Characterization of Extracellular Vesicle-Coupled miRNA Profiles in Seminal Plasma of Boars with Divergent Semen Quality Status
Abstract
:1. Introduction
2. Results
2.1. Sperm Analyses of Good-Quality and Poor-Quality Semen
2.2. Characterization of Isolated Seminal-Plasma-Derived Extracellular Vesicles (SP-EVs)
2.3. Sequencing and Data Analysis
3. Discussion
4. Materials and Methods
4.1. Semen Collection and Sample Preparation
4.2. Sperm Motion and Morphology Analyses
4.3. Isolation of Boar Seminal Plasma EVs
4.4. Characterization of SP Extracellular Vesicles
4.4.1. Transmission Electron Microscopy
4.4.2. Size Distribution
4.4.3. Protein Extraction and Western Blotting
4.5. Total RNA Isolation, Small RNA Sequencing, and Analysis
4.5.1. Selected Samples
4.5.2. Total RNA Isolation
4.5.3. Small RNA-Sequencing Data Analysis
4.5.4. Differential Expression Analysis
4.5.5. MirRNA Target Gene Prediction and Bioinformatics Analyses
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez Rodriguez, A.; Van Soom, A.; Arsenakis, I.; Maes, D. Boar management and semen handling factors affect the quality of boar extended semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Flowers, W.L. Genetic and phenotypic variation in reproductive traits of AI boars. Theriogenology 2008, 70, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Flowers, W. Selection for boar fertility and semen quality—The way ahead. Soc. Reprod. Fertil. 2009, 66, 67–78. [Google Scholar] [CrossRef]
- Parrilla, I.; del Olmo, D.; Sijses, L.; Martinez-Alborcia, M.J.; Cuello, C.; Vazquez, J.M.; Martinez, E.A.; Roca, J. Differences in the ability of spermatozoa from individual boar ejaculates to withstand different semen-processing techniques. Anim. Reprod. Sci. 2012, 132, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Candenas, L.; Chianese, R. Exosome composition and seminal plasma proteome: A promising source of biomarkers of male infertility. Int. J. Mol. Sci. 2020, 21, 7022. [Google Scholar] [CrossRef] [PubMed]
- Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef]
- Saez, F.; Frenette, G.; Sullivan, R. Epididymosomes and prostasomes: Their roles in posttesticular maturation of the sperm cells. J. Androl. 2003, 24, 149–154. [Google Scholar] [CrossRef]
- Arienti, G.; Polci, A.; De Cosmo, A.; Saccardi, C.; Carlini, E.; Palmerini, C.A. Lipid fatty acid and protein pattern of equine prostasome-like vesicles. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2001, 128, 661–666. [Google Scholar] [CrossRef]
- Fornes, M.; Barbieri, A.; Sosa, M.; Bertini, F. First observations on enzymatic activity and protein content of vesicles separated from rat epididymal fluid. Andrologia 1991, 23, 347–351. [Google Scholar] [CrossRef]
- Davis, B. Decapacitation and recapacitation of rabbit spermatozoa treated with membrane vesicles from seminal plasma. Reproduction 1974, 41, 241–244. [Google Scholar] [CrossRef] [Green Version]
- Breitbart, H.; Rubinstein, S. Characterization of Mg2+-and Ca2+-ATPase activity in membrane vesicles from ejaculated ram seminal plasma. Arch. Androl. 1982, 9, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, Y.; Vanha-Perttula, T. Effect of secretory particles in bovine seminal vesicle secretion on sperm motility and acrosome reaction. Reproduction 1987, 79, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Shen, J.; Wang, Y.; Pan, C.; Pang, W.; Diao, H.; Dong, W. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget 2016, 7, 58832. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan micrornas. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; James, E.; Aston, K.; Carrell, D.; Jenkins, T.; Yeste, M. The role of miRNAs in male human reproduction: A systematic review. Andrology 2020, 8, 7–26. [Google Scholar] [CrossRef]
