Y.; Wang, J. Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat. Commun. 2022, 13, 2447. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, D.-H.; Wu, N.; Xiao, J.-H.; Wang, X.; Ma, W. ceRNA in cancer: Possible functions and clinical implications. J. Med. Genet. 2015, 52, 710–718. [Google Scholar]
- Panda, A.C. Circular RNAs act as miRNA sponges. Circ. RNAs 2018, 1087, 67–79. [Google Scholar]
- Cai, X.; Lin, L.; Zhang, Q.; Wu, W.; Su, A. Bioinformatics analysis of the circRNA–miRNA–mRNA network for non-small cell lung cancer. J. Int. Med. Res. 2020, 48, 0300060520929167. [Google Scholar]
- Ali, A.; Han, K.; Liang, P. Role of transposable elements in gene regulation in the human genome. Life 2021, 11, 118. [Google Scholar]
- Campo, S.; Sánchez-Sanuy, F.; Camargo-Ramírez, R.; Gómez-Ariza, J.; Baldrich, P.; Campos-Soriano, L.; Soto-Suárez, M.; San Segundo, B. A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease. Plant Biotechnol. J. 2021, 19, 1798–1811. [Google Scholar]
- Lee, H.-E.; Huh, J.-W.; Kim, H.-S. Bioinformatics analysis of evolution and human disease related transposable element-derived microRNAs. Life 2020, 10, 95. [Google Scholar] [CrossRef]
- Anwar, S.L.; Wulaningsih, W.; Lehmann, U. Transposable elements in human cancer: Causes and consequences of deregulation. Int. J. Mol. Sci. 2017, 18, 974. [Google Scholar]
- Prats, A.-C.; David, F.; Diallo, L.H.; Roussel, E.; Tatin, F.; Garmy-Susini, B.; Lacazette, E. Circular RNA, the key for translation. Int. J. Mol. Sci. 2020, 21, 8591. [Google Scholar] [CrossRef]
- Meng, X.; Li, X.; Zhang, P.; Wang, J.; Zhou, Y.; Chen, M. Circular RNA: An emerging key player in RNA world. Brief. Bioinform. 2017, 18, 547–557. [Google Scholar]
- Li, W.; Liu, J.Q.; Chen, M.; Xu, J.; Zhu, D. Circular RNA in cancer development and immune regulation. J. Cell. Mol. Med. 2022, 26, 1785–1798. [Google Scholar]
- Kristensen, L.; Hansen, T.; Venø, M.; Kjems, J. Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene 2018, 37, 555–565. [Google Scholar]
- Li, M.; Ding, W.; Sun, T.; Tariq, M.A.; Xu, T.; Li, P.; Wang, J. Biogenesis of circular RNA s and their roles in cardiovascular development and pathology. FEBS J. 2018, 285, 220–232. [Google Scholar]
- Panda, A.C.; De, S.; Grammatikakis, I.; Munk, R.; Yang, X.; Piao, Y.; Dudekula, D.B.; Abdelmohsen, K.; Gorospe, M. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res. 2017, 45, e116. [Google Scholar] [CrossRef]
- Eger, N.; Schoppe, L.; Schuster, S.; Laufs, U.; Boeckel, J.-N. Circular RNA splicing. Circ. RNAs 2018, 1087, 41–52. [Google Scholar]
- Yao, T.; Chen, Q.; Fu, L.; Guo, J. Circular RNAs: Biogenesis, properties, roles, and their relationships with liver diseases. Hepatol. Res. 2017, 47, 497–504. [Google Scholar]
- Kelly, S.; Greenman, C.; Cook, P.R.; Papantonis, A. Exon skipping is correlated with exon circularization. J. Mol. Biol. 2015, 427, 2414–2417. [Google Scholar]
- Li, J.; Yang, J.; Zhou, P.; Le, Y.; Zhou, C.; Wang, S.; Xu, D.; Lin, H.-K.; Gong, Z. Circular RNAs in cancer: Novel insights into origins, properties, functions and implications. Am. J. Cancer Res. 2015, 5, 472. [Google Scholar]
- Huang, M.-S.; Zhu, T.; Li, L.; Xie, P.; Li, X.; Zhou, H.-H.; Liu, Z.-Q. LncRNAs and CircRNAs from the same gene: Masterpieces of RNA splicing. Cancer Lett. 2018, 415, 49–57. [Google Scholar]
- Zhao, W.; Li, M.; Wang, S.; Li, Z.; Li, H.; Li, S. CircRNA SRRM4 affects glucose metabolism by regulating PKM alternative splicing via SRSF3 deubiquitination in epilepsy. Neuropathol. Appl. Neurobiol. 2022, e12850. [Google Scholar]
- Gao, Y.; Wang, J.; Zheng, Y.; Zhang, J.; Chen, S.; Zhao, F. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat. Commun. 2016, 7, 12060. [Google Scholar] [CrossRef] [Green Version]
- Aufiero, S.; van den Hoogenhof, M.M.; Reckman, Y.J.; Beqqali, A.; van der Made, I.; Kluin, J.; Khan, M.A.; Pinto, Y.M.; Creemers, E.E. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA 2018, 24, 815–827. [Google Scholar] [CrossRef]
- Chen, L.-L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 2016, 17, 205–211. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, G.; Yan, X.; Lv, Z.; Yin, H.; Zhang, S.; Song, W.; Li, X.; Li, L.; Du, Z. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018, 19, 218. [Google Scholar]
- Wang, X.; Fang, L. Advances in circular RNAs and their roles in breast Cancer. J. Exp. Clin. Cancer Res. 2018, 37, 206. [Google Scholar]
- Liu, D.; Mewalal, R.; Hu, R.; Tuskan, G.A.; Yang, X. New technologies accelerate the exploration of non-coding RNAs in horticultural plants. Hortic. Res. 2017, 4, 17031. [Google Scholar]
- Abe, N.; Matsumoto, K.; Nishihara, M.; Nakano, Y.; Shibata, A.; Maruyama, H.; Shuto, S.; Matsuda, A.; Yoshida, M.; Ito, Y. Rolling circle translation of circular RNA in living human cells. Sci. Rep. 2015, 5, 16435. [Google Scholar]
- Wen, S.-y.; Qadir, J.; Yang, B.B. Circular RNA translation: Novel protein isoforms and clinical significance. Trends Mol. Med. 2022, 28, 405–420. [Google Scholar] [CrossRef]
- Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E. Translation of circRNAs. Mol. Cell 2017, 66, 9–21.e7. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.-O.; Chen, T.; Xiang, J.-F.; Yin, Q.-F.; Xing, Y.-H.; Zhu, S.; Yang, L.; Chen, L.-L. Circular intronic long noncoding RNAs. Mol. Cell 2013, 51, 792–806. [Google Scholar] [CrossRef]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef]
- Zhu, L.-P.; He, Y.-J.; Hou, J.-C.; Chen, X.; Zhou, S.-Y.; Yang, S.-J.; Li, J.; Zhang, H.-D.; Hu, J.-H.; Zhong, S.-L. The role of circRNAs in cancers. Biosci. Rep. 2017, 37, BSR20170750. [Google Scholar]
- Zeng, Y.; Du, W.W.; Wu, Y.; Yang, Z.; Awan, F.M.; Li, X.; Yang, W.; Zhang, C.; Yang, Q.; Yee, A. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 2017, 7, 3842. [Google Scholar]
- Du, W.W.; Fang, L.; Yang, W.; Wu, N.; Awan, F.M.; Yang, Z.; Yang, B.B. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017, 24, 357–370. [Google Scholar] [CrossRef]
- Chen, J.; Gu, J.; Tang, M.; Liao, Z.; Tang, R.; Zhou, L.; Su, M.; Jiang, J.; Hu, Y.; Chen, Y. Regulation of cancer progression by circRNA and functional proteins. J. Cell. Physiol. 2022, 237, 373–388. [Google Scholar]
- Liang, Z.-Z.; Guo, C.; Zou, M.-M.; Meng, P.; Zhang, T.-T. circRNA-miRNA-mRNA regulatory network in human lung cancer: An update. Cancer Cell Int. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Das, A.; Sinha, T.; Shyamal, S.; Panda, A.C. Emerging role of circular RNA–protein interactions. Non-Coding RNA 2021, 7, 48. [Google Scholar] [CrossRef]
- Bezzi, M.; Guarnerio, J.; Pandolfi, P.P. A circular twist on microRNA regulation. Cell Res. 2017, 27, 1401–1402. [Google Scholar]
- Zhang, M.; Xin, Y. Circular RNAs: A new frontier for cancer diagnosis and therapy. J. Hematol. Oncol. 2018, 11, 1–9. [Google Scholar] [CrossRef]
- He, Y.; Lin, J.; Ding, Y.; Liu, G.; Luo, Y.; Huang, M.; Xu, C.; Kim, T.K.; Etheridge, A.; Lin, M. A systematic study on dysregulated micro RNA s in cervical cancer development. Int. J. Cancer 2016, 138, 1312–1327. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Liu, W.; Ma, W.; Yuan, Y.; Zhang, Y.; Sun, S. Circular RNA hsa_circRNA_103809 promotes lung cancer progression via facilitating ZNF121-dependent MYC expression by sequestering miR-4302. Biochem. Biophys. Res. Commun. 2018, 500, 846–851. [Google Scholar]
- Yu, H.; Chen, Y.; Jiang, P. Circular RNA HIPK3 exerts oncogenic properties through suppression of miR-124 in lung cancer. Biochem. Biophys. Res. Commun. 2018, 506, 455–462. [Google Scholar]
- Lu, H.; Han, X.; Ren, J.; Ren, K.; Li, Z.; Sun, Z. Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small cell lung cancer through sponging miR-149. Cancer Biol. Ther. 2020, 21, 113–121. [Google Scholar] [CrossRef]
- Qin, S.; Zhao, Y.; Lim, G.; Lin, H.; Zhang, X.; Zhang, X. Circular RNA PVT1 acts as a competing endogenous RNA for miR-497 in promoting non-small cell lung cancer progression. Biomed. Pharmacother. 2019, 111, 244–250. [Google Scholar]
- Liu, B.; Li, H.; Liu, X.; Li, F.; Chen, W.; Kuang, Y.; Zhao, X.; Li, L.; Yu, B.; Jin, X. CircZNF208 enhances the sensitivity to X-rays instead of carbon-ions through the miR-7-5p/SNCA signal axis in non-small-cell lung cancer cells. Cell. Signal. 2021, 84, 110012. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Y.; Wu, J.; Niu, Y.; Yao, Y.; Zhang, J.; Huang, X.; Liang, S.; Chen, R.; Chen, S. Circular RNA cESRP1 sensitises small cell lung cancer cells to chemotherapy by sponging miR-93-5p to inhibit TGF-β signalling. Cell Death Differ. 2020, 27, 1709–1727. [Google Scholar]
- Deng, Q.; Wang, C.; Hao, R.; Yang, Q. Circ_0001982 accelerates the progression of colorectal cancer via sponging microRNA-144. Eur. Rev. Med. Pharm. Sci. 2020, 24, 1755–1762. [Google Scholar]
- Chen, H.-Y.; Li, X.-N.; Ye, C.-X.; Chen, Z.-L.; Wang, Z.-J. Circular RNA circHUWE1 is upregulated and promotes cell proliferation, migration and invasion in colorectal cancer by sponging miR-486. OncoTargets Ther. 2020, 13, 423. [Google Scholar] [CrossRef]
- Tu, F.-L.; Guo, X.-Q.; Wu, H.-X.; He, Z.-Y.; Wang, F.; Sun, A.-J.; Dai, X.-D. Circ-0001313/miRNA-510-5p/AKT2 axis promotes the development and progression of colon cancer. Am. J. Transl. Res. 2020, 12, 281. [Google Scholar]
- Zhang, J.; Liu, H.; Zhao, P.; Zhou, H.; Mao, T. Has_circ_0055625 from circRNA profile increases colon cancer cell growth by sponging miR-106b-5p. J. Cell. Biochem. 2019, 120, 3027–3037. [Google Scholar] [CrossRef]
- Xu, H.; Wang, C.; Song, H.; Xu, Y.; Ji, G. RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers. Mol. Cancer 2019, 18, 8. [Google Scholar]
- Ji, W.; Qiu, C.; Wang, M.; Mao, N.; Wu, S.; Dai, Y. Hsa_circ_0001649: A circular RNA and potential novel biomarker for colorectal cancer. Biochem. Biophys. Res. Commun. 2018, 497, 122–126. [Google Scholar] [CrossRef]
- Xu, X.-W.; Zheng, B.-A.; Hu, Z.-M.; Qian, Z.-Y.; Huang, C.-J.; Liu, X.-Q.; Wu, W.-D. Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b. Oncotarget 2017, 8, 91674. [Google Scholar]
- Chen, L.Y.; Zhi, Z.; Wang, L.; Zhao, Y.Y.; Deng, M.; Liu, Y.H.; Qin, Y.; Tian, M.M.; Liu, Y.; Shen, T. NSD2 circular RNA promotes metastasis of colorectal cancer by targeting miR-199b-5p-mediated DDR1 and JAG1 signalling. J. Pathol. 2019, 248, 103–115. [Google Scholar] [CrossRef]
