Nrf2 and Antioxidant Response in Animal Models of Type 2 Diabetes
Abstract
:1. Introduction
2. Background: The Pancreatic Islet as a Vulnerable Target for Reactive Oxidative Species
3. Molecular Consequences of Chronic Hyperglycemia and Resultant Oxidative Stress on Residual Beta Cell Function in T2D
4. Search for Causal Relationships among Glucose Toxicity, Oxidative Stress, and Defects in Beta Cell Function in T2D: The Importance of Glutathione Peroxidase
5. Effects of Ebselen, a Glutathione Mimetic, in Preventing T2D in the Male ZDF Rat
6. Protection of Beta Cells by the GPx-1 Transgene against the Glucotoxic Effects of Chronic Hyperglycemia Female db/db Mice
7. The Innate Protective Response of the Nrf2 and Hemoxygenase-1 Pathway against the Development of T2D Diabetes in Female Fat-fed ZFD Rats
8. Conclusions
Funding
Conflicts of Interest
References
- Robertson, R.P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 2004, 279, 42351–42354. [Google Scholar] [CrossRef]
- Takahashi, H.; Tran, P.O.T.; LeRoy, E.; Harmon, J.; Tanaka, Y.; Robertson, R.P. D-glyceraldehyde causes production of intracellular peroxide in pancreatic islets, oxidative stress, and defective beta cell function via non-mitochondrial pathways. J. Biol. Chem. 2004, 279, 37316–37323. [Google Scholar] [CrossRef] [PubMed]
- Grankvist k Marklund, S.L.; Tajiedal, I.B. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem. J. 1981, 199, 393. [Google Scholar] [CrossRef] [PubMed]
- Tiedge, M.; Lortz, S.; Drinkgern, J.; Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997, 46, 1733. [Google Scholar] [CrossRef] [PubMed]
- Tiedge, M.; Lortz, S.; Munday, R.; Lenzen, S. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 1998, 47, 1578. [Google Scholar] [CrossRef]
- Gembal, M.; Druzynska, J.; Andrzejewska, S.; Wójcikowski, C. Protective effect of allopurinol, alpha-tocopherol and chlorpromazine on rat pancreatic islets stored prior to transplantation. Endokrynol. Pol. 1993, 44, 147. [Google Scholar]
- Janjic, D.; Andereggen, E.; Deng, S.; Bartley, C.; Buhfer, L.; Morel, P.; Wollheim, C.B. Improved insulin secretion of cryopreserved human islets by antioxidant treatment. Pancreas 1996, 13, 166. [Google Scholar] [CrossRef]
- Vajkoczy, P.; Lehr, H.A.; Hubner, C.; E Arfors, K.; Menger, M.D. Prevention of pancreatic islet xenograft rejection by dietary vitamin E. Am. J. Pathol. 1997, 150, 1487. [Google Scholar]
- Tajiri, Y.; Grill, V.E. Interactions between vitamin E and glucose on B-cell functions in the rat: An in vivo and in vitro study. Pancreas 1999, 18, 274. [Google Scholar] [CrossRef]
- Luca, G.; Nastruzzi, C.; Basta, G.; Brozzetti, A.; Saturni, A.; Mughetti, D.; Ricci, M.; Rossi, C.; Brunetti, P.; Calafiore, R. Effects of anti-oxidizing vitamins on in vitro cultured porcine neonatal pancreatic islet cells. Diabetes Nutr. Metab. 2000, 13, 301. [Google Scholar]
- Winter, D.T.; Eich, T.; Jahr, H.; Brendel, M.; Bretzel, R. Influence of antioxidant therapy on islet graft survival. Transplant. Proc. 2002, 34, 2366. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Epstein, P.N. Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. J. Biol. Chem. 2004, 279, 765. [Google Scholar] [CrossRef] [PubMed]
- Bottino, R.; Balamurugan, A.N.; Tse, H.; Thirunavukkarasu, C.; Ge, X.; Profozich, J.; Milton, M.; Ziegenfuss, A.; Trucco, M.; Piganelli, J.D. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes 2004, 53, 2559. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.L.; Braun, M.; Cicalese, L.; Rastellini, C. Effect of perioperative antioxidant therapy on suboptimal islet transplantation in rats. Transplant. Proc. 2005, 37, 217. [Google Scholar] [CrossRef] [PubMed]