- Sharma, R.; Agarwal, A.; Rohra, V.K.; Assidi, M.; Abu-Elmagd, M.; Turki, R.F. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod. Biol. Endocrinol. 2015, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.H.; Katz, D.F. A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J. Androl. 2005, 26, 459–469. [Google Scholar] [CrossRef]
- Wu, W.; Hu, Z.; Qin, Y.; Dong, J.; Dai, J.; Lu, C.; Zhang, W.; Shen, H.; Xia, Y.; Wang, X. Seminal plasma microRNAs: Potential biomarkers for spermatogenesis status. Mol. Hum. Reprod. 2012, 18, 489–497. [Google Scholar] [CrossRef]
- Caballero, J.; Frenette, G.; Sullivan, R. Post testicular sperm maturational changes in the bull: Important role of the epididymosomes and prostasomes. Vet. Med. Int. 2011, 2011, 757194. [Google Scholar] [CrossRef]
- Pruneda, A.; Pinart, E.; Briz, M.D.; Sancho, S.; Garcia-Gil, N.; Badia, E.; Kádár, E.; Bassols, J.; Bussalleu, E.; Yeste, M. Effects of a high semen-collection frequency on the quality of sperm from ejaculates and from six epididymal regions in boars. Theriogenology 2005, 63, 2219–2232. [Google Scholar] [CrossRef]
- Carreira, J.T.; Mingoti, G.Z.; Rodrigues, L.H.; Silva, C.; Perri, S.H.; Koivisto, M.B. Impact of proximal cytoplasmic droplets on quality traits and in-vitro embryo production efficiency of cryopreserved bull spermatozoa. Acta Vet. Scand. 2012, 54, 1. [Google Scholar] [CrossRef] [PubMed]
- Weigl, M.; Semmelrock, E.; Dellago, H.; Hackl, M. Extracellular Vesicles (EVs) as a Novel Source for Biomarker Development–Analysis Pitfalls and Important Considerations; TAmiRNA: Vienna, Austria, 2021. [Google Scholar]
- Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; Laktionov, P.P. Isolation of extracellular vesicles: General methodologies and latest trends. BioMed Res. Int. 2018, 2018, 8545347. [Google Scholar] [CrossRef] [PubMed]
- Fornes, M.; Barbieri, A.; Cavicchia, J. Morphological and enzymatic study of membrane-bound vesicles from the lumen of the rat epididymis. Andrologia 1995, 27, 1–5. [Google Scholar] [CrossRef]
- Frenette, G.; Sullivan, R. Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol. Reprod. Dev. Inc. Gamete Res. 2001, 59, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Saez, F.; Girouard, J.; Frenette, G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol. Dis. 2005, 35, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Barranco, I.; Padilla, L.; Parrilla, I.; Álvarez-Barrientos, A.; Pérez-Patiño, C.; Peña, F.J.; Martínez, E.A.; Rodriguez-Martínez, H.; Roca, J. Extracellular vesicles isolated from porcine seminal plasma exhibit different tetraspanin expression profiles. Sci. Rep. 2019, 9, 11584. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, Y.; Zhou, C.; Hu, Q.; Gu, T.; Yang, J.; Zheng, E.; Huang, S.; Xu, Z.; Cai, G. Expression pattern of seminal plasma extracellular vesicle small RNAs in boar semen. Front. Vet. Sci. 2020, 7, 585276. [Google Scholar] [CrossRef]
- Sullivan, R.; Saez, F. Epididymosomes, prostasomes, and liposomes: Their roles in mammalian male reproductive physiology. Reproduction 2013, 146, R21–R35. [Google Scholar] [CrossRef]