- Dai, J.; Zhuang, Y.; Tang, M.; Qian, Q.; Chen, J. CircRNA UBAP2 facilitates the progression of colorectal cancer by regulating miR-199a/VEGFA pathway. Eur. Rev. Med. Pharm. Sci. 2020, 24, 7963–7971. [Google Scholar]
- Huang, X.-Y.; Zhang, P.-F.; Wei, C.-Y.; Peng, R.; Lu, J.-C.; Gao, C.; Cai, J.-B.; Yang, X.; Fan, J.; Ke, A.-W. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol. Cancer 2020, 19, 92. [Google Scholar] [CrossRef]
- Yao, Z.; Xu, R.; Yuan, L.; Xu, M.; Zhuang, H.; Li, Y.; Zhang, Y.; Lin, N. Circ_0001955 facilitates hepatocellular carcinoma (HCC) tumorigenesis by sponging miR-516a-5p to release TRAF6 and MAPK11. Cell Death Dis. 2019, 10, 945. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Y.; Huang, Z.; Kong, Y.; Hu, X.; Xiao, W.; Quan, J.; Fan, X. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 2019, 10, 900. [Google Scholar]
- Zhong, L.; Wang, Y.; Cheng, Y.; Wang, W.; Lu, B.; Zhu, L.; Ma, Y. Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway. Biochem. Biophys. Res. Commun. 2018, 499, 1044–1049. [Google Scholar]
- Wang, Z.; Zhao, Y.; Wang, Y.; Jin, C. Circular RNA circHIAT1 inhibits cell growth in hepatocellular carcinoma by regulating miR-3171/PTEN axis. Biomed. Pharmacother. 2019, 116, 108932. [Google Scholar]
- Figueiredo, C.; Camargo, M.C.; Leite, M.; Fuentes-Pananá, E.M.; Rabkin, C.S.; Machado, J.C. Pathogenesis of gastric cancer: Genetics and molecular classification. Mol. Pathog. Signal Transduct. By Helicobacter Pylori 2017, 277–304. [Google Scholar]
- Sun, H.-D.; Xu, Z.-P.; Sun, Z.-Q.; Zhu, B.; Wang, Q.; Zhou, J.; Jin, H.; Zhao, A.; Tang, W.-W.; Cao, X.-F. Down-regulation of circPVRL3 promotes the proliferation and migration of gastric cancer cells. Sci. Rep. 2018, 8, 10111. [Google Scholar]
- Yu, Z.; Lan, J.; Li, W.; Jin, L.; Qi, F.; Yu, C.; Zhu, H. Circular RNA hsa_circ_0002360 promotes proliferation and invasion and inhibits oxidative stress in gastric cancer by sponging miR-629-3p and regulating the PDLIM4 expression. Oxidative Med. Cell. Longev. 2022, 2022, 2775433. [Google Scholar] [CrossRef]
- Zhu, Z.; Rong, Z.; Luo, Z.; Yu, Z.; Zhang, J.; Qiu, Z.; Huang, C. Circular RNA circNHSL1 promotes gastric cancer progression through the miR-1306-3p/SIX1/vimentin axis. Mol. Cancer 2019, 18, 126. [Google Scholar]
- Luo, Z.; Rong, Z.; Zhang, J.; Zhu, Z.; Yu, Z.; Li, T.; Fu, Z.; Qiu, Z.; Huang, C. Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression. Mol. Cancer 2020, 19, 86. [Google Scholar]
- Seneviratne, S.; Lawrenson, R.; Scott, N.; Kim, B.; Shirley, R.; Campbell, I. Breast cancer biology and ethnic disparities in breast cancer mortality in New Zealand: A cohort study. PLoS ONE 2015, 10, e0123523. [Google Scholar] [CrossRef]
- Huang, F.; Dang, J.; Zhang, S.; Cheng, Z. Circular RNA hsa_circ_0008039 promotes proliferation, migration and invasion of breast cancer cells through upregulating CBX4 via sponging miR-515-5p. Eur. Rev. Med. Pharm. Sci. 2020, 24, 1887–1898. [Google Scholar]
- Liu, Y.; Lu, C.; Zhou, Y.; Zhang, Z.; Sun, L. Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis. Biochem. Biophys. Res. Commun. 2018, 502, 358–363. [Google Scholar] [CrossRef]
- Cao, L.; Wang, M.; Dong, Y.; Xu, B.; Chen, J.; Ding, Y.; Qiu, S.; Li, L.; Karamfilova Zaharieva, E.; Zhou, X. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 2020, 11, 145. [Google Scholar] [CrossRef]
- Fu, B.; Liu, W.; Zhu, C.; Li, P.; Wang, L.; Pan, L.; Li, K.; Cai, P.; Meng, M.; Wang, Y. Circular RNA circBCBM1 promotes breast cancer brain metastasis by modulating miR-125a/BRD4 axis. Int. J. Biol. Sci. 2021, 17, 3104. [Google Scholar]
- Li, C.; Liu, H.; Niu, Q.; Gao, J. Circ_0000376, a novel circRNA, promotes the progression of non-small cell lung cancer through regulating the miR-1182/NOVA2 network. Cancer Manag. Res. 2020, 12, 7635. [Google Scholar]
- Hu, X.; Wang, P.; Qu, C.; Zhang, H.; Li, L. Circular RNA Circ_0000677 promotes cell proliferation by regulating microRNA-106b-5p/CCND1 in non-small cell lung cancer. Bioengineered 2021, 12, 6229–6239. [Google Scholar] [CrossRef]
- Qu, D.; Yan, B.; Xin, R.; Ma, T. A novel circular RNA hsa_circ_0020123 exerts oncogenic properties through suppression of miR-144 in non-small cell lung cancer. Am. J. Cancer Res. 2018, 8, 1387. [Google Scholar]
- Li, L.; Wan, K.; Xiong, L.; Liang, S.; Tou, F.; Guo, S. CircRNA hsa_circ_0087862 acts as an oncogene in non-small cell lung cancer by targeting miR-1253/RAB3D axis. OncoTargets Ther. 2020, 13, 2873. [Google Scholar]
- Han, J.; Zhao, G.; Ma, X.; Dong, Q.; Zhang, H.; Wang, Y.; Cui, J. CircRNA circ-BANP-mediated miR-503/LARP1 signaling contributes to lung cancer progression. Biochem. Biophys. Res. Commun. 2018, 503, 2429–2435. [Google Scholar] [CrossRef]
- Ma, X.; Yang, X.; Bao, W.; Li, S.; Liang, S.; Sun, Y.; Zhao, Y.; Wang, J.; Zhao, C. Circular RNA circMAN2B2 facilitates lung cancer cell proliferation and invasion via miR-1275/FOXK1 axis. Biochem. Biophys. Res. Commun. 2018, 498, 1009–1015. [Google Scholar] [CrossRef]
