Roles of the Oxytocin Receptor (OXTR) in Human Diseases
Abstract
:1. Introduction
2. OXTR in Reproductive System Diseases
3. OXTR in the Regulation and Dysregulation of the Maternal/Parental Behavior
4. OXTR in Mental Disorders
4.1. Autism Spectrum Disorder
4.2. Depression
4.3. Schizophrenia
4.4. Other Mental Disorders
5. OXTR in Mucopolysaccharidoses
6. OXTR in Cancer
7. OXTR in Cardiovascular Diseases
8. OXTR in Other Diseases
9. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hall, J.E. Guyton and Hall Textbook of Medical Physiology, 14th ed.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Iovino, M.; Messana, T.; Tortora, A.; Giusti, C.; Lisco, G.; Giagulli, V.A.; Guastamacchia, E.; De Pergola, G.; Triggiani, V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr. Metab. Immune Disord Drug Targets 2021, 21, 91–110. [Google Scholar] [CrossRef]
- Tom, N.; Assinder, S.J. Oxytocin in health and disease. Int. J. Biochem. Cell Biol. 2010, 42, 202–205. [Google Scholar] [CrossRef]
- Barberis, C.; Tribollet, E. Vasopressin and oxytocin receptors in the central nervous system. Crit. Rev. Neurobiol. 1996, 10, 119–154. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.; Mikkelsen, J.D. Oxytocin--anatomy and functional assignments: A minireview. Endocr. Regul. 2005, 39, 97–105. [Google Scholar]
- Yang, L.; Cao, Z.; Yu, B.; Chai, C. An in vivo mouse model of primary dysmenorrhea. Exp. Anim. 2015, 64, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Brucker, S.Y.; Frank, L.; Eisenbeis, S.; Henes, M.; Wallwiener, D.; Riess, O.; van Eijck, B.; Schöller, D.; Bonin, M.; Rall, K.K. Sequence variants in ESR1 and OXTR are associated with Mayer-Rokitansky-Küster-Hauser syndrome. Acta Obstet. Gynecol. Scand. 2017, 96, 1338–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechsner, S.; Bartley, J.; Loddenkemper, C.; Salomon, D.S.; Starzinski-Powitz, A.; Ebert, A.D. Oxytocin receptor expression in smooth muscle cells of peritoneal endometriotic lesions and ovarian endometriotic cysts. Fertil. Steril. 2005, 83 (Suppl. 1), 1220–1231. [Google Scholar] [CrossRef]
- Mechsner, S.; Grum, B.; Gericke, C.; Loddenkemper, C.; Dudenhausen, J.W.; Ebert, A.D. Possible roles of oxytocin receptor and vasopressin-1α receptor in the pathomechanism of dysperistalsis and dysmenorrhea in patients with adenomyosis uteri. Fertil. Steril. 2010, 94, 2541–2546. [Google Scholar] [CrossRef]
- Kuessel, L.; Grimm, C.; Knöfler, M.; Haslinger, P.; Leipold, H.; Heinze, G.; Egarter, C.; Schmid, M. Common oxytocin receptor gene polymorphisms and the risk for preterm birth. Dis. Markers 2013, 34, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Stirling, K.J.; Cooper, M.E.; Ascoli, M.; Momany, A.M.; McDonald, E.L.; Ryckman, K.K.; Rhea, L.; Schaa, K.L.; Cosentino, V.; et al. Sequence variants in oxytocin pathway genes and preterm birth: A candidate gene association study. BMC Med. Genet. 2013, 14, 77. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, H.K.; Aulino, E.A.; Freeman, A.R.; Miller, T.V.; Witchey, S.K. Oxytocin and behavior: Lessons from knockout mice. Dev. Neurobiol. 2017, 77, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Zeev-Wolf, M.; Levy, J.; Ebstein, R.P.; Feldman, R. Cumulative Risk on Oxytocin-Pathway Genes Impairs Default Mode Network Connectivity in Trauma-Exposed Youth. Front Endocrinol 2020, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, S.; Ikematsu, K.; Takamura, T.; Honda, S.; Yoshiura, K.I.; Shinohara, K. Genetic variants in oxytocin receptor and arginine-vasopressin receptor 1A are associated with the neural correlates of maternal and paternal affection towards their child. Horm. Behav. 2017, 87, 47–56. [Google Scholar] [CrossRef]
- Cost, K.T.; Unternaehrer, E.; Plamondon, A.; Steiner, M.; Meaney, M.; Atkinson, L.; Kennedy, J.L.; Fleming, A.S.; on behalf of the MAVAN Research Team. Thinking and doing: The effects of dopamine and oxytocin genes and executive function on mothering behaviours. Genes Brain Behav. 2017, 16, 285–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micali, N.; Crous-Bou, M.; Treasure, J.; Lawson, E.A. Association Between Oxytocin Receptor Genotype, Maternal Care, and Eating Disorder Behaviours in a Community Sample of Women. Eur. Eat Disord. Rev. 2017, 25, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, D.; Eapen, V.; Kohlhoff, J.; Mendoza Diaz, A.; Barnett, B.; Silove, D.; Dadds, M.R. Genetic Regulation of Maternal Oxytocin Response and Its Influences on Maternal Behavior. Neural. Plast 2016, 2016, 5740365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leerkes, E.M.; Gedaly, L.R.; Zhou, N.; Calkins, S.; Henrich, V.C.; Smolen, A. Further evidence of the limited role of candidate genes in relation to infant-mother attachment outcomes. Attach. Hum. Dev. 2017, 19, 76–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, L.; Robins, S.; Chen, G.; Yerko, V.; Zhou, Y.; Nagy, C.; Feeley, N.; Gold, I.; Hayton, B.; Turecki, G.; et al. Perinatal depression and DNA methylation of oxytocin-related genes: A study of mothers and their children. Horm. Behav. 2017, 96, 84–94. [Google Scholar] [CrossRef]
- Galbally, M.; Ryan, J.; van IJzendoorn, M.; Watson, S.J.; Spigset, O.; Lappas, M.; de Kloet, R.; Lewis, A.J. Maternal depression, antidepressant use and placental oxytocin receptor DNA methylation: Findings from the MPEWS study. Psychoneuroendocrinology 2018, 90, 1–8. [Google Scholar] [CrossRef]
- Light, A.E.; Holt-Lunstad, J.; Porter, C.L.; Light, K.C. Early life trauma: An exploratory study of effects on OXTR and NR3C1 gene expression and nurturing self-efficacy in mothers of infants. Int. J. Psychophysiol. 2019, 136, 64–72. [Google Scholar] [CrossRef]