- Van Niel, G.; d’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Lin, J.; Li, J.; Huang, B.; Liu, J.; Chen, X.; Chen, X.-M.; Xu, Y.-M.; Huang, L.-F.; Wang, X.-Z. Exosomes: Novel biomarkers for clinical diagnosis. Sci. World J. 2015, 2015, 657086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vojtech, L.; Woo, S.; Hughes, S.; Levy, C.; Ballweber, L.; Sauteraud, R.P.; Strobl, J.; Westerberg, K.; Gottardo, R.; Tewari, M. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014, 42, 7290–7304. [Google Scholar] [CrossRef] [PubMed]
- Hailay, T.; Hoelker, M.; Poirier, M.; Gebremedhn, S.; Rings, F.; Saeed-Zidane, M.; Salilew-Wondim, D.; Dauben, C.; Tholen, E.; Neuhoff, C. Extracellular vesicle-coupled miRNA profiles in follicular fluid of cows with divergent post-calving metabolic status. Sci. Rep. 2019, 9, 12851. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.B.R.; de Arruda, R.P.; Batissaco, L.; Garcia-Oliveros, L.N.; Gonzaga, V.H.G.; Nogueira, V.J.M.; dos Santos Almeida, F.; Pinto, S.C.C.; Andrade, G.M.; Perecin, F. Changes in miRNA levels of sperm and small extracellular vesicles of seminal plasma are associated with transient scrotal heat stress in bulls. Theriogenology 2021, 161, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Che, D.; Zhang, P.; Li, X.; Yuan, Q.; Liu, T.; Guo, J.; Feng, T.; Wu, L.; Liao, M. Profiling of miRNAs in porcine germ cells during spermatogenesis. Reproduction 2017, 154, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, Y. Molecular cloning, sequence identification, polymorphism and association of the porcine SPATS2L gene. Arch. Anim. Breed. 2015, 58, 445–449. [Google Scholar] [CrossRef]
- Kumar, L.; Chou, J.; Yee, C.S.; Borzutzky, A.; Vollmann, E.H.; von Andrian, U.H.; Park, S.-Y.; Hollander, G.; Manis, J.P.; Poliani, P.L. Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. J. Exp. Med. 2014, 211, 929–942. [Google Scholar] [CrossRef]
- Kumar, M.; Ahmad, T.; Sharma, A.; Mabalirajan, U.; Kulshreshtha, A.; Agrawal, A.; Ghosh, B. Let-7 microRNA–mediated regulation of IL-13 and allergic airway inflammation. J. Allergy Clin. Immunol. 2011, 128, 1077–1085.e1010. [Google Scholar] [CrossRef]
- Ramos, K.; Weber, T. Introduction and Overview of Alterations in Cell Signaling. In Comprehensive Toxicology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 447–471. [Google Scholar]
- Baarends, W.M.; Hoogerbrugge, J.W.; Roest, H.P.; Ooms, M.; Vreeburg, J.; Hoeijmakers, J.H.; Grootegoed, J.A. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev. Biol. 1999, 207, 322–333. [Google Scholar] [CrossRef]
- Ward, W.S.; Coffey, D. DNA packaging and organization in mammalian spermatozoa: Comparison with somatic cells. Biol. Reprod. 1991, 44, 569–574. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Dutra, G.; Ishak, G.; Pechanova, O.; Pechan, T.; Peterson, D.; Jacob, J.; Willard, S.; Ryan, P.; Gastal, E.; Feugang, J. Seasonal variation in equine follicular fluid proteome. Reprod. Biol. Endocrinol. 2019, 17, 29. [Google Scholar] [CrossRef] [PubMed]
- Feugang, J.; Liao, S.; Crenshaw, M.; Clemente, H.; Willard, S.; Ryan, P. Lectin-functionalized magnetic iron oxide nanoparticles for reproductive improvement. JFIV Reprod. Med. Genet. 2015, 3, 17–19. [Google Scholar]
- Feugang, J.M.; Liao, S.F.; Willard, S.T.; Ryan, P.L. In-depth proteomic analysis of boar spermatozoa through shotgun and gel-based methods. BMC Genom. 2018, 19, 62. [Google Scholar] [CrossRef] [PubMed]
- Kupcova Skalnikova, H.; Bohuslavova, B.; Turnovcova, K.; Juhasova, J.; Juhas, S.; Rodinova, M.; Vodicka, P. Isolation and characterization of small extracellular vesicles from porcine blood plasma, cerebrospinal fluid, and seminal plasma. Proteomes 2019, 7, 17. [Google Scholar] [CrossRef]
- Aparicio-Puerta, E.; Lebrón, R.; Rueda, A.; Gómez-Martín, C.; Giannoukakos, S.; Jaspez, D.; Medina, J.M.; Zubkovic, A.; Jurak, I.; Fromm, B. sRNAbench and sRNAtoolbox 2019: Intuitive fast small RNA profiling and differential expression. Nucleic Acids Res. 2019, 47, W530–W535. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
Sperm Characteristics | Good-Quality Semen | Poor-Quality Semen | p-Value |
---|---|---|---|
Total motility (%) | 87.9 ± 1.0 a | 56.4 ± 4.7 b | <0.001 |
Progressive motility (%) | 51.9 ± 3.4 a | 36.0 ± 4.4 b | 0.002 |
Normal morphology (%) | 84.4 ± 1.2 a | 49.9 ± 2.4 b | <0.001 |
Bent tail (%) | 0.7 ± 0.2 | 1.8 ± 0.4 | 0.071 |
Coiled tail (%) | 3.4 ± 0.5 | 5.3 ± 0.8 | 0.057 |
Distal droplet (%) | 6.5 ± 0.7 | 8.1 ± 0.8 | 0.156 |
Proximal droplet (%) | 16.5 ± 1.7 a | 24.6 ± 2.5 b | 0.019 |
miRNA Name | Log2 Fold Change | Log CPM | p-Value | FDR |
---|---|---|---|---|
ssc-miR-9828-3p | −7.07 | −1.19 | 5.09 × 10−8 | 1.79 × 10−5 |
ssc-miR-7142-5p | 3.02 | 0.58 | 1.6 × 10−2 | 9.4 × 10−1 |
ssc-miR-7139-3p | 3.02 | 1.79 | 1.75 × 10−3 | 3.1 × 10−1 |
ssc-miR-493-5p | 2.85 | 0.32 | 1.39 × 10−2 | 9.4 × 10−1 |
ssc-miR-9830-5p | 2.43 | 0.80 | 1.86 × 10−2 | 9.4 × 10−1 |
ssc-miR-1277 | −1.85 | −0.79 | 2.72 × 10−2 | 1 |
ssc-miR-9862-3p | 1.68 | 4.82 | 3.48 × 10−2 | 1 |
ssc-miR-205 | −1.42 | 5.41 | 1.31 × 10−2 | 9.4 × 10−1 |
ssc-miR-9846-3p | −1.37 | 5.41 | 1.40 × 10−2 | 9.4 × 10−1 |
ssc-miR-7137-3p | 1.25 | 5.94 | 3.08 × 10−2 | 1 |
ssc-miR-10386 | −1.2 | 2.43 | 3.79 × 10−2 | 1 |
ssc-miR-9788-3p | 1.19 | 1.23 | 3.88 × 10−2 | l |
ssc-miR-802 | −1 | 2.09 | 4.40 × 10−2 | 1 |
ssc-miR-378b-3p | −0.96 | 2.40 | 3.07 × 10−2 | 1 |
ssc-miR-369 | −0.86 | 2.48 | 4.56 × 10−2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlamini, N.H.; Nguyen, T.; Gad, A.; Tesfaye, D.; Liao, S.F.; Willard, S.T.; Ryan, P.L.; Feugang, J.M. Characterization of Extracellular Vesicle-Coupled miRNA Profiles in Seminal Plasma of Boars with Divergent Semen Quality Status. Int. J. Mol. Sci. 2023, 24, 3194. https://doi.org/10.3390/ijms24043194
Dlamini NH, Nguyen T, Gad A, Tesfaye D, Liao SF, Willard ST, Ryan PL, Feugang JM. Characterization of Extracellular Vesicle-Coupled miRNA Profiles in Seminal Plasma of Boars with Divergent Semen Quality Status. International Journal of Molecular Sciences. 2023; 24(4):3194. https://doi.org/10.3390/ijms24043194
Chicago/Turabian StyleDlamini, Notsile H., Tina Nguyen, Ahmed Gad, Dawit Tesfaye, Shengfa F. Liao, Scott T. Willard, Peter L. Ryan, and Jean M. Feugang. 2023. "Characterization of Extracellular Vesicle-Coupled miRNA Profiles in Seminal Plasma of Boars with Divergent Semen Quality Status" International Journal of Molecular Sciences 24, no. 4: 3194. https://doi.org/10.3390/ijms24043194
APA StyleDlamini, N. H., Nguyen, T., Gad, A., Tesfaye, D., Liao, S. F., Willard, S. T., Ryan, P. L., & Feugang, J. M. (2023). Characterization of Extracellular Vesicle-Coupled miRNA Profiles in Seminal Plasma of Boars with Divergent Semen Quality Status. International Journal of Molecular Sciences, 24(4), 3194. https://doi.org/10.3390/ijms24043194