Biomarkers from Peri-Implant Crevicular Fluid (PICF) as Predictors of Peri-Implant Bone Loss: A Systematic Review
Abstract
:1. Introduction
2. Methods
- -
- Population: patients with dental implants;
- -
- Intervention: sampling biomarkers from PICF in patients with peri-implant BL;
- -
- Outcomes: correlation between biomarkers in PICF and peri-implant BL.
2.1. Search Strategy
- Studies conducted on humans;
- Studies that included radiographic measurement of peri-implant bone resorption;
- Studies with quantification of any type of biomarker extracted from PICF.
- Studies that evaluated biomarkers in tissue, serum, saliva, and other biological sources but not in PICF;
- Impossibility of correlating the investigated biomarkers with peri-implant BL;
- Fluid collection during early osseointegration: a minimum of 3 months post-implant insertion was necessary.
2.2. Data Extraction
2.3. Quality Assessment
- Were the two groups similar and recruited from the same population?
- Were the exposures measured similarly to assign people to both exposed and unexposed groups?
- Was the exposure measured in a valid and reliable way?
- Were confounding factors identified?
- Were strategies to deal with confounding factors stated?
- Were the groups/participants free of the outcome at the start of the study (or at the moment of exposure)?
- Were the outcomes measured in a valid and reliable way?
- Was the follow-up time reported and sufficient to be long enough for outcomes to occur?
- Was follow-up complete, and if not, were the reasons for the loss of follow-up described and explored?
- Were strategies to address incomplete follow-up utilized?
- Was appropriate statistical analysis used?
- Were the criteria for inclusion in the sample clearly defined?
- Were the study subjects and the setting described in detail?
- Was the exposure measured in a valid and reliable way?
- Were objective, standard criteria used for measurement of the condition?
- Were confounding factors identified?
- Were strategies to deal with confounding factors stated?
- Were the outcomes measured in a valid and reliable way?
- Was appropriate statistical analysis used?
3. Results and Discussion
3.1. Bibliographic Search and Study Selection
3.2. Description of Included Studies
3.3. Results of Individual Studies
Authors | Study Design | Number of Patients | Number of Implants | Assessed PICF Biomarkers | Definition of BL * | Type of Assay | Main Outcomes |
---|---|---|---|---|---|---|---|
Ma et al., 2000 [27] | Cross- sectional study | 13 | 49 | Collagenase-2 Collagenase-3 | Group 1: BL < 1 mm; Group 2: BL from 1 to 3 mm; Group 3: BL > 3 mm | Time-resolved immunofluorometric assay (collagenase-2) Quantitative immunoblot (collagenase-3) | Collagenase-2 (p = 0.049) and collagenase-3 (p = 0.041) levels were significantly higher in Group 3 than in Groups 1 and 2. Collagenase-3 and collagenase-2 produced by adjacent bone osteoclast cells reflect irreversible peri-implant vertical BL around loosening dental implants. Measurements of collagenase-3 and collagenase-2 could be used as markers to indicate the degree of peri-implant vertical BL. |
Plagnat et al., 2002 [12] | Cross- sectional study | 15 | 19 (healthy: 11; peri-implantitis: 8) | ALP EA α2M | Healthy implants: no radiographic evidence of BL. Implants with peri-implantitis: crestal BL greater than 20% in at least one site (mesial or distal) along the implant | P-nitrophenyl-phosphate as substrate (ALP) low molecular weight Fluorogenic substrate (EA) ELISA (α2M) | ALP and EA were correlated with the percentage of BL. ALP and EA could be promising markers of BL around dental implants. |
Ma et al., 2003 [28] | Cross- sectional study | 13 | 46 | Gelatinase b | Group 1: BL < 1 mm; Group 2: BL from 1 to 3 mm; Group 3: BL > 3 mm. | Modified urokinase assay | The differences between activated (p = 0.044) and total gelatinase B (p = 0.026) levels were significant in the three BL groups. Furthermore, gelatinase B levels were increased in Group 3 compared to Groups 2 and 3. Activation of gelatinase B together with elevated mGI eventually reflects active phases of peri-implantitis and may prove to be diagnostically useful. |