- MacKinnon, A.L.; Feeley, N.; Gold, I.; Hayton, B.; King, L.; Nagy, C.; Robins, S.; Turecki, G.; Zelkowitz, P. The interaction between oxytocin receptor gene methylation and maternal behavior on children’s early theory of mind abilities. Dev. Psychopathol. 2020, 32, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Toepfer, P.; O’Donnell, K.J.; Entringer, S.; Heim, C.M.; Lin, D.T.; MacIsaac, J.L.; Kobo, M.S.; Meaney, M.J.; Provençal, N.; Binder, E.B.; et al. A Role of Oxytocin Receptor Gene Brain Tissue Expression Quantitative Trait Locus rs237895 in the Intergenerational Transmission of the Effects of Maternal Childhood Maltreatment. J. Am. Acad. Child Adolesc. Psychiatry 2019, 58, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, D.; Nomura, M. Maternal childhood adversity, OXTR genotype and cognitive load impact on perceptual and behavioral responses to infant crying. Psychoneuroendocrinology 2019, 104, 195–202. [Google Scholar] [CrossRef]
- Julian, M.M.; King, A.P.; Bocknek, E.L.; Mantha, B.; Beeghly, M.; Rosenblum, K.L.; Muzik, M. Associations between oxytocin receptor gene (OXTR) polymorphisms, childhood trauma, and parenting behavior. Dev. Psychol. 2019, 55, 2135–2146. [Google Scholar] [CrossRef]
- Antonucci, L.A.; Pergola, G.; Passiatore, R.; Taurisano, P.; Quarto, T.; Dispoto, E.; Rampino, A.; Bertolino, A.; Cassibba, R.; Blasi, G. The interaction between OXTR rs2268493 and perceived maternal care is associated with amygdala-dorsolateral prefrontal effective connectivity during explicit emotion processing. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 553–565. [Google Scholar] [CrossRef]
- Liu, J.; Shang, S.; Pei, M.; Su, Y. Influence of Two Single-Nucleotide Polymorphisms of the Oxytocin Receptor Gene (OXTR) on Empathy: The Mediation Role of a Primary Emotion, CARE. J. Mol. Neurosci. 2021, 71, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, A.; Cataldo, I.; Gabrieli, G.; Foo, J.N.; Lepri, B.; Esposito, G. Oxytocin Receptor Gene Polymorphisms and Early Parental Bonding Interact in Shaping Instagram Social Behavior. Int. J. Environ. Res. Public Health 2020, 17, 7232. [Google Scholar] [CrossRef]
- Senese, V.P.; Shinohara, K.; Venuti, P.; Bornstein, M.H.; Rosanio, V.; Nasti, C.; Neoh, M.J.; Maresca, M.; Esposito, G. The Interaction Effect of Parental Rejection and Oxytocin Receptor Gene Polymorphism on Depression: A Cross-Cultural Study in Non-Clinical Samples. Int. J. Environ. Res. Public Health 2022, 19, 5566. [Google Scholar] [CrossRef] [PubMed]
- Koyama, Y.; Nawa, N.; Ochi, M.; Surkan, P.J.; Fujiwara, T. Joint Roles of Oxytocin- and Dopamine-Related Genes and Childhood Parenting Experience in Maternal Supportive Social Network. Child Psychiatry Hum. Dev. 2022, 1–8. [Google Scholar] [CrossRef]
- Węgrzyn, G. Personality and genes: Remarks from a biological perspective. Curr. Issues Personal. Psychol. 2014, 2, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Montag, C.; Reuter, M. Disentangling the molecular genetic basis of personality: From monoamines to neuropeptides. Neurosci. Biobehav. Rev. 2014, 43, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Szczepanska-Sadowska, E.; Wsol, A.; Cudnoch-Jedrzejewska, A.; Żera, T. Complementary Role of Oxytocin and Vasopressin in Cardiovascular Regulation. Int. J. Mol. Sci. 2021, 22, 11465. [Google Scholar] [CrossRef] [PubMed]
- Borroto-Escuela, D.O.; Cuesta-Marti, C.; Lopez-Salas, A.; Chruścicka-Smaga, B.; Crespo-Ramírez, M.; Tesoro-Cruz, E.; Palacios-Lagunas, D.A.; de la Mora, M.P.; Schellekens, H.; Fuxe, K. The oxytocin receptor represents a key hub in the GPCR heteroreceptor network: Potential relevance for brain and behavior. Front. Mol. Neurosci. 2022, 15, 1055344. [Google Scholar] [CrossRef]
- Lin, Y.T.; Hsu, K.S. Oxytocin receptor signaling in the hippocampus: Role in regulating neuronal excitability, network oscillatory activity, synaptic plasticity and social memory. Prog. Neurobiol. 2018, 171, 1–14. [Google Scholar] [CrossRef]
- Hodges, H.; Fealko, C.; Soares, N. Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr. 2020, 9 (Suppl. 1), S55–S65. [Google Scholar] [CrossRef] [PubMed]
- Falck-Ytter, T.; Kleberg, J.L.; Portugal, A.M.; Thorup, E. Social Attention: Developmental Foundations and Relevance for Autism Spectrum Disorder. Biol. Psychiatry 2022. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Jia, M.; Ruan, Y.; Liu, J.; Guo, Y.; Shuang, M.; Gong, X.; Zhang, Y.; Yang, X.; Zhang, D. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry 2005, 58, 74–77. [Google Scholar] [CrossRef]
- Jacob, S.; Brune, C.W.; Carter, C.S.; Leventhal, B.L.; Lord, C.; Cook, E.H., Jr. Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci. Lett. 2007, 417, 6–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ylisaukko-oja, T.; Alarcón, M.; Cantor, R.M.; Auranen, M.; Vanhala, R.; Kempas, E.; von Wendt, L.; Järvelä, I.; Geschwind, D.H.; Peltonen, L. Search for autism loci by combined analysis of Autism Genetic Resource Exchange and Finnish families. Ann. Neurol. 2006, 59, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Lerer, E.; Levi, S.; Salomon, S.; Darvasi, A.; Yirmiya, N.; Ebstein, R.P. Association between the oxytocin receptor (OXTR) gene and autism: Relationship to Vineland Adaptive Behavior Scales and cognition. Mol. Psychiatry 2008, 13, 980–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Kawamura, Y.; Shimada, T.; Otowa, T.; Koishi, S.; Sugiyama, T.; Nishida, H.; Hashimoto, O.; Nakagami, R.; Tochigi, M.; et al. Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population. J. Hum. Genet. 2010, 55, 137–141. [Google Scholar] [CrossRef]