- Tonooka, N.; Oseid, E.; Zhou, H.; Harmon, J.; Robertson, R.P. Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. Clin. Transplant. 2007, 21, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Gleason, C.E.; Tran, P.O.T.; Harmon, J.S.; Robertson, R.P. Prevention of Glucose toxicity in HIT-T15 cells and Zucker diabetic fatty (ZDF) rats by antioxidants. Proc. Natl. Acad. Sci. USA 1999, 96, 10857–10862. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tran, P.O.; Harmon, J.; Robertson, R.P. A role for glutathione peroxidase in protecting pancreatic B cells against oxidative stress in a model of glucose toxicity. Proc. Natl. Acad. Sci. USA 2002, 99, 12363–12368. [Google Scholar] [CrossRef]
- Robertson, R.P.; Harmon, J.; Tran, P.O.; Tanaka, Y.; Takahashi, H. Glucose toxicity in beta cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003, 52, 581–587. [Google Scholar] [CrossRef]
- Harmon, J.S.; Stein, R.; Robertson, R.P. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J. Biol. Chem. 2005, 280, 11107–11113. [Google Scholar] [CrossRef]
- Robertson, R.P.; Harmon, J.S. Pancreatic islet beta-cell and oxidative stress: The importance of glutathione peroxidase. FEBS Lett. 2007, 581, 3743–3748. [Google Scholar] [CrossRef]
- Harmon, J.S.; Bogdani, M.; Parazolli, S.D.; Mak, S.S.M.; Oseid, A.E.A.; Berghmans, M.; LeBoeuf, R.C.; Robertson, R.P. ß-cell specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinology 2009, 150, 4855–4862. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, J.; Parazzoli, S.; Oseid, E.; Hertzel, A.V.; Bernlohr, D.A.; Vallerie SNLiu, C.; Lopez, M.; Harmon, J.S.; Robertson, R.P. Ebselen treatment prevents islet apoptosis, maintains intranuclearPdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats. Diabetes 2013, 62, 3582–3588. [Google Scholar] [CrossRef] [PubMed]
- Abebe, T.; Mahadevan, J.; Bogachus, L.; Hahn, S.; Black, M.; Oseid, E.; Urano, F.; Cirulli, V.; Robertson, R.P. Nrf2/antioxidant pathway mediates β cell self-repair after damage by high-fat diet-induced oxidative stress. JCI Insight 2017, 2, 92854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, R.P.; Zhang, H.J.; Pyzdrowski, K.L.; Walseth, T.F. Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J. Clin. Investig. 1992, 90, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Walseth, T.F.; Robertson, R.P. Insulin secretion and cAMP metabolism in HIT cells. Reciprocal and serial passage-dependent relationships. Diabetes 1989, 38, 44–48. [Google Scholar] [CrossRef]
- Olson, L.K.; Redmon, J.B.; Towle, H.C.; Robertson, R.P. Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J. Clin. Investig. 1993, 92, 514–519. [Google Scholar] [CrossRef]
- Olson, L.K.; Sharma, A.; Peshavaria, M.; Wright, C.V.; Towle, H.C.; Robertson, R.P.; Stein, R. Reduction of insulin gene transcription in HIT-T15 β-cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF-1 transcription factor expression. Proc. Natl. Acad. Sci. USA 1995, 92, 9127–9131, Erratum in Proc. Natl. Acad. Sci. USA 1995, 92, 11322. [Google Scholar] [CrossRef]
- Sharma, A.; Olson, L.K.; Robertson, R.P.; Stein, R. The reduction of insulin gene transcription in HIT-T15 β-cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression. Mol. Endocrinol. 1995, 9, 1127–1134. [Google Scholar]
- Poitout, V.; Olson, L.K.; Robertson, R.P. Chronic exposure of βTC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator. J. Clin. Investig. 1996, 97, 1041–1046. [Google Scholar] [CrossRef]
- Harmon, J.S.; Tanaka, Y.; Olson, L.K.; Robertson, R.P. Reconstitution of glucotoxic HIT-T15 cells with somatostatin transcription factor-1 partially restores insulin promoter activity. Diabetes 1998, 47, 900–904. [Google Scholar] [CrossRef]
- Muller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound-1. Glutathione-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol. 1984, 33, 3235–3239. [Google Scholar] [CrossRef]
- Brodsky, S.V.; Gealekman, O.; Chen, J.; Zhang, F.; Togashi, N.; Crabtree, M.; Gross, S.S.; Nasjletti, A.; Goligorsky, M.S. Prevention and reversal of premature endothelial cell senescence and vasculopathy in obesity -induce diabetes by ebselen. Circ. Res. 2004, 94, 377–384. [Google Scholar] [CrossRef]