Yamalik et al., 2012 [29] | Cross- sectional study | 40 | 54 (Group P-1: 19 healthy implants; Group P-2: 27 implants with mucositis; Group P-3: 8 implants with peri-implantitis) | Cathepsin-K | The actual distance between two consecutive threads of the dental implant was used as a reference point | Cathepsin-K activity assay kit | Mean BL values for subgroups P-1, P-2, and P-3 were 1.242, 1.514, and 1.844 mm, respectively (p = 0.087). Mean total cathepsin-K activity levels of subgroups P-1, P-2, and P-3 were 3.637, 6.114, and 16.290 units, respectively. However, there is no positive correlation between the enzymatic profile of PICF and the BL measurements. Mean BL around dental implants did not significantly correlate with total cathepsin-K activity. |
Yaghobee et al., 2013 [30] | Cross- sectional study | 32 | 41 | IL-1β | BL measured by intraoral periapical radiographs | Enzyme-linked immunosorbent assay (ELISA) | It seems that there Is a positive correlation between IL-1β level and BL (p < 0.0001) Mean BL: 1.66 mm. |
Sakamoto et al., 2018 [31] | Cross- sectional study | 35 | 74 (healthy: 34; peri-implantitis: 40) | Calprotectin and cross-linked N-telopeptide of Type I Collagen (NTx) | BL of more than 2.5 or 3 mm evaluated around dental implants by intra-oral radiographs | Enzyme-linked immunosorbent assay (ELISA) | The mean BL rate of peri-implant disease sites was 42.7%, and that of healthy sites was 19.7%. The BL rate in healthy sites ranged between 6.9 and 41.8%, and that in diseased sites was between 7.7 and 80.0%. A positive correlation was observed between NTx amounts and the BL rate (ρ = 0.570, p < 0.001). Calprotectin and NTx in PICF are markers of inflammation and BL in peri-implant tissues and may be useful diagnostic markers for peri-implant diseases. |
Lira-Junior et al., 2019 [32] | Cross- sectional study | 43 | 42 (mucositis: 20; peri-implantitis: 22) | CSF-1; IL-34; IL-1β | BL measured by intraoral periapical radiographs; mucositis: BL around the implant not reaching the first thread; peri-implantitis: BL involving at least two implant threads | Commercial enzyme-linked immunosorbent assays | There is no statistically significant correlation between CSF-1, IL-34, IL-1β, and BL. |
Algohar et al., 2020 [33] | Cross- sectional study | 60 | 94 (healthy: 32; peri-implant mucositis; 27: peri-implantitis: 35 | Procalcitonin | BL: radiographic level of bone ≥3 mm apical of the most coronal portion of the intraosseous part of the implant after initial bone remodeling. BL is defined as the linear distance measured from the implant-abutment junction to the most coronal point of the alveolar crest. | Enzyme-linked immunosorbent assay (ELISA) | Mean BL in healthy, mucositis, and peri-implantitis groups were, respectively: 0.7 mm (0.5), 1.1 mm (0.6), and 2.5 mm (0.9). In the peri-implantitis group, a significant positive correlation was observed between crestal BL (p = 0.0013) and PICF procalcitonin levels. |
Menini et al., 2021 [20] | Prospective cohort study | 7 | 14 | MicroRNAs * | BL was considered normal if it was ≤1 mm and increased if it was >1 mm | Microarray technology | MiRNAs may be used as biomarkers of peri-implant bone resorption. The following miRNAs were altered in the case of BL both in PICF and in soft peri-implant tissues: miR34 a; miR100; miR106 a; miR126; miR143; miR146 a; miR181; miR200; miR221; miR223; miR375; miR378; miR429; miR1248. |
3.4. Excluded Studies
3.5. Quality Assessment
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Study | Reason for Exclusion |
---|---|
[13] | Lack of correlation between BL and biomarkers |
[34] | Lack of correlation between BL and biomarkers |
[35] | Lack of correlation between BL and biomarkers |
[36] | Lack of correlation between BL and biomarkers |