- Tansey, K.E.; Brookes, K.J.; Hill, M.J.; Cochrane, L.E.; Gill, M.; Skuse, D.; Correia, C.; Vicente, A.; Kent, L.; Gallagher, L.; et al. Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: Genetic and molecular studies. Neurosci. Lett. 2010, 474, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Kelemenova, S.; Schmidtova, E.; Ficek, A.; Celec, P.; Kubranska, A.; Ostatnikova, D. Polymorphisms of candidate genes in Slovak autistic patients. Psychiatr. Genet. 2010, 20, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Egawa, J.; Watanabe, Y.; Endo, T.; Kitamura, H.; Someya, T. Possible association between the oxytocin receptor gene and N-acetylaspartate of the right medial temporal lobe in autism spectrum disorders. Psychiatry Clin. Neurosci. 2014, 68, 83. [Google Scholar] [CrossRef] [PubMed]
- Egawa, J.; Watanabe, Y.; Shibuya, M.; Endo, T.; Sugimoto, A.; Igeta, H.; Nunokawa, A.; Inoue, E.; Someya, T. Resequencing and association analysis of OXTR with autism spectrum disorder in a Japanese population. Psychiatry Clin. Neurosci. 2015, 69, 131–135. [Google Scholar] [CrossRef]
- Harrison, A.J.; Gamsiz, E.D.; Berkowitz, I.C.; Nagpal, S.; Jerskey, B.A. Genetic variation in the oxytocin receptor gene is associated with a social phenotype in autism spectrum disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 720–729. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Krasileva, K.; Green, S.A.; Sherman, L.E.; Ponting, C.; McCarron, R.; Lowe, J.K.; Geschwind, D.H.; Bookheimer, S.Y.; Dapretto, M. Additive effects of oxytocin receptor gene polymorphisms on reward circuitry in youth with autism. Mol. Psychiatry 2017, 22, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Baribeau, D.A.; Dupuis, A.; Paton, T.A.; Scherer, S.W.; Schachar, R.J.; Arnold, P.D.; Szatmari, P.; Nicolson, R.; Georgiades, S.; Crosbie, J.; et al. Oxytocin Receptor Polymorphisms are Differentially Associated with Social Abilities across Neurodevelopmental Disorders. Sci. Rep. 2017, 7, 11618. [Google Scholar] [CrossRef] [Green Version]
- Ocakoğlu, F.T.; Köse, S.; Özbaran, B.; Onay, H. The oxytocin receptor gene polymorphism -rs237902- is associated with the severity of autism spectrum disorder: A pilot study. Asian J. Psychiatr. 2018, 31, 142–149. [Google Scholar] [CrossRef]
- LoParo, D.; Waldman, I.D. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Mol. Psychiatry 2015, 20, 640–646. [Google Scholar] [CrossRef]
- Peñagarikano, O. Oxytocin in animal models of autism spectrum disorder. Dev. Neurobiol. 2017, 77, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, I.; Azhari, A.; Esposito, G. A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Front. Mol. Neurosci. 2018, 11, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tops, S.; Habel, U.; Radke, S. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior. Horm. Behav. 2019, 108, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Maud, C.; Ryan, J.; McIntosh, J.E.; Olsson, C.A. The role of oxytocin receptor gene (OXTR) DNA methylation (DNAm) in human social and emotional functioning: A systematic narrative review. BMC Psychiatry 2018, 18, 154. [Google Scholar] [CrossRef] [Green Version]
- Puglia, M.H.; Connelly, J.J.; Morris, J.P. Epigenetic regulation of the oxytocin receptor is associated with neural response during selective social attention. Transl. Psychiatry 2018, 8, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andari, E.; Nishitani, S.; Kaundinya, G.; Caceres, G.A.; Morrier, M.J.; Ousley, O.; Smith, A.K.; Cubells, J.F.; Young, L.J. Epigenetic modification of the oxytocin receptor gene: Implications for autism symptom severity and brain functional connectivity. Neuropsychopharmacology 2020, 45, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Pereira Ribeiro, L.; Vargas-Pinilla, P.; Kappel, D.B.; Longo, D.; Ranzan, J.; Becker, M.M.; Dos Santos Riesgo, R.; Schuler-Faccini, L.; Roman, T.; Schuch, J.B. Evidence for Association Between OXTR Gene and ASD Clinical Phenotypes. J. Mol. Neurosci. 2018, 65, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.M.; Palumbo, M.C.; Lawrence, R.H.; Smith, A.L.; Goodman, M.M.; Bales, K.L. Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and midbrain. Transl. Psychiatry 2018, 8, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzefovsky, F.; Bethlehem, R.A.I.; Shamay-Tsoory, S.; Ruigrok, A.; Holt, R.; Spencer, M.; Chura, L.; Warrier, V.; Chakrabarti, B.; Bullmore, E.; et al. The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism. Mol. Autism 2019, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, L.M.; Lawrence, K.E.; Padgaonkar, N.T.; Inada, M.; Hoekstra, J.N.; Lowe, J.K.; Eilbott, J.; Jack, A.; Aylward, E.; Gaab, N.; et al. Imaging-genetics of sex differences in ASD: Distinct effects of OXTR variants on brain connectivity. Transl. Psychiatry 2020, 10, 82. [Google Scholar] [CrossRef] [Green Version]
- Frehner, S.S.; Dooley, K.T.; Palumbo, M.C.; Smith, A.L.; Goodman, M.M.; Bales, K.L.; Freeman, S.M. Effect of sex and autism spectrum disorder on oxytocin receptor binding and mRNA expression in the dopaminergic pars compacta of the human substantia nigra. Philos. Trans. R Soc. Lond B Biol. Sci. 2022, 377, 20210118. [Google Scholar] [CrossRef]