- Maiorino, M.; Roveri AUrsini, F. Antioxidant effect effect pf Ebselen (PZ 51) peroxidase mimetic activity on phospholipid and cholesterol hydroperoxides vs free radical scavenger activity. Arch. Biochem. Biophys. 1992, 295, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Lynch, E.; Kil, J. Development of ebselen, a glutathione peroxidase mimetic, for the prevention and treatment of noise-induced hearing loss. Semin. Hear. 2009, 30, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Sano, K.; Takakura, K.; Saito, I.; Shinohara, Y.; Asano, T.; Yasuhara, H. Ebselen in acute middle cerebral artery occlusion: A placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 1998, 29, 12–17. [Google Scholar] [CrossRef]
- Ogawa, A.; Yoshimoto, T.; Kikuci, H.; Sano, K.; Saito, I.; Yamaguchi, T.; Yasuhara, H. Ebselen in acute middle cerebral artery occlusion: A placebo-controlled, double-blind clinical trial. Cerebrovasc. Dis. 1999, 9, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.A.; Johnson, J.A. Nrf2-a therapeutic target for the treatment of neurodegenerative diseases. Free Radic. Biol. Med. 2015, 88 Pt B, 253–267. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, S.; Zhang, C.; Kong, A.N. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic. Biol. Med. 2015, 88 Pt B, 337–349. [Google Scholar] [CrossRef]
- Kanninen, K.M.; Pomeshchik, Y.; Leinonen, H.; Malm, T.; Koistinaho, J.; Levonen, A.L. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic. Biol. Med. 2015, 88 Pt B, 350–361. [Google Scholar] [CrossRef]
- Kang, J.S.; Choi, I.W.; Han, M.H.; Kim, G.Y.; Hong, S.H.; Park, C.; Hwang, H.J.; Kim, C.M.; Kim, B.W.; Choi, Y.H. The cytoprotective effects of 7,8-dihydroxyflavone against oxidative stress are mediated by the upregulation of Nrf2-dependent HO-1 expression through the activation of the PI3K/Akt and ERK pathways in C2C12 myoblasts. Int. J. Mol. Med. 2015, 36, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med. 2015, 88 Pt B, 108–146. [Google Scholar] [CrossRef]
- Yagishita, Y.; Fukutomi, T.; Sugawara, A.; Kawamura, H.; Takahashi, T.; Pi, J.; Yamamoto, M. Nrf2 protects pancreatic beta-cells from oxidative and nitrosative stress in diabetic model mice. Diabetes 2014, 63, 605–618. [Google Scholar] [CrossRef]
- Uruno, A.; Furusawa, Y.; Yagishita, Y.; Fukutomi, T.; Muramatsu, H.; Negishi, T.; Muramatsu, H.; Negishi, T.; Sugawara, A.; Kensler, T.W.; et al. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol. Cell Biol. 2013, 33, 2996–3010. [Google Scholar] [CrossRef] [PubMed]
- Masuda, Y.; Vaziri, N.D.; Li, S.; Le, A.; Hajighasemi-Ossareh, M.; Robles, L.; Foster, C.E.; Stamos, M.J.; Al-Abodullah, I.; Ricordi, C.; et al. The effect of Nrf2 pathway activation on human pancreatic islet cells. PLoS ONE 2015, 10, e0131012. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Hirose, H.; Ohneda, M.; Johnson, J.H.; McGarry, J.D.; Unger, J.H. Beta cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: Impairment in adipocyte-beta cell relationships. Proc. Natl. Acad. Sci USA 1994, 91, 10878–10882. [Google Scholar] [CrossRef] [PubMed]
- Harmon, J.S.; Gleason, C.E.; Tanaka, Y.; Poitout, V.; Robertson, R.P. Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker Diabetic Fatty rats. Diabetes 2001, 50, 2481–2486. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robertson, R.P. Nrf2 and Antioxidant Response in Animal Models of Type 2 Diabetes. Int. J. Mol. Sci. 2023, 24, 3082. https://doi.org/10.3390/ijms24043082
Robertson RP. Nrf2 and Antioxidant Response in Animal Models of Type 2 Diabetes. International Journal of Molecular Sciences. 2023; 24(4):3082. https://doi.org/10.3390/ijms24043082
Chicago/Turabian StyleRobertson, R. Paul. 2023. "Nrf2 and Antioxidant Response in Animal Models of Type 2 Diabetes" International Journal of Molecular Sciences 24, no. 4: 3082. https://doi.org/10.3390/ijms24043082
APA StyleRobertson, R. P. (2023). Nrf2 and Antioxidant Response in Animal Models of Type 2 Diabetes. International Journal of Molecular Sciences, 24(4), 3082. https://doi.org/10.3390/ijms24043082