[37] | Lack of correlation between BL and biomarkers |
[38] | Lack of correlation between BL and biomarkers |
[39] | Lack of correlation between BL and biomarkers |
[40] | Lack of correlation between BL and biomarkers |
[41] | Lack of correlation between BL and biomarkers |
[42] | Lack of correlation between BL and biomarkers |
[43] | Lack of correlation between BL and biomarkers |
[44] | Lack of correlation between BL and biomarkers |
[45] | Lack of correlation between BL and biomarkers |
[46] | Lack of correlation between BL and biomarkers |
[47] | Lack of correlation between BL and biomarkers |
[48] | Lack of correlation between BL and biomarkers |
[49] | Lack of correlation between BL and biomarkers |
[50] | Lack of correlation between BL and biomarkers |
[51] | Lack of correlation between BL and biomarkers |
[52] | Lack of correlation between BL and biomarkers |
[53] | BL not reported |
[54] | BL not reported |
[55] | BL not reported |
[56] | BL not reported |
[57] | BL not reported |
[58] | BL not reported |
[59] | BL not reported |
[60] | Systematic Review |
[61] | Clinical parameters influenced by treatment |
References
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.L. Peri-implantitis. J. Clin. Periodontol. 2018, 45, 246–266. [Google Scholar] [CrossRef]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45, 286–291. [Google Scholar] [CrossRef]
- Rosen, P.; Clem, D.; Cochran, D.; Froum, S.; McAllister, B.; Renvert, S.; Wang, H.L. Peri-implant mucositis and peri-implantitis: A current understanding of their diagnoses and clinical implications. J. Periodontol. 2013, 84, 436–443. [Google Scholar]
- Pesce, P.; Menini, M.; Tealdo, T.; Bevilacqua, M.; Pera, F.; Pera, P. Peri-implantitis: A Systematic Review of Recently Published Papers. Int. J. Prosthodont. 2014, 27, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Setti, P.; Pera, P.; Pera, F.; Pesce, P. Peri-implant tissue health and bone resorption in immediately loaded, implant-supported full-arch prostheses. Int. J. Prosthodont. 2018, 31, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Heitz-Mayfield, L.J.; Aaboe, M.; Araujo, M.; Carrión, J.B.; Cavalcanti, R.; Cionca, N.; Cochran, D.; Darby, I.; Funakoshi, E.; Gierthmuehlen, P.C.; et al. Group 4 ITI Consensus Report: Risks and biologic complications associated with implant dentistry. Clin. Oral Implant. Res. 2018, 29, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Isidor, F. Consensus report: Implant therapy. In Proceedings of the 1st European Workshop on Periodontology, Warth-Weiningen, Switzerland, 1–4 February 1993; Lang, N.P., Karring, T., Eds.; Quintessence: Berlin, Germany, 1994; pp. 365–369. [Google Scholar]
- Renvert, S.; Persson, G.R.; Pirih, F.Q.; Camargo, P.M. Peri-implant health, peri-implant mucositis, and peri-implantitis: Case definitions and diagnostic considerations. J. Clin. Periodontol. 2018, 45, S278–S285. [Google Scholar] [CrossRef] [PubMed]
- Marcello-Machado, R.M.; Faot, F.; Schuster, A.J.; Bielemann, A.M.; Nascimento, G.G.; Del Bel Cury, A.A. Mapping of inflammatory biomarkers in the peri-implant crevicular fluid before and after the occlusal loading of narrow diameter implants. Clin. Oral. Invest. 2020, 24, 1311–1320. [Google Scholar] [CrossRef]
- Swarup, S.; Sabharwal, P.; Meena, M.K.; Girdhar, A.; Ganjoo, D.; Khippal, J. Calprotectin and N-telopeptide of Type I Collagen (NTx) as Gingival Crevicular Fluid (GCF) Biomarker in Peri-Implantitis Patients. Cureus 2022, 14, e28430. [Google Scholar] [CrossRef] [PubMed]
- Carinci, F.; Romanos, G.E.; Scapoli, L. Molecular tools for preventing and improving diagnosis of peri-implant diseases. Periodontology 2000 2019, 81, 41–47. [Google Scholar] [CrossRef]
- Plagnat, D.; Giannopoulou, C.; Carrel, A.; Bernard, J.-P.; Mombelli, A.; Belser, U.C. Elastase, α2-macroglobulin and alkaline phosphatase in crevicular fluid from implants with and without periimplantitis. Clin. Oral. Implant. Res. 2002, 13, 227–233. [Google Scholar] [CrossRef]