- Stoccoro, A.; Gallo, R.; Calderoni, S.; Cagiano, R.; Muratori, F.; Migliore, L.; Grossi, E.; Coppedè, F. Artificial neural networks reveal sex differences in gene methylation, and connections between maternal risk factors and symptom severity in autism spectrum disorder. Epigenomics 2022, 14, 1181–1195. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Qiu, Y.; Li, Y.; Cong, X. Genetics of autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses. Transl. Psychiatry 2022, 12, 249. [Google Scholar] [CrossRef] [PubMed]
- Monroe, S.M.; Anderson, S.F.; Harkness, K.L. Life stress and major depression: The mysteries of recurrences. Psychol. Rev. 2019, 126, 791–816. [Google Scholar] [CrossRef]
- Monroe, S.M.; Harkness, K.L. Major Depression and Its Recurrences: Life Course Matters. Annu. Rev. Clin. Psychol. 2022, 18, 329–357. [Google Scholar] [CrossRef]
- Costa, B.; Pini, S.; Gabelloni, P.; Abelli, M.; Lari, L.; Cardini, A.; Muti, M.; Gesi, C.; Landi, S.; Galderisi, S.; et al. Oxytocin receptor polymorphisms and adult attachment style in patients with depression. Psychoneuroendocrinology 2009, 34, 1506–1514. [Google Scholar] [CrossRef]
- Norman, G.J.; Karelina, K.; Morris, J.S.; Zhang, N.; Cochran, M.; Courtney DeVries, A. Social interaction prevents the development of depressive-like behavior post nerve injury in mice: A potential role for oxytocin. Psychosom. Med. 2010, 72, 519–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, S.M.; Hammen, C.; Starr, L.R.; Najman, J.M. Oxytocin receptor gene polymorphism (rs53576) moderates the intergenerational transmission of depression. Psychoneuroendocrinology 2014, 43, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, A.J.; Williams, L.; Gatt, J.M.; McAuley-Clark, E.Z.; Dobson-Stone, C.; Schofield, P.R.; Nemeroff, C.B. Variation in the oxytocin receptor gene is associated with increased risk for anxiety, stress and depression in individuals with a history of exposure to early life stress. J. Psychiatr. Res. 2014, 59, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Reiner, I.; Van IJzendoorn, M.H.; Bakermans-Kranenburg, M.J.; Bleich, S.; Beutel, M.; Frieling, H. Methylation of the oxytocin receptor gene in clinically depressed patients compared to controls: The role of OXTR rs53576 genotype. J. Psychiatr. Res. 2015, 65, 9–15. [Google Scholar] [CrossRef]
- Chagnon, Y.C.; Potvin, O.; Hudon, C.; Préville, M. DNA methylation and single nucleotide variants in the brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) genes are associated with anxiety/depression in older women. Front. Genet. 2015, 6, 230. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.F.; Carter, C.S.; Steer, C.D.; Golding, J.; Davis, J.M.; Steffen, A.D.; Rubin, L.H.; Lillard, T.S.; Gregory, S.P.; Harris, J.C.; et al. Interaction between oxytocin receptor DNA methylation and genotype is associated with risk of postpartum depression in women without depression in pregnancy. Front. Genet. 2015, 6, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McInnis, O.A.; McQuaid, R.J.; Matheson, K.; Anisman, H. The moderating role of an oxytocin receptor gene polymorphism in the relation between unsupportive social interactions and coping profiles: Implications for depression. Front. Psychol. 2015, 6, 1133. [Google Scholar] [CrossRef] [Green Version]
- Comasco, E.; Gulinello, M.; Hellgren, C.; Skalkidou, A.; Sylven, S.; Sundström-Poromaa, I. Sleep duration, depression, and oxytocinergic genotype influence prepulse inhibition of the startle reflex in postpartum women. Eur. Neuropsychopharmacol. 2016, 26, 767–776. [Google Scholar] [CrossRef]
- Davis, C.; Patte, K.; Zai, C.; Kennedy, J.L. Polymorphisms of the oxytocin receptor gene and overeating: The intermediary role of endophenotypic risk factors. Nutr Diabetes 2017, 7, e279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parris, M.S.; Grunebaum, M.F.; Galfalvy, H.C.; Andronikashvili, A.; Burke, A.K.; Yin, H.; Min, E.; Huang, Y.Y.; Mann, J.J. Attempted suicide and oxytocin-related gene polymorphisms. J. Affect. Disord. 2018, 238, 62–68. [Google Scholar] [CrossRef]
- Na, K.S.; Won, E.; Kang, J.; Kim, A.; Choi, S.; Kim, Y.K.; Lee, M.S.; Ham, B.J. Interaction effects of oxytocin receptor gene polymorphism and depression on hippocampal volume. Psychiatry Res. Neuroimaging 2018, 282, 18–23. [Google Scholar] [CrossRef]
- Bhatti, P.; Delaney, T.; Poulin, M.; Hahn-Holbrook, J. Oxytocin receptor gene (OXTR) and father support interact to predict depressive symptoms postpartum. Biol. Psychol. 2019, 147, 107686. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; Tsuchiya, K.J.; Takei, N. Interaction effect of oxytocin receptor (OXTR) rs53576 genotype and maternal postpartum depression on child behavioural problems. Sci. Rep. 2019, 9, 7685. [Google Scholar] [CrossRef] [Green Version]
- Asherin, R.M.; Everhart, K.D.; Stophaeros, S.L.; Vogeli, J.M.; Fowler, J.; Phiel, C.J.; Kaplan, P.S. Associations between maternal depression and mother and infant oxytocin receptor gene (OXTR_rs53576) polymorphisms. Dev. Psychobiol. 2020, 62, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Wang, L.; Wu, J.; Li, G.; Fang, R.; Liu, P.; Luo, S.; Elhai, J.D. Association between the OXTR rs53576 genotype and latent profiles of post-traumatic stress disorder and depression symptoms in a representative sample of earthquake survivors. Anxiety Stress Coping 2020, 33, 140–147. [Google Scholar] [CrossRef]
- Yu, X.; Dong, Y.; Li, Z.; Fang, Y.; Wu, S.; Wang, C.; He, S. Work Stress and General Trust: The Mediating Effect of Depression and the Moderating Effect of the OXTR Gene rs53576. J. Affect Disord. 2020, 272, 283–288. [Google Scholar] [CrossRef]