- Chi, Y.; Luo, Q.; Song, Y.; Yang, F.; Wang, Y.; Jin, M.; Zhang, D. Circular RNA circPIP5K1A promotes non-small cell lung cancer proliferation and metastasis through miR-600/HIF-1α regulation. J. Cell. Biochem. 2019, 120, 19019–19030. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Jiang, H.; Li, Q.; Wang, R.; Pan, H.; Niu, Y.; Liu, F.; Gu, H.; Fan, X. Circular RNA circPVT1 promotes proliferation and invasion through sponging miR-125b and activating E2F2 signaling in non-small cell lung cancer. Cell. Physiol. Biochem. 2018, 51, 2324–2340. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, R.; Chen, J.; Ning, D. CircRNA CDR1as/miR-641/HOXA9 pathway regulated stemness contributes to cisplatin resistance in non-small cell lung cancer (NSCLC). Cancer Cell Int. 2020, 20, 289. [Google Scholar]
- Yang, L.; Wang, J.; Fan, Y.; Yu, K.; Jiao, B.; Su, X. Hsa_circ_0046264 up-regulated BRCA2 to suppress lung cancer through targeting hsa-miR-1245. Respir. Res. 2018, 19, 115. [Google Scholar]
- Chen, D.; Ma, W.; Ke, Z.; Xie, F. CircRNA hsa_circ_100395 regulates miR-1228/TCF21 pathway to inhibit lung cancer progression. Cell Cycle 2018, 17, 2080–2090. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Zhang, L. Identification of the tumor-suppressive function of circular RNA FOXO3 in non-small cell lung cancer through sponging miR-155. Mol. Med. Rep. 2018, 17, 7692–7700. [Google Scholar]
- Chen, L.-Y.; Wang, L.; Ren, Y.-X.; Pang, Z.; Liu, Y.; Sun, X.-D.; Tu, J.; Zhi, Z.; Qin, Y.; Sun, L.-N. The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation. Mol. Cancer 2020, 19, 164. [Google Scholar] [CrossRef]
- Chen, H.; Wu, C.; Luo, L.; Wang, Y.; Peng, F. circ_0000467 promotes the proliferation, metastasis, and angiogenesis in colorectal cancer cells through regulating KLF12 expression by sponging miR-4766-5p. Open Med. 2021, 16, 1415–1427. [Google Scholar] [CrossRef]
- Deng, Z.; Li, X.; Wang, H.; Geng, Y.; Cai, Y.; Tang, Y.; Wang, Y.; Yu, X.; Li, L.; Li, R. Dysregulation of CircRNA_0001946 contributes to the proliferation and metastasis of colorectal cancer cells by targeting MicroRNA-135a-5p. Front. Genet. 2020, 11, 357. [Google Scholar]
- Yang, L.; Sun, H.; Liu, X.; Chen, J.; Tian, Z.; Xu, J.; Xiang, B.; Qin, B. Circular RNA hsa_circ_0004277 contributes to malignant phenotype of colorectal cancer by sponging miR-512-5p to upregulate the expression of PTMA. J. Cell. Physiol. 2020. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Yang, H.; Bai, M.; Ning, T.; Deng, T.; Liu, R.; Fan, Q.; Zhu, K.; Li, J. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol. Oncol. 2020, 14, 539–555. [Google Scholar] [CrossRef]
- He, J.H.; Han, Z.P.; Luo, J.G.; Jiang, J.W.; Zhou, J.B.; Chen, W.M.; Lv, Y.B.; He, M.L.; Zheng, L.; Li, Y.G. Hsa_Circ_0007843 acts as a mIR-518c-5p sponge to regulate the migration and invasion of colon cancer SW480 cells. Front. Genet. 2020, 11, 9. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, M. Circular RNA hsa_circ_0053277 promotes the development of colorectal cancer by upregulating matrix metallopeptidase 14 via miR-2467-3p sequestration. J. Cell. Physiol. 2020, 235, 2881–2890. [Google Scholar]
- Wang, X.; Ren, Y.; Ma, S.; Wang, S. Circular RNA 0060745, a novel circRNA, promotes colorectal cancer cell proliferation and metastasis through miR-4736 sponging. OncoTargets Ther. 2020, 13, 1941. [Google Scholar]
- Chen, P.; Yao, Y.; Yang, N.; Gong, L.; Kong, Y.; Wu, A. Circular RNA circCTNNA1 promotes colorectal cancer progression by sponging miR-149-5p and regulating FOXM1 expression. Cell Death Dis. 2020, 11, 557. [Google Scholar] [CrossRef]
- Zeng, K.; Chen, X.; Xu, M.; Liu, X.; Hu, X.; Xu, T.; Sun, H.; Pan, Y.; He, B.; Wang, S. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018, 9, 417. [Google Scholar] [CrossRef]
- Yang, B.; Du, K.; Yang, C.; Xiang, L.; Xu, Y.; Cao, C.; Zhang, J.; Liu, W. CircPRMT5 circular RNA promotes proliferation of colorectal cancer through sponging miR-377 to induce E2F3 expression. J. Cell. Mol. Med. 2020, 24, 3431–3437. [Google Scholar]
- Jiang, Z.; Hou, Z.; Liu, W.; Yu, Z.; Liang, Z.; Chen, S. Circular RNA protein tyrosine kinase 2 (circPTK2) promotes colorectal cancer proliferation, migration, invasion and chemoresistance. Bioengineered 2022, 13, 810–823. [Google Scholar]
- He, J.-H.; Li, Y.-G.; Han, Z.-P.; Zhou, J.-B.; Chen, W.-M.; Lv, Y.-B.; He, M.-L.; Zuo, J.-D.; Zheng, L. The CircRNA-ACAP2/Hsa-miR-21-5p/Tiam1 regulatory feedback circuit affects the proliferation, migration, and invasion of colon cancer SW480 cells. Cell. Physiol. Biochem. 2018, 49, 1539–1550. [Google Scholar]
- Wang, Y.; Gao, R.; Li, J.; Tang, S.; Li, S.; Tong, Q.; Mao, Y. Circular RNA hsa_circ_0003141 promotes tumorigenesis of hepatocellular carcinoma via a miR-1827/UBAP2 axis. Aging 2020, 12, 9793. [Google Scholar]
- Li, Z.; Liu, Y.; Yan, J.; Zeng, Q.; Hu, Y.; Wang, H.; Li, H.; Li, J.; Yu, Z. Circular RNA hsa_circ_0056836 functions an oncogenic gene in hepatocellular carcinoma through modulating miR-766-3p/FOSL2 axis. Aging 2020, 12, 2485. [Google Scholar] [CrossRef]
- Yu, Y.; Bian, L.; Liu, R.; Wang, Y.; Xiao, X. Circular RNA hsa_circ_0061395 accelerates hepatocellular carcinoma progression via regulation of the miR-877-5p/PIK3R3 axis. Cancer Cell Int. 2021, 21, 10. [Google Scholar]