- Hentenaar, D.F.M.; De Waal, Y.C.M.; Vissink, A.; Van Winkelhoff, A.J.; Meijer, H.J.A.; Liefers, S.C.; Kroese, F.G.M.; Raghoebar, G.M. Biomarker levels in peri-implant crevicular fluid of healthy implants, untreated and non-surgically treated implants with peri-implantitis. J. Clin. Periodontol. 2021, 48, 590–601. [Google Scholar] [CrossRef]
- Menini, M.; Pesce, P.; Baldi, D.; Coronel Vargas, G.; Pera, P.; Izzotti, A. Prediction of Titanium Implant Success by Analysis of microRNA Expression in Peri-Implant Tissue. A 5-Year Follow-Up Study. J. Clin. Med. 2019, 8, 888. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, A.; Atria, P.; Realini, O.; Monteiro, L.J.; Betancur, D.; Acuña-Gallardo, S.; Ramírez, V.; Bendek, M.J.; Pascual, A.; Nart, J.; et al. Diagnostic potential of peri-implant crevicular fluid microRNA-21-3p and microRNA-150-5p and extracellular vesicles in peri-implant diseases. J. Periodontol. 2021, 92, e11–e21. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; De Giovanni, E.; Bagnasco, F.; Delucchi, F.; Pera, F.; Baldi, D.; Pesce, P. Salivary Micro-RNA and Oral Squamous Cell Carcinoma: A Systematic Review. J. Pers. Med. 2021, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Dellepiane, E.; Baldi, D.; Longobardi, M.G.; Pera, P.; Izzotti, A. Microarray expression in peri-implant tissue next to different titanium implant surfaces predicts clinical outcomes: A split-mouth study. Clin. Oral. Implant. Res. 2017, 28, e121–e134. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Dellepiane, E.; Pera, F.; Izzotti, A.; Baldi, D.; Delucchi, F.; Bagnasco, F.; Pesce, P. MicroRNA in Implant Dentistry: From Basic Science to Clinical Application. Microrna 2021, 10, 14–28. [Google Scholar] [CrossRef]
- Akram, Z.; Abduljabbar, T.; Abu Hassan, M.I.; Javed, F.; Vohra, F. Cytokine Profile in Chronic Periodontitis Patients with and without Obesity: A Systematic Review and Meta-Analysis. Dis. Markers 2016, 2016, 4801418. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Pesce, P.; Pera, F.; Baldi, D.; Pulliero, A.; Izzotti, A. MicroRNAs in Peri-implant Crevicular Fluid Can Predict Peri-implant Bone Resorption: Clinical Trial with a 5-Year Follow-up. Int. J. Oral. Maxillofac. Implant. 2021, 36, 1148–1157. [Google Scholar] [CrossRef]
- Jansson, L.; Lundmark, A.; Modin, C.; Abadji, D.; Yucel-Lindberg, T. Intra-individual cytokine profile in peri-implantitis and periodontitis: A cross-sectional study. Clin. Oral Implant. 2021, 32, 559–568. [Google Scholar] [CrossRef]
- Dursun, E.; Tözüm, T.F. Peri-Implant Crevicular Fluid Analysis, Enzymes and Biomarkers: A Systematic Review. J. Oral Maxillofac. Res. 2016, 9, e9. [Google Scholar] [CrossRef]
- Duarte, P.M.; Serrão, C.R.; Miranda, T.S.; Zanatta, L.C.; Bastos, M.F.; Faveri, M.; Figueiredo, L.C.; Feres, M. Could cytokine levels in the peri-implant crevicular fluid be used to distinguish between healthy implants and implants with peri-implantitis? A systematic review. J. Periodontal. Res. 2016, 51, 689–698. [Google Scholar] [CrossRef]
- Faot, F.; Nascimento, G.G.; Bielemann, A.M.; Campão, T.D.; Leite, F.R.; Quirynen, M. Can peri-implant crevicular fluid assist in the diagnosis of peri-implantitis? A systematic review and meta-analysis. J. Periodontol. 2015, 86, 631–645. [Google Scholar] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Jordan, Z.; Lockwood, C.; Munn, Z.; Aromataris, E. The updated Joanna Briggs Institute Model of Evidence-Based Healthcare. Int. J. Evidence-Based Heal. 2019, 17, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Kitti, U.; Teronen, O.; Sorsa, T.; Husa, V.; Laine, P.; Rönkä, H.; Salo, T.; Lindqvist, C.; Konttinen, Y.T. Collagenases in different categories of peri-implant vertical BL. J. Dent. Res. 2000, 79, 1870-3. [Google Scholar] [CrossRef]