- McQuaid, R.J.; McInnis, O.A.; Matheson, K.; Anisman, H. Oxytocin and Social Sensitivity: Gene Polymorphisms in Relation to Depressive Symptoms and Suicidal Ideation. Front. Hum. Neurosci. 2016, 10, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasilewska, K.; Pawlak, A.; Kostrzewa, G.; Sobczyk-Kopcioł, A.; Kaczorowska, A.; Badowski, J.; Brzozowska, M.; Drygas, W.; Piwoński, J.; Bielecki, W.; et al. OXTR polymorphism in depression and completed suicide-A study on a large population sample. Psychoneuroendocrinology 2017, 77, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Tollenaar, M.S.; Molendijk, M.L.; Penninx, B.W.J.H.; Milaneschi, Y.; Antypa, N. The association of childhood maltreatment with depression and anxiety is not moderated by the oxytocin receptor gene. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 517–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, B.; Pini, S.; Baldwin, D.S.; Silove, D.; Manicavasagar, V.; Abelli, M.; Coppedè, F.; Martini, C. Oxytocin receptor and G-protein polymorphisms in patients with depression and separation anxiety. J. Affect Disord. 2017, 218, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Conner, T.S.; McFarlane, K.G.; Choukri, M.; Riordan, B.C.; Flett, J.A.M.; Phipps-Green, A.J.; Topless, R.K.; Merriman, M.E.; Merriman, T.R. The Oxytocin Receptor Gene (OXTR) Variant rs53576 Is Not Related to Emotional Traits or States in Young Adults. Front. Psychol. 2018, 9, 2548. [Google Scholar] [CrossRef]
- Ludwig, B.; Carlberg, L.; Kienesberger, K.; Swoboda, P.; Swoboda, M.M.M.; Bernegger, A.; Koller, R.; Inaner, M.; Fuxjäger, M.; Zotter, M.; et al. Oxytocin receptor gene methylation as a molecular marker for severity of depressive symptoms in affective disorder patients. BMC Psychiatry 2022, 22, 381. [Google Scholar] [CrossRef] [PubMed]
- Lesse, A.; Rether, K.; Gröger, N.; Braun, K.; Bock, J. Chronic Postnatal Stress Induces Depressive-like Behavior in Male Mice and Programs second-Hit Stress-Induced Gene Expression Patterns of OxtR and AvpR1a in Adulthood. Mol. Neurobiol. 2017, 54, 4813–4819. [Google Scholar] [CrossRef]
- Kushner, S.C.; Herzhoff, K.; Vrshek-Schallhorn, S.; Tackett, J.L. Depression in early adolescence: Contributions from relational aggression and variation in the oxytocin receptor gene. Aggress. Behav. 2018, 44, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Almeida, D.; Fiori, L.M.; Chen, G.G.; Aouabed, Z.; Lutz, P.E.; Zhang, T.Y.; Mechawar, N.; Meaney, M.J.; Turecki, G. Oxytocin receptor expression and epigenetic regulation in the anterior cingulate cortex of individuals with a history of severe childhood abuse. Psychoneuroendocrinology 2022, 136, 105600. [Google Scholar] [CrossRef]
- Mosolov, S.N.; Yaltonskaya, P.A. Primary and Secondary Negative Symptoms in Schizophrenia. Front. Psychiatry 2022, 12, 766692. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, R.A.; Keefe, R.S.E.; McGuire, P.K. Cognitive impairment in schizophrenia: Aetiology, pathophysiology, and treatment. Mol. Psychiatry 2023. [Google Scholar] [CrossRef]
- Howes, O.D.; Shatalina, E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol. Psychiatry 2022, 92, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Luvsannyam, E.; Jain, M.S.; Pormento MK, L.; Siddiqui, H.; Balagtas AR, A.; Emuze, B.O.; Poprawski, T. Neurobiology of Schizophrenia: A Comprehensive Review. Cureus 2022, 14, e23959. [Google Scholar] [CrossRef]
- Uhrig, S.; Hirth, N.; Broccoli, L.; von Wilmsdorff, M.; Bauer, M.; Sommer, C.; Zink, M.; Steiner, J.; Frodl, T.; Malchow, B.; et al. Reduced oxytocin receptor gene expression and binding sites in different brain regions in schizophrenia: A post-mortem study. Schizophr. Res. 2016, 177, 59–66. [Google Scholar] [CrossRef]
- Yang, X.; Tang, Y.; Wei, Q.; Lang, B.; Tao, H.; Zhang, X.; Liu, Y.; Tang, A. Up-regulated expression of oxytocin mRNA in peripheral blood lymphocytes from first-episode schizophrenia patients. Oncotarget 2017, 8, 78882–78889. [Google Scholar] [CrossRef]
- Broniarczyk-Czarniak, M.; Szemraj, J.; Śmigielski, J.; Gałecki, P. The Role of OXT, OXTR, AVP, and AVPR1a Gene Expression in the Course of Schizophrenia. Curr. Issues Mol. Biol. 2022, 44, 336–349. [Google Scholar] [CrossRef]
- Lee, M.R.; Sheskier, M.B.; Farokhnia, M.; Feng, N.; Marenco, S.; Lipska, B.K.; Leggio, L. Oxytocin receptor mRNA expression in dorsolateral prefrontal cortex in major psychiatric disorders: A human post-mortem study. Psychoneuroendocrinology 2018, 96, 143–147. [Google Scholar] [CrossRef]
- Bang, M.; Kang, J.I.; Kim, S.J.; Park, J.Y.; Kim, K.R.; Lee, S.Y.; Park, K.; Lee, E.; Lee, S.K.; An, S.K. Reduced DNA Methylation of the Oxytocin Receptor Gene Is Associated With Anhedonia-Asociality in Women With Recent-Onset Schizophrenia and Ultra-high Risk for Psychosis. Schizophr. Bull. 2019, 45, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Nakata, Y.; Kanahara, N.; Kimura, A.; Niitsu, T.; Komatsu, H.; Oda, Y.; Nakamura, M.; Ishikawa, M.; Hasegawa, T.; Kamata, Y.; et al. Oxytocin system dysfunction in patients with treatment-resistant schizophrenia: Alterations of blood oxytocin levels and effect of a genetic variant of OXTR. J. Psychiatr. Res. 2021, 138, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Koh, M.J.; Kim, W.; Kang, J.I.; Namkoong, K.; Kim, S.J. Lack of Association between Oxytocin Receptor (OXTR) Gene Polymorphisms and Alexithymia: Evidence from Patients with Obsessive-Compulsive Disorder. PLoS ONE 2015, 10, e0143168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.I.; Kim, H.W.; Kim, C.H.; Hwang, E.H.; Kim, S.J. Oxytocin receptor gene polymorphisms exert a modulating effect on the onset age in patients with obsessive-compulsive disorder. Psychoneuroendocrinology 2017, 86, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Cappi, C.; Diniz, J.B.; Requena, G.L.; Lourenço, T.; Lisboa, B.C.; Batistuzzo, M.C.; Marques, A.H.; Hoexter, M.Q.; Pereira, C.A.; Miguel, E.C.; et al. Epigenetic evidence for involvement of the oxytocin receptor gene in obsessive-compulsive disorder. BMC Neurosc.i 2016, 17, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bey, K.; Campos-Martin, R.; Klawohn, J.; Reuter, B.; Grützmann, R.; Riesel, A.; Wagner, M.; Ramirez, A.; Kathmann, N. Hypermethylation of the oxytocin receptor gene (OXTR) in obsessive-compulsive disorder: Further evidence for a biomarker of disease and treatment response. Epigenetics 2022, 17, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Park, C.I.; Kim, H.W.; Jeon, S.; Kang, J.I.; Kim, S.J. Reduced DNA methylation of the oxytocin receptor gene is associated with obsessive-compulsive disorder. Clin. Epigenetics 2020, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Siu, M.T.; Goodman, S.J.; Yellan, I.; Butcher, D.T.; Jangjoo, M.; Grafodatskaya, D.; Rajendram, R.; Lou, Y.; Zhang, R.; Zhao, C.; et al. DNA Methylation of the Oxytocin Receptor Across Neurodevelopmental Disorders. J. Autism Dev. Disord. 2021, 51, 3610–3623. [Google Scholar] [CrossRef] [PubMed]
- Hovey, D.; Lindstedt, M.; Zettergren, A.; Jonsson, L.; Johansson, A.; Melke, J.; Kerekes, N.; Anckarsäter, H.; Lichtenstein, P.; Lundström, S.; et al. Antisocial behavior and polymorphisms in the oxytocin receptor gene: Findings in two independent samples. Mol. Psychiatry 2016, 21, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, A.B.; Karkucak, M.; Ayaz, M.; Gokce, S.; Kayan, E.; Güler, E.E.; Güngen, B.D.; Kuşcu, T.D.; Ocakoğlu, G.; Yakut, T. Oxytocin system social function impacts in children with attention-deficit/hyperactivity disorder. Am. J. Med. Genet B Neuropsychiatr. Genet. 2015, 168, 609–616. [Google Scholar] [CrossRef]
- Malik, A.I.; Zai, C.C.; Abu, Z.; Nowrouzi, B.; Beitchman, J.H. The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes Brain Behav. 2012, 11, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, C.; Chang, H.; Yan, Q.; Wu, L.; Yuan, S.; Xiang, J.; Hao, W.; Yu, Y. Genetic variants in oxytocin receptor gene (OXTR) and childhood physical abuse collaborate to modify the risk of aggression in chinese adolescents. J. Affect Disord. 2018, 229, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Rokicki, J.; Kaufmann, T.; de Lange, A.G.; van der Meer, D.; Bahrami, S.; Sartorius, A.M.; Haukvik, U.K.; Steen, N.E.; Schwarz, E.; Stein, D.J.; et al. Oxytocin receptor expression patterns in the human brain across development. Neuropsychopharmacology 2022, 47, 1550–1560. [Google Scholar] [CrossRef]
- McBride, K.L.; Flanigan, K.M. Update in the Mucopolysaccharidoses. Semin Pediatr. Neurol. 2021, 37, 100874. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.F.; Benincore-Flórez, E.; Rintz, E.; Herreño-Pachón, A.M.; Celik, B.; Ago, Y.; Alméciga-Díaz, C.J.; Tomatsu, S. Mucopolysaccharidoses: Cellular Consequences of Glycosaminoglycans Accumulation and Potential Targets. Int. J. Mol. Sci. 2022, 24, 477. [Google Scholar] [CrossRef] [PubMed]
- Węgrzyn, G.; Pierzynowska, K.; Pavone, L.M. Editorial: Molecular Aspects of Mucopolysaccharidoses. Front. Mol. Biosci. 2022, 9, 874267. [Google Scholar] [CrossRef] [PubMed]
- Minami, K.; Morimoto, H.; Morioka, H.; Imakiire, A.; Kinoshita, M.; Yamamoto, R.; Hirato, T.; Sonoda, H. Pathogenic Roles of Heparan Sulfate and Its Use as a Biomarker in Mucopolysaccharidoses. Int. J. Mol. Sci. 2022, 23, 11724. [Google Scholar] [CrossRef] [PubMed]
- Gaffke, L.; Pierzynowska, K.; Podlacha, M.; Hoinkis, D.; Rintz, E.; Brokowska, J.; Cyske, Z.; Wegrzyn, G. Underestimated Aspect of Mucopolysaccharidosis Pathogenesis: Global Changes in Cellular Processes Revealed by Transcriptomic Studies. Int. J. Mol. Sci. 2020, 21, 1204. [Google Scholar] [CrossRef] [Green Version]
- Gaffke, L.; Pierzynowska, K.; Podlacha, M.; Brokowska, J.; Węgrzyn, G. Changes in cellular processes occurring in mucopolysaccharidoses as underestimated pathomechanisms of these diseases. Cell Biol. Int. 2021, 45, 498–506. [Google Scholar] [CrossRef]
- Cyske, Z.; Gaffke, L.; Pierzynowska, K.; Węgrzyn, G. Complex Changes in the Efficiency of the Expression of Many Genes in Monogenic Diseases, Mucopolysaccharidoses, May Arise from Significant Disturbances in the Levels of Factors Involved in the Gene Expression Regulation Processes. Genes 2022, 13, 593. [Google Scholar] [CrossRef]
- Penon-Portmann, M.; Blair, D.R.; Harmatz, P. Current and new therapies for mucopolysaccharidoses. Pediatr. Neonatol. 2022. [Google Scholar] [CrossRef]
- Fecarotta, S.; Tarallo, A.; Damiano, C.; Minopoli, N.; Parenti, G. Pathogenesis of Mucopolysaccharidoses, an Update. Int. J. Mol. Sci. 2020, 21, 2515. [Google Scholar] [CrossRef] [PubMed]
- Monaco, A.; Maffia, V.; Sorrentino, N.C.; Sambri, I.; Ezhova, Y.; Giuliano, T.; Cacace, V.; Nusco, E.; De Risi, M.; De Leonibus, E.; et al. The Amyloid Inhibitor CLR01 Relieves Autophagy and Ameliorates Neuropathology in a Severe Lysosomal Storage Disease. Mol. Ther. 2020, 28, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Monaco, A.; Fraldi, A. Protein aggregation and autophagy dysfunction: New lessons from mucopolysaccharidoses. Autophagy 2021, 17, 3875–3876. [Google Scholar] [CrossRef] [PubMed]
- Hampe, C.S.; Eisengart, J.B.; Lund, T.C.; Orchard, P.J.; Swietlicka, M.; Wesley, J.; McIvor, R.S. Mucopolysaccharidosis Type I: A Review of the Natural History and Molecular Pathology. Cells 2020, 9, 1838. [Google Scholar] [CrossRef] [PubMed]
- Spahiu, L.; Behluli, E.; Peterlin, B.; Nefic, H.; Hadziselimovic, R.; Liehr, T.; Temaj, G. Mucopolysaccharidosis III: Molecular basis and treatment. Pediatr. Endocrinol. Diabetes Metab. 2021, 27, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, T.; Poswar, F.; Santos-Rebouças, C.B. Convergent molecular mechanisms underlying cognitive impairment in mucopolysaccharidosis type II. Metab. Brain Dis. 2022, 37, 2089–2102. [Google Scholar] [CrossRef] [PubMed]
- Pierzynowska, K.; Gaffke, L.; Podlacha, M.; Węgrzyn, G. Genetic Base of Behavioral Disorders in Mucopolysaccharidoses: Transcriptomic Studies. Int. J. Mol. Sci. 2020, 21, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Węgrzyn, G.; Jakóbkiewicz-Banecka, J.; Narajczyk, M.; Wiśniewski, A.; Piotrowska, E.; Gabig-Cimińska, M.; Kloska, A.; Słomińska-Wojewódzka, M.; Korzon-Burakowska, A.; Węgrzyn, A. Why are behaviors of children suffering from various neuronopathic types of mucopolysaccharidoses different? Med. Hypotheses 2010, 75, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Wijburg, F.A.; Węgrzyn, G.; Burton, B.K.; Tylki-Szymańska, A. Mucopolysaccharidosis type III (Sanfilippo syndrome) and misdiagnosis of idiopathic developmental delay, attention deficit/hyperactivity disorder or autism spectrum disorder. Acta Paediatr. 2013, 102, 462–470. [Google Scholar] [CrossRef]
- Wiśniewska, K.; Wolski, J.; Gaffke, L.; Cyske, Z.; Pierzynowska, K.; Węgrzyn, G. Misdiagnosis in mucopolysaccharidoses. J. Appl. Genet. 2022, 63, 475–495. [Google Scholar] [CrossRef]
- Cyske, Z.; Anikiej-Wiczenbach, P.; Wisniewska, K.; Gaffke, L.; Pierzynowska, K.; Mański, A.; Wegrzyn, G. Sanfilippo Syndrome: Optimizing Care with a Multidisciplinary Approach. J. Multidiscip. Healthc. 2022, 15, 2097–2110. [Google Scholar] [CrossRef] [PubMed]
- Muschol, N.; Giugliani, R.; Jones, S.A.; Muenzer, J.; Smith, N.J.; Whitley, C.B.; Donnell, M.; Drake, E.; Elvidge, K.; Melton, L.; et al. Sanfilippo syndrome: Consensus guidelines for clinical care. Orphanet J. Rare Dis. 2022, 17, 391. [Google Scholar] [CrossRef] [PubMed]
- Pierzynowska, K.; Żabińska, M.; Gaffke, L.; Cyske, Z.; Węgrzyn, G. Changes in expression of signal transduction-related genes, and formation of aggregates of GPER1 and OXTR receptors in mucopolysaccharidosis cells. Eur. J. Cell Biol. 2022, 101, 151232. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, K.; Ek, W.E.; Levine, D.; Chow, W.H.; Bernstein, L.; Casson, A.G.; Risch, H.A.; Shaheen, N.J.; Bird, N.C.; Reid, B.J.; et al. Polymorphisms in Genes of Relevance for Oestrogen and Oxytocin Pathways and Risk of Barrett’s Oesophagus and Oesophageal Adenocarcinoma: A Pooled Analysis from the BEACON Consortium. PLoS ONE 2015, 10, e0138738. [Google Scholar] [CrossRef]
- Harricharran, T.; Ogunwobi, O.O. Oxytocin receptor genetic alterations in hepatocellular carcinoma. SN Compr. Clin. Med. 2019, 1, 523–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harricharran, T.; Ogunwobi, O.O. Oxytocin and oxytocin receptor alterations, decreased survival, and increased chemoresistance in patients with pancreatic cancer. Hepatobiliary Pancreat. Dis. Int. 2020, 19, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Ziółko, E.; Kokot, T.; Skubis, A.; Sikora, B.; Szota-Czyż, J.; Kruszniewska-Rajs, C.; Wierzgoń, J.; Mazurek, U.; Grochowska-Niedworok, E.; Muc-Wierzgoń, M. The profile of melatonin receptors gene expression and genes associated with their activity in colorectal cancer: A preliminary report. J. Biol. Regul. Homeost. Agents 2015, 29, 823–828. [Google Scholar]
- Liu, H.; Gruber, C.W.; Alewood, P.F.; Möller, A.; Muttenthaler, M. The oxytocin receptor signalling system and breast cancer: A critical review. Oncogene 2020, 39, 5917–5932. [Google Scholar] [CrossRef]
- Behtaji, S.; Ghafouri-Fard, S.; Sayad, A.; Sattari, A.; Rederstorff, M.; Taheri, M. Identification of oxytocin-related lncRNAs and assessment of their expression in breast cancer. Sci. Rep. 2021, 11, 6471. [Google Scholar] [CrossRef]
- Fiaz, T.; Nadeem, M.S.; Afzal, O.; Altamimi, A.S.; Alzarea, S.I.; Almalki, W.H.; Hafsa Ahmed Khan, H.A.; Iahtisham-Ul-Haq; Sharoon Hanook, S.; Imran Kazmi, I.; et al. Peripheral mRNA Expression and Prognostic Significance of Emotional Stress Biomarkers in Metastatic Breast Cancer Patients. Int. J. Mol. Sci. 2022, 23, 14097. [Google Scholar] [CrossRef]
- Li, D.; San, M.; Zhang, J.; Yang, A.; Xie, W.; Chen, Y.; Lu, X.; Zhang, Y.; Zhao, M.; Feng, X.; et al. Oxytocin receptor induces mammary tumorigenesis through prolactin/p-STAT5 pathway. Cell Death Dis. 2021, 12, 588. [Google Scholar] [CrossRef]
- Kodama, Y.; Tanaka, I.; Sato, T.; Hori, K.; Gen, S.; Morise, M.; Matsubara, D.; Sato, M.; Sekido, Y.; Hashimoto, N. Oxytocin receptor is a promising therapeutic target of malignant mesothelioma. Cancer Sci. 2021, 112, 3520–3532. [Google Scholar] [CrossRef]
- Ye, L.; Xu, Y.; Hu, P.; Wang, L.; Yang, J.A.; Yuan, F.E.; Wang, Y.; Zhang, C.; Tian, D.; Chen, Q. Development and Verification of Glutamatergic Synapse-Associated Prognosis Signature for Lower-Grade Gliomas. Front. Mol. Neurosci. 2021, 14, 720899. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, Z.; Li, F.; Chen, Q. Prognostic value of γ-aminobutyric acidergic synapse-associated signature for lower-grade gliomas. Front. Immunol. 2022, 13, 983569. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xu, Z.; Mao, Y.; Zhang, T.; Qin, Y.; Hua, D. Prognostic role of oxytocin receptor in colon adenocarcinoma. Open Med. 2021, 16, 1762–1776. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Chen, L.; Chen, L. Identification and verification of key cancer genes associated with prognosis of colorectal cancer based on bioinformatics analysis. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2021, 46, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Fu, Y.; Zhu, N.; Zhao, M.; Ding, Z.; Zhang, X.; Song, Y.; Jing, Y.; Zhang, Q.; Chen, S.; et al. OXTRHigh stroma fibroblasts control the invasion pattern of oral squamous cell carcinoma via ERK5 signaling. Nat. Commun. 2022, 13, 5124. [Google Scholar] [CrossRef] [PubMed]
- Jacondino, C.B.; Borges, C.A.; Rosemberg, L.S.; da Silva, I.G.; da Luz Correa, B.; Valle Gottlieb, M.G. Association of oxytocin levels and oxytocin receptor gene polymorphism (rs2254298) with cardiovascular risk factors in Brazilian elderly from Primary Health Care. Arch. Gerontol. Geriatr. 2019, 84, 103903. [Google Scholar] [CrossRef]
- Cicekliyurt, M.M.; Dermenci, B. Relationship between oxytocin receptor gene polymorphism and hypertension in Turkish population. Rev. Port. Cardiol. 2022, 41, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Merz, T.; Denoix, N.; Wigger, D.; Waller, C.; Wepler, M.; Vettorazzi, S.; Tuckermann, J.; Radermacher, P.; McCook, O. The Role of Glucocorticoid Receptor and Oxytocin Receptor in the Septic Heart in a Clinically Relevant, Resuscitated Porcine Model With Underlying Atherosclerosis. Front. Endocrinol. 2020, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- McKay, E.C.; Beck, J.S.; Khoo, S.K.; Dykema, K.J.; Cottingham, S.L.; Winn, M.E.; Paulson, H.L.; Lieberman, A.P.; Counts, S.E. Peri-Infarct Upregulation of the Oxytocin Receptor in Vascular Dementia. J. Neuropathol. Exp. Neurol. 2019, 78, 436–452. [Google Scholar] [CrossRef]
- Jung, C.; Wernly, B.; Bjursell, M.; Wiseman, J.; Admyre, T.; Wikström, J.; Palmér, M.; Seeliger, F.; Lichtenauer, M.; Franz, M.; et al. Cardiac-Specific Overexpression of Oxytocin Receptor Leads to Cardiomyopathy in Mice. J. Card Fail. 2018, 24, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Elabd, C.; Basillais, A.; Beaupied, H.; Breuil, V.; Wagner, N.; Scheideler, M.; Zaragosi, L.-E.; Massiéra, F.; Lemichez, E.; Trajanoski, Z.; et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells 2008, 26, 2399–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, N.; Tamma, R.; Bian, Z.; Zallone, A.; Kim, S.M.; New, M.I.; Iqbal, J.; Yuen, T.; Zaidi, M. Oxytocin regulates body composition. Proc. Natl. Acad. Sci. USA 2019, 116, 26808–26815. [Google Scholar] [CrossRef]
- Çatli, G.; Acar, S.; Cingöz, G.; Rasulova, K.; Yarim, A.K.; Uzun, H.; Küme, T.; Kızıldağ, S.; Dündar, B.N.; Abacı, A. Oxytocin receptor gene polymorphism and low serum oxytocin level are associated with hyperphagia and obesity in adolescents. Int. J. Obes. 2021, 45, 2064–2073. [Google Scholar] [CrossRef]
- Giel, K.E.; Schag, K.; Leehr, E.J.; Mack, I.; Schuster, L.S.; Wiegand, A.; Zipfel, S.; Hallschmid, M.; Nieratschker, V. OXTR DNA methylation differentiates men on the obesity spectrum with and without binge eating disorder. Clin. Epigenetics 2022, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Conboy, I. Unexpected evolutionarily conserved rapid effects of viral infection on oxytocin receptor and TGF-β/pSmad3. Skelet. Muscle 2017, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Helmer, H.; Tretzmüller, U.; Brunbauer, M.; Kaider, A.; Husslein, P.; Knöfler, M. Production of oxytocin receptor and cytokines in primary uterine smooth muscle cells cultivated under inflammatory conditions. J. Soc. Gynecol. Investig. 2002, 9, 15–21. [Google Scholar] [CrossRef]
- Çalışkan, E.; Şahin, M.N.; Güldağ, M.A. Oxytocin and Oxytocin Receptor Gene Regulation in Williams Syndrome: A Systematic Review. Yale J. Biol. Med. 2021, 94, 623–635. [Google Scholar] [PubMed]
- Serrano-Juárez, C.A.; Prieto-Corona, B.; Rodríguez-Camacho, M.; Sandoval-Lira, L.; Villalva-Sánchez, Á.F.; Yáñez-Téllez, M.G.; López, M.F.R. Neuropsychological Genotype-Phenotype in Patients with Williams Syndrome with Atypical Deletions: A Systematic Review. Neuropsychol. Rev. 2022, 1–21. [Google Scholar] [CrossRef]
- Kimura, R.; Tomiwa, K.; Inoue, R.; Suzuki, S.; Nakata, M.; Awaya, T.; Kato, T.; Okazaki, S.; Heike, T.; Hagiwara, M. Dysregulation of the oxytocin receptor gene in Williams syndrome. Psychoneuroendocrinology 2020, 115, 104631. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierzynowska, K.; Gaffke, L.; Żabińska, M.; Cyske, Z.; Rintz, E.; Wiśniewska, K.; Podlacha, M.; Węgrzyn, G. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. Int. J. Mol. Sci. 2023, 24, 3887. https://doi.org/10.3390/ijms24043887
Pierzynowska K, Gaffke L, Żabińska M, Cyske Z, Rintz E, Wiśniewska K, Podlacha M, Węgrzyn G. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. International Journal of Molecular Sciences. 2023; 24(4):3887. https://doi.org/10.3390/ijms24043887
Chicago/Turabian StylePierzynowska, Karolina, Lidia Gaffke, Magdalena Żabińska, Zuzanna Cyske, Estera Rintz, Karolina Wiśniewska, Magdalena Podlacha, and Grzegorz Węgrzyn. 2023. "Roles of the Oxytocin Receptor (OXTR) in Human Diseases" International Journal of Molecular Sciences 24, no. 4: 3887. https://doi.org/10.3390/ijms24043887
APA StylePierzynowska, K., Gaffke, L., Żabińska, M., Cyske, Z., Rintz, E., Wiśniewska, K., Podlacha, M., & Węgrzyn, G. (2023). Roles of the Oxytocin Receptor (OXTR) in Human Diseases. International Journal of Molecular Sciences, 24(4), 3887. https://doi.org/10.3390/ijms24043887