- Bai, N.; Peng, E.; Qiu, X.; Lyu, N.; Zhang, Z.; Tao, Y.; Li, X.; Wang, Z. circFBLIM1 act as a ceRNA to promote hepatocellular cancer progression by sponging miR-346. J. Exp. Clin. Cancer Res. 2018, 37, 172. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Sheng, P.; Sun, J.; Zhao, X.; Zhang, J.; Li, Y.; Zhang, Y.; Zhang, W.; Wang, J.; Liu, K. The circular RNA circMAST1 promotes hepatocellular carcinoma cell proliferation and migration by sponging miR-1299 and regulating CTNND1 expression. Cell Death Dis. 2020, 11, 340. [Google Scholar] [CrossRef]
- Li, S.; Weng, J.; Song, F.; Li, L.; Xiao, C.; Yang, W.; Xu, J. Circular RNA circZNF566 promotes hepatocellular carcinoma progression by sponging miR-4738-3p and regulating TDO2 expression. Cell Death Dis. 2020, 11, 452. [Google Scholar] [CrossRef]
- Jiang, W.; Wen, D.; Gong, L.; Wang, Y.; Liu, Z.; Yin, F. Circular RNA hsa_circ_0000673 promotes hepatocellular carcinoma malignance by decreasing miR-767-3p targeting SET. Biochem. Biophys. Res. Commun. 2018, 500, 211–216. [Google Scholar] [CrossRef]
- Guan, Z.; Tan, J.; Gao, W.; Li, X.; Yang, Y.; Li, X.; Li, Y.; Wang, Q. Circular RNA hsa_circ_0016788 regulates hepatocellular carcinoma tumorigenesis through miR-486/CDK4 pathway. J. Cell. Physiol. 2019, 234, 500–508. [Google Scholar] [CrossRef]
- Zhu, Q.; Lu, G.; Luo, Z.; Gui, F.; Wu, J.; Zhang, D.; Ni, Y. CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/β-catenin axis. Biochem. Biophys. Res. Commun. 2018, 497, 626–632. [Google Scholar] [CrossRef]
- Zhan, W.; Liao, X.; Chen, Z.; Li, L.; Tian, T.; Yu, L.; Wang, W.; Hu, Q. Circular RNA hsa_circRNA_103809 promoted hepatocellular carcinoma development by regulating miR-377-3p/FGFR1/ERK axis. J. Cell. Physiol. 2020, 235, 1733–1745. [Google Scholar] [CrossRef]
- Huang, G.; Liang, M.; Liu, H.; Huang, J.; Li, P.; Wang, C.; Zhang, Y.; Lin, Y.; Jiang, X. CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death Dis. 2020, 11, 1065. [Google Scholar] [CrossRef]
- Yu, L.; Gong, X.; Sun, L.; Zhou, Q.; Lu, B.; Zhu, L. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS ONE 2016, 11, e0158347. [Google Scholar] [CrossRef]
- Lv, S.; Li, Y.; Ning, H.; Zhang, M.; Jia, Q.; Wang, X. CircRNA GFRA1 promotes hepatocellular carcinoma progression by modulating the miR-498/NAP1L3 axis. Sci. Rep. 2021, 11, 386. [Google Scholar]
- Chen, G.; Shi, Y.; Liu, M.; Sun, J. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis. 2018, 9, 175. [Google Scholar] [CrossRef]
- Li, Q.; Pan, X.; Zhu, D.; Deng, Z.; Jiang, R.; Wang, X. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology 2019, 70, 1298–1316. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.; Bai, M.; Liu, Y.; Zhan, Y.; Deng, T.; Yang, H.; Sun, W.; Wang, X.; Zhu, K. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int. J. Cancer 2019, 144, 2501–2515. [Google Scholar]
- He, Y.; Wang, Y.; Liu, L.; Liu, S.; Liang, L.; Chen, Y.; Zhu, Z. Circular RNA circ_0006282 contributes to the progression of gastric cancer by sponging miR-155 to upregulate the expression of FBXO22. OncoTargets Ther. 2020, 13, 1001. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Guan, B.; Sun, P.; Hong, C.T.; Peng, J.; Tang, S.; Yang, J. A novel circular RNA hsa_circ_0008035 contributes to gastric cancer tumorigenesis through targeting the miR-375/YBX1 axis. Am. J. Transl. Res. 2019, 11, 2455. [Google Scholar]
- Huang, X.; Li, Z.; Zhang, Q.; Wang, W.; Li, B.; Wang, L.; Xu, Z.; Zeng, A.; Zhang, X.; Zhang, X. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol. Cancer 2019, 18, 71. [Google Scholar]
- Zhang, L.; Song, X.; Chen, X.; Wang, Q.; Zheng, X.; Wu, C.; Jiang, J. Circular RNA CircCACTIN promotes gastric cancer progression by sponging MiR-331-3p and regulating TGFBR1 expression. Int. J. Biol. Sci. 2019, 15, 1091–1103. [Google Scholar]
- Chen, D.-L.; Sheng, H.; Zhang, D.-S.; Jin, Y.; Zhao, B.-T.; Chen, N.; Song, K.; Xu, R.-H. The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p. Mol. Cancer 2021, 20, 166. [Google Scholar] [CrossRef]
- Song, R.; Li, Y.; Hao, W.; Yang, L.; Chen, B.; Zhao, Y.; Sun, B.; Xu, F. Circular RNA MTO1 inhibits gastric cancer progression by elevating PAWR via sponging miR-199a-3p. Cell Cycle 2020, 19, 3127–3139. [Google Scholar]
- Zhang, X.; Wang, S.; Wang, H.; Cao, J.; Huang, X.; Chen, Z.; Xu, P.; Sun, G.; Xu, J.; Lv, J. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 2019, 18, 20. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, Y.; Huang, Y.; Li, X.; Zhu, Y.; Long, Y.; Wang, Y.; Guo, X.; Gong, K. CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2. J. Cell. Physiol. 2019, 234, 10458–10469. [Google Scholar]
- Fan, D.; Wang, C.; Wang, D.; Zhang, N.; Yi, T. Circular RNA circ_0000039 enhances gastric cancer progression through miR-1292-5p/DEK axis. Cancer Biomark. 2021, 30, 167–177. [Google Scholar]
- Lu, J.; Wang, Y.-h.; Yoon, C.; Huang, X.-y.; Xu, Y.; Xie, J.-w.; Wang, J.-b.; Lin, J.-x.; Chen, Q.-y.; Cao, L.-l. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877–3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 2020, 471, 38–48. [Google Scholar]