- Ma, J.; Kitti, U.; Hanemaaijer, R.; Teronen, O.P.; Sorsa, T.A.; Natah, S.; Tensing, E.K.; Konttinen, Y.T. Gelatinase B is associated with peri-implant BL. Clin. Oral Implant. Res. 2003, 14, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Yamalik, N.; Günday, S.; Uysal, S.; Kilinç, K.; Karabulut, E.; Tözüm, T.F. Analysis of cathepsin-K activity at tooth and dental implant sites and the potential of this enzyme in reflecting alveolar BL. J. Periodontol. 2012, 83, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Yaghobee, S.; Khorsand, A.; Paknejad, M. Comparison of interleukin-1β levels in gingival crevicular fluid and peri-implant crevicular fluid and its relationship with clinical indexes. J. Dent. Tehran Univ. Med Sci. 2013, 10, 1–9. [Google Scholar]
- Sakamoto, E.; Kido, R.; Tomotake, Y.; Naitou, Y.; Ishida, Y.; Kido, J.I. Calprotectin and cross-linked N-telopeptides of type I collagen levels in crevicular fluid from implant sites with peri-implant diseases: A pilot study. Int. J. Implant. Dent. 2018, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Lira-Junior, R.; Teixeira, M.K.S.; Lourenço, E.J.V.; Telles, D.M.; Figueredo, C.M.; Boström, E.A. CSF-1 and IL-34 levels in peri-implant crevicular fluid and saliva from patients having peri-implant diseases. Clin. Oral Investig. 2020, 24, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Algohar, A.; Alqerban, A. Levels of procalcitonin in saliva and peri-implant crevicular fluid in patients with peri-implant diseases and health. Arch. Oral Biol. 2020, 120, 104931. [Google Scholar] [CrossRef] [PubMed]
- Oringer, R.J.; Palys, M.D.; Iranmanesh, A.; Fiorellini, J.P.; Haffajee, A.D.; Socransky, S.S.; Giannobile, W.V. C-telopeptide pyridinoline cross-links (ICTP) and periodontal pathogens associated with endosseous oral implants. Clin. Oral Implant. Res. 1998, 9, 365–373. [Google Scholar] [CrossRef]
- Rakic, M.; Monje, A.; Radovanovic, S.; Petkovic-Curcin, A.; Vojvodic, D.; Tatic, Z. Is the personalized approach the key to improve clinical diagnosis of peri-implant conditions? The role of bone markers. J. Periodontol. 2020, 91, 859–869. [Google Scholar] [CrossRef]
- Isler, S.C.; Soysal, F.; Akca, G.; Bakirarar, B.; Ozcan, G.; Unsal, B. The effects of decontamination methods of dental implant surface on cytokine expression analysis in the reconstructive surgical treatment of peri-implantitis. Odontology 2021, 109, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Liskmann, S.; Zilmer, M.; Vihalemm, T.; Salum, O.; Fischer, K. Correlation of peri-implant health and myeloperoxidase levels: A cross-sectional clinical study. Clin. Oral Implant. Res. 2004, 15, 546–552. [Google Scholar] [CrossRef]
- Gokmenoglu, C.; Ozmeric, N.; Erguder, I.; Elgun, S. The effect of light-emitting diode photobiomodulation on implant stability and biochemical markers in peri-implant crevicular fluid. Photomed. Laser Surg. 2014, 32, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Recker, E.N.; Avila-Ortiz, G.; Fischer, C.L.; Pagan-Rivera, K.; Brogden, K.A.; Dawson, D.V.; Elangovan, S. A cross-sectional assessment of biomarker levels around implants versus natural teeth in periodontal maintenance patients. J. Periodontol. 2015, 86, 264–272. [Google Scholar] [CrossRef]
- Panagakos, F.S.; Aboyoussef, H.; Dondero, R.; Jandinski, J.J. Detection and measurement of inflammatory cytokines in implant crevicular fluid: A pilot study. Int. J. Oral Maxillofac. Implant. 1996, 11, 794–799. [Google Scholar]
- Beck, C.B.; Embery, G.; Langley, M.S.; Waddington, R.J. Levels of glycosaminoglycans in peri-implant sulcus fluid as a means of monitoring bone response to endosseous dental implants. Clin. Oral Implant. Res. 1991, 2, 179–185. [Google Scholar] [CrossRef]
- Sorsa, T.; Mäntylä, P.; Rönkä, H.; Kallio, P.; Kallis, G.B.; Lundqvist, C.; Kinane, D.F.; Salo, T.; Golub, L.M.; Teronen, O.; et al. Scientific basis of a matrix metalloproteinase-8 specific chair-side test for monitoring periodontal and peri-implant health and disease. Annals of the New York Academy of Sciences. 1999, 878, 130–140. [Google Scholar] [CrossRef]