- Pan, H.; Li, T.; Jiang, Y.; Pan, C.; Ding, Y.; Huang, Z.; Yu, H.; Kong, D. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J. Cell. Biochem. 2018, 119, 440–446. [Google Scholar] [CrossRef]
- Lv, L.; Du, J.; Wang, D.; Yan, Z. Circular RNA hsa_circ_0026344 suppresses gastric cancer cell proliferation, migration and invasion via the miR-590-5p/PDCD4 axis. J. Pharm. Pharmacol. 2022, 74, 1193–1204. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Hou, L.; Wang, G.; Zhang, R.; Huang, Y.; Chen, X.; Zhu, J. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol. Cancer 2017, 16, 151. [Google Scholar]
- Sun, G.; Li, Z.; He, Z.; Wang, W.; Wang, S.; Zhang, X.; Cao, J.; Xu, P.; Wang, H.; Huang, X. Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MTMR3 expression. J. Exp. Clin. Cancer Res. 2020, 39, 246. [Google Scholar] [CrossRef]
- Rong, D.; Lu, C.; Zhang, B.; Fu, K.; Zhao, S.; Tang, W.; Cao, H. CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol. Cancer 2019, 18, 25. [Google Scholar]
- Qiu, Z.; Wang, L.; Liu, H. Hsa_circ_0001982 promotes the progression of breast cancer through miR-1287-5p/MUC19 axis under hypoxia. World J. Surg. Oncol. 2021, 19, 161. [Google Scholar]
- Xu, Y.; Qian, C.; Liu, C.; Fu, Y.; Zhu, K.; Niu, Z.; Liu, J. Investigation of the Mechanism of hsa_circ_000 1429 Adsorbed miR-205 to Regulate KDM4A and Promote Breast Cancer Metastasis. Contrast Media Mol. Imaging 2022, 2022, 4657952. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, Y.; Leng, K.; Ji, D.; Qu, L.; Liu, Y.; Cui, Y. Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/CBX8 signal pathway. Cell. Physiol. Biochem. 2018, 51, 1710–1722. [Google Scholar]
- Liu, L.H.; Tian, Q.Q.; Liu, J.; Zhou, Y.; Yong, H. Upregulation of hsa_circ_0136666 contributes to breast cancer progression by sponging miR-1299 and targeting CDK6. J. Cell. Biochem. 2019, 120, 12684–12693. [Google Scholar] [CrossRef]
- Yao, Y.; Fang, Z. Circular RNA-100219 promotes breast cancer progression by binding to microRNA-485-3p. J BUON 2019, 24, 501–508. [Google Scholar]
- Zeng, K.; He, B.; Yang, B.B.; Xu, T.; Chen, X.; Xu, M.; Liu, X.; Sun, H.; Pan, Y.; Wang, S. The pro-metastasis effect of circANKS1B in breast cancer. Mol. Cancer 2018, 17, 160. [Google Scholar]
- Qu, Y.; Dou, P.; Hu, M.; Xu, J.; Xia, W.; Sun, H. circRNA-CER mediates malignant progression of breast cancer through targeting the miR-136/MMP13 axis. Mol. Med. Rep. 2019, 19, 3314–3320. [Google Scholar]
- Zhang, W.; Liu, H.; Jiang, J.; Yang, Y.; Wang, W.; Jia, Z. CircRNA circFOXK2 facilitates oncogenesis in breast cancer via IGF2BP3/miR-370 axis. Aging 2021, 13, 18978. [Google Scholar]
- Wang, N.; Gu, Y.; Li, L.; Wang, F.; Lv, P.; Xiong, Y.; Qiu, X. Circular RNA circMYO9B facilitates breast cancer cell proliferation and invasiveness via upregulating FOXP4 expression by sponging miR-4316. Arch. Biochem. Biophys. 2018, 653, 63–70. [Google Scholar]
- Lin, G.; Wang, S.; Zhang, X.; Wang, D. Circular RNA circPLK1 promotes breast cancer cell proliferation, migration and invasion by regulating miR-4500/IGF1 axis. Cancer Cell Int. 2020, 20, 593. [Google Scholar]
- Zhang, H.; Ge, Z.; Wang, Z.; Gao, Y.; Wang, Y.; Qu, X. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer. Aging 2021, 13, 8115. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Lan, J.; Wan, Y.; Zhu, X. Circular RNA circRPPH1 promotes triple-negative breast cancer progression via the miR-556-5p/YAP1 axis. Am. J. Transl. Res. 2020, 12, 6220. [Google Scholar]
- Chen, Z.G.; Zhao, H.J.; Lin, L.; Liu, J.B.; Bai, J.Z.; Wang, G.S. Circular RNA CirCHIPK3 promotes cell proliferation and invasion of breast cancer by sponging miR-193a/HMGB1/PI3K/AKT axis. Thorac. Cancer 2020, 11, 2660–2671. [Google Scholar]
- Zhang, X.-Y.; Mao, L. Circular RNA Circ_0000442 acts as a sponge of MiR-148b-3p to suppress breast cancer via PTEN/PI3K/Akt signaling pathway. Gene 2021, 766, 145113. [Google Scholar] [CrossRef]
- Meng, L.; Chang, S.; Sang, Y.; Ding, P.; Wang, L.; Nan, X.; Xu, R.; Liu, F.; Gu, L.; Zheng, Y. Circular RNA circCCDC85A inhibits breast cancer progression via acting as a miR-550a-5p sponge to enhance MOB1A expression. Breast Cancer Res. 2022, 24, 1. [Google Scholar] [CrossRef]
- Liu, W.-L.; Wang, H.-x.; Shi, C.-x.; Shi, F.-y.; Zhao, L.-y.; Zhao, W.; Wang, G.-h. MicroRNA-1269 promotes cell proliferation via the AKT signaling pathway by targeting RASSF9 in human gastric cancer. Cancer Cell Int. 2019, 19, 308. [Google Scholar]
- Wu, F.; Liu, F.; Dong, L.; Yang, H.; He, X.; Li, L.; Zhao, L.; Jin, S.; Li, G. miR-1273g silences MAGEA3/6 to inhibit human colorectal cancer cell growth via activation of AMPK signaling. Cancer Lett. 2018, 435, 1–9. [Google Scholar] [CrossRef]
- Xu, X.; Cao, L.; Zhang, Y.; Lian, H.; Sun, Z.; Cui, Y. MicroRNA-1246 inhibits cell invasion and epithelial mesenchymal transition process by targeting CXCR4 in lung cancer cells. Cancer Biomark. 2018, 21, 251–260. [Google Scholar] [CrossRef]
- Yu, W.; Jiang, H.; Zhang, H.; Li, J. Hsa_circ_0003998 promotes cell proliferation and invasion by targeting miR-326 in non-small cell lung cancer. OncoTargets Ther. 2018, 11, 5569. [Google Scholar]
- Fan, Z.; Bai, Y.; Zhang, Q.; Qian, P. CircRNA circ_POLA2 promotes lung cancer cell stemness via regulating the miR-326/GNB1 axis. Environ. Toxicol. 2020, 35, 1146–1156. [Google Scholar] [CrossRef]
- He, S.; Yang, J.; Jiang, S.; Li, Y.; Han, X. Circular RNA circ_0000517 regulates hepatocellular carcinoma development via miR-326/IGF1R axis. Cancer Cell Int. 2020, 20, 404. [Google Scholar] [CrossRef]
- Pan, G.; Mao, A.; Liu, J.; Lu, J.; Ding, J.; Liu, W. Circular RNA hsa_circ_0061825 (circ-TFF1) contributes to breast cancer progression through targeting miR-326/TFF1 signalling. Cell Prolif. 2020, 53, e12720. [Google Scholar]
- Wang, S.; Hu, Y.; Lv, X.; Li, B.; Gu, D.; Li, Y.; Sun, Y.; Su, Y. Circ-0000284 arouses malignant phenotype of cholangiocarcinoma cells and regulates the biological functions of peripheral cells through cellular communication. Clin. Sci. 2019, 133, 1935–1953. [Google Scholar] [CrossRef]
- Yang, D.; Hu, Z.; Zhang, Y.; Zhang, X.; Xu, J.; Fu, H.; Zhu, Z.; Feng, D.; Cai, Q. CircHIPK3 promotes the tumorigenesis and development of gastric cancer through miR-637/AKT1 pathway. Front. Oncol. 2021, 11, 637761. [Google Scholar]
- Wen, Y.; Li, B.; He, M.; Teng, S.; Sun, Y.; Wang, G. circHIPK3 promotes proliferation and migration and invasion via regulation of miR-637/HDAC4 signaling in osteosarcoma cells. Oncol. Rep. 2021, 45, 169–179. [Google Scholar] [CrossRef]
- Xu, L.; Feng, X.; Hao, X.; Wang, P.; Zhang, Y.; Zheng, X.; Li, L.; Ren, S.; Zhang, M.; Xu, M. CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth. J. Exp. Clin. Cancer Res. 2019, 38, 98. [Google Scholar]
- Xiao, W.; Zheng, S.; Zou, Y.; Yang, A.; Xie, X.; Tang, H.; Xie, X. CircAHNAK1 inhibits proliferation and metastasis of triple-negative breast cancer by modulating miR-421 and RASA1. Aging 2019, 11, 12043. [Google Scholar]
- Yang, C.; Yuan, W.; Yang, X.; Li, P.; Wang, J.; Han, J.; Tao, J.; Li, P.; Yang, H.; Lv, Q. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol. Cancer 2018, 17, 19. [Google Scholar] [CrossRef]
- Li, P.; Chen, H.; Chen, S.; Mo, X.; Li, T.; Xiao, B.; Yu, R.; Guo, J. Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br. J. Cancer 2017, 116, 626–633. [Google Scholar]
- Wang, Y.; Yin, H.; Chen, X. Circ-LDLRAD3 enhances cell growth, migration, and invasion and inhibits apoptosis by regulating MiR-224-5p/NRP2 axis in gastric cancer. Dig. Dis. Sci. 2021, 66, 3862–3871. [Google Scholar] [CrossRef]
- Chen, T.; Yang, Z.; Liu, C.; Wang, L.; Yang, J.; Chen, L.; Li, W. Circ_0078767 suppresses non-small-cell lung cancer by protecting RASSF1A expression via sponging miR-330-3p. Cell Prolif. 2019, 52, e12548. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, R.; Zhang, D.; Lu, T.; Yu, W.; Wo, Y.; Liu, A.; Sui, T.; Cui, J.; Qin, Y. Circ-ZKSCAN1 regulates FAM83A expression and inactivates MAPK signaling by targeting miR-330-5p to promote non-small cell lung cancer progression. Transl. Lung Cancer Res. 2019, 8, 862. [Google Scholar]
- Lu, C.; Fu, L.; Qian, X.; Dou, L.; Cang, S. Knockdown of circular RNA circ-FARSA restricts colorectal cancer cell growth through regulation of miR-330-5p/LASP1 axis. Arch. Biochem. Biophys. 2020, 689, 108434. [Google Scholar] [CrossRef]
- Fang, C.; Huang, X.; Dai, J.; He, W.; Xu, L.; Sun, F. The circular RNA circFARSA sponges microRNA-330-5p in tumor cells with bladder cancer phenotype. BMC Cancer 2022, 22, 1–14. [Google Scholar] [CrossRef]
- Jia, Q.; Ye, L.; Xu, S.; Xiao, H.; Xu, S.; Shi, Z.; Li, J.; Chen, Z. Circular RNA 0007255 regulates the progression of breast cancer through miR-335-5p/SIX2 axis. Thorac. Cancer 2020, 11, 619–630. [Google Scholar] [CrossRef]
- Liang, H.-F.; Zhang, X.-Z.; Liu, B.-G.; Jia, G.-T.; Li, W.-L. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am. J. Cancer Res. 2017, 7, 1566. [Google Scholar]
- Hu, C.; Wang, Y.; Li, A.; Zhang, J.; Xue, F.; Zhu, L. Overexpressed circ_0067934 acts as an oncogene to facilitate cervical cancer progression via the miR-545/EIF3C axis. J. Cell. Physiol. 2019, 234, 9225–9232. [Google Scholar]
- Liu, J.; Wang, D.; Long, Z.; Liu, J.; Li, W. CircRNA8924 promotes cervical cancer cell proliferation, migration and invasion by competitively binding to MiR-518d-5p/519-5p family and modulating the expression of CBX8. Cell. Physiol. Biochem. 2018, 48, 173–184. [Google Scholar] [CrossRef]
- Xia, L.; Wu, L.; Bao, J.; Li, Q.; Chen, X.; Xia, H.; Xia, R. Circular RNA circ-CBFB promotes proliferation and inhibits apoptosis in chronic lymphocytic leukemia through regulating miR-607/FZD3/Wnt/β-catenin pathway. Biochem. Biophys. Res. Commun. 2018, 503, 385–390. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Ma, J.-X.; Ren, H.; Sun, Y.; Xu, J.-Z. Circular RNA PIP5K1A promotes colon cancer development through inhibiting miR-1273a. World J. Gastroenterol. 2019, 25, 5300. [Google Scholar]
- Lin, C.; Ma, M.; Zhang, Y.; Li, L.; Long, F.; Xie, C.; Xiao, H.; Liu, T.; Tian, B.; Yang, K. The N6-methyladenosine modification of circALG1 promotes the metastasis of colorectal cancer mediated by the miR-342-5p/PGF signalling pathway. Mol. Cancer 2022, 21, 373. [Google Scholar]
- Li, R.; Wu, B.; Xia, J.; Ye, L.; Yang, X. Circular RNA hsa_circRNA_102958 promotes tumorigenesis of colorectal cancer via miR-585/CDC25B axis. Cancer Manag. Res. 2019, 11, 6887. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, J.; Lang, B.; Xu, F.; Zhang, B.; Wang, X. Circ_0001982 Up-regulates the Expression of E2F1 by Adsorbing miR-1205 to Facilitate the Progression of Glioma. Mol. Biotechnol. 2022, 1–11. [Google Scholar] [CrossRef]
- Yi, C.; Li, H.; Li, D.; Qin, X.; Wang, J.; Liu, Y.; Liu, Z.; Zhang, J. Upregulation of circular RNA circ_0034642 indicates unfavorable prognosis in glioma and facilitates cell proliferation and invasion via the miR-1205/BATF3 axis. J. Cell. Biochem. 2019, 120, 13737–13744. [Google Scholar] [CrossRef]
- Qin, L.; Zhan, Z.; Wei, C.; Li, X.; Zhang, T.; Li, J. Hsa-circRNA-G004213 promotes cisplatin sensitivity by regulating miR-513b-5p/PRPF39 in liver cancer Corrigendum in/10.3892/mmr. 2021.12359. Mol. Med. Rep. 2021, 23, 1–12. [Google Scholar]
- Liu, Q.; Wang, C.; Jiang, Z.; Li, S.; Li, F.; Tan, H.B.; Yue, S.Y. circRNA 001306 enhances hepatocellular carcinoma growth by up-regulating CDK16 expression via sponging miR-584-5p. J. Cell. Mol. Med. 2020, 24, 14306–14315. [Google Scholar]
- Zhang, X.; Xu, Y.; Qian, Z.; Zheng, W.; Wu, Q.; Chen, Y.; Zhu, G.; Liu, Y.; Bian, Z.; Xu, W. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death Dis. 2018, 9, 1091. [Google Scholar] [CrossRef]
- Liu, G.; Shi, H.; Deng, L.; Zheng, H.; Kong, W.; Wen, X.; Bi, H. Circular RNA circ-FOXM1 facilitates cell progression as ceRNA to target PPDPF and MACC1 by sponging miR-1304-5p in non-small cell lung cancer. Biochem. Biophys. Res. Commun. 2019, 513, 207–212. [Google Scholar]
- Zhou, Y.; Zheng, X.; Xu, B.; Chen, L.; Wang, Q.; Deng, H.; Jiang, J. Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway. Biochem. Biophys. Res. Commun. 2019, 508, 527–535. [Google Scholar]
- Zhang, S.; Zeng, X.; Ding, T.; Guo, L.; Li, Y.; Ou, S.; Yuan, H. Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Sci. Rep. 2018, 8, 2878. [Google Scholar]
- Wei, H.; Pan, L.; Tao, D.; Li, R. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression. Biochem. Biophys. Res. Commun. 2018, 503, 56–61. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Chen, Z.; Li, G.; Liu, B. Circular RNA ATXN7 promotes the development of gastric cancer through sponging miR-4319 and regulating ENTPD4. Cancer Cell Int. 2020, 20, 25. [Google Scholar]
- Li, B.; Liang, L.; Chen, Y.; Liu, J.; Wang, Z.; Mao, Y.; Zhao, K.; Chen, J. Circ_0008287 promotes immune escape of gastric cancer cells through impairing microRNA-548c-3p-dependent inhibition of CLIC1. Int. Immunopharmacol. 2022, 111, 108918. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, F.; Xiao, X.; Xie, F.; Tao, D.; Huang, C.; Liu, D.; Wang, M.; Wang, L.; Zeng, F. Circ HIPK 3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 2017, 18, 1646–1659. [Google Scholar]
- Yang, S.; Gao, S.; Liu, T.; Liu, J.; Zheng, X.; Li, Z. Circular RNA SMARCA5 functions as an anti-tumor candidate in colon cancer by sponging microRNA-552. Cell Cycle 2021, 20, 689–701. [Google Scholar]
- Gao, S.; Yu, Y.; Liu, L.; Meng, J.; Li, G. Circular RNA hsa_circ_0007059 restrains proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sci. 2019, 233, 116692. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, W.; Jiang, C. Overexpressing circular RNA hsa_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/β-catenin pathway by regulating miR-1205/APC2 axis. Biochem. Biophys. Res. Commun. 2018, 502, 465–471. [Google Scholar]
- Fang, J.; Hong, H.; Xue, X.; Zhu, X.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. A novel circular RNA, circFAT1 (e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett. 2019, 442, 222–232. [Google Scholar]
- Liu, T.; Liu, S.; Xu, Y.; Shu, R.; Wang, F.; Chen, C.; Zeng, Y.; Luo, H. Circular RNA-ZFR inhibited cell proliferation and promoted apoptosis in gastric cancer by sponging miR-130a/miR-107 and modulating PTEN. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2018, 50, 1396–1417. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.R.; Park, E.G.; Lee, D.H.; Lee, Y.J.; Bae, W.H.; Kim, H.-S. The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int. J. Mol. Sci. 2023, 24, 3050. https://doi.org/10.3390/ijms24033050
Kim WR, Park EG, Lee DH, Lee YJ, Bae WH, Kim H-S. The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. International Journal of Molecular Sciences. 2023; 24(3):3050. https://doi.org/10.3390/ijms24033050
Chicago/Turabian StyleKim, Woo Ryung, Eun Gyung Park, Du Hyeong Lee, Yun Ju Lee, Woo Hyeon Bae, and Heui-Soo Kim. 2023. "The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer" International Journal of Molecular Sciences 24, no. 3: 3050. https://doi.org/10.3390/ijms24033050
APA StyleKim, W. R., Park, E. G., Lee, D. H., Lee, Y. J., Bae, W. H., & Kim, H. -S. (2023). The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. International Journal of Molecular Sciences, 24(3), 3050. https://doi.org/10.3390/ijms24033050