- Hall, J.; Pehrson, N.G.; Ekestubbe, A.; Jemt, T.; Friberg, B. A controlled, cross-sectional exploratory study on markers for the plasminogen system and inflammation in crevicular fluid samples from healthy, mucositis and peri-implantitis sites. Eur. J. Oral Implant. 2015, 8, 153–166. [Google Scholar]
- Basegmez, C.; Yalcin, S.; Yalcin, F.; Ersanli, S.; Mijiritsky, E. Evaluation of periimplant crevicular fluid prostaglandin E2 and matrix metalloproteinase-8 levels from health to periimplant disease status: A prospective study. Implant. Dent. 2012, 21, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; Naik, D.; Uppoor, A. Levels of Myeloperoxidase and Alkaline Phosphatase in Periimplant Sulcus Fluid in Health and Disease and After Nonsurgical Therapy. Implant. Dent. 2015, 24, 434–440. [Google Scholar] [CrossRef]
- Tözüm, T.F.; Akman, A.C.; Yamalik, N.; Tulunoglu, I.; Turkyilmaz, I.; Karabulut, E.; Kilinc, K.; Cehreli, M.C. Analysis of the inflammatory process around endosseous dental implants and natural teeth: Myeloperoxidase level and nitric oxide metabolism. Int. J. Oral Maxillofac. Implant. 2007, 22, 969–979. [Google Scholar]
- Chaparro, A.; Beltrán, V.; Betancur, D.; Sam, Y.H.; Moaven, H.; Tarjomani, A.; Donos, N.; Sousa, V. Molecular Biomarkers in Peri-Implant Health and Disease: A Cross-Sectional Pilot Study. Int. J. Mol. Sci. 2022, 23, 9802. [Google Scholar] [CrossRef]
- Güncü, G.N.; Tözüm, T.F.; Güncü, M.B.; Yamalik, N.; Tümer, C.; Karabulut, E.; Kilinç, K. Myeloperoxidase as a measure of polymorphonuclear leukocyte response in inflammatory status around immediately and delayed loaded dental implants: A randomized controlled clinical trial. Clin. Implant. Dent. Relat. Res. 2008, 10, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.B.; Johnson, P.G.; Kok, C.R.; Gomes-Neto, J.C.; Ramer-Tait, A.E.; Schmid, M.J.; Hutkins, R.W. Subgingival Microbiome Colonization and Cytokine Production during Early Dental Implant Healing. mSphere 2017, 2, e00527-17. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Peri-implant crevicular fluid SIRT1 levels decrease in patients with peri-implant inflammatory: A prospective observational study. Transpl. Immunol. 2022, 74, 101659. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Chen, Z.B.; Li, W.; Meng, H.X. Determination of bone metabolic marker levels in perio-implant crevicular fluid and analysis of dental implants stability by resonance frequency in the early stage of healing. Beijing Da Xue Xue Bao Yi Xue Ban 2015, 47, 37–41. [Google Scholar]
- Cosgarea, R.; Dannewitz, B.; Sculean, A.; Bran, S.; Rotaru, H.; Baciut, G.; Eick, S. Bacterial and inflammatory behavior of implants in the early healing phase of chronic periodontitis. Quintessence Int. 2012, 43, 491–501. [Google Scholar] [PubMed]
- Ribeiro, F.V.; Casati, M.Z.; Casarin, R.C.; Corrêa, M.G.; Cirano, F.R.; Negri, B.M.; Pimentel, S.P. Impact of a triclosan-containing toothpaste during the progression of experimental peri-implant mucositis: Clinical parameters and local pattern of osteo-immunoinflammatory mediators in peri-implant fluid. J. Periodontol. 2018, 89, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Schincaglia, G.P.; Hong, B.Y.; Rosania, A.; Barasz, J.; Thompson, A.; Sobue, T.; Panagakos, F.; Burleson, J.A.; Dongari-Bagtzoglou, A.; Diaz, P.I. Clinical, Immune, and Microbiome Traits of Gingivitis and Peri-implant Mucositis. J. Dent. Res. 2017, 96, 47–55. [Google Scholar] [CrossRef]
- Teronen, O.; Konttinen, Y.T.; Lindqvist, C.; Salo, T.; Ingman, T.; Lauhio, A.; Ding, Y.; Santavirta, S.; Sorsa, T. Human neutrophil collagenase MMP-8 in peri-implant sulcus fluid and its inhibition by clodronate. J. Dent. Res. 1997, 76, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Iannello, G.; Netuschil, L.; Jepsen, S. Platform switching and matrix metalloproteinase-8 levels in peri-implant sulcular fluid. Clin. Oral Implant. Res. 2012, 23, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.M.; Kriangcherdsak, Y.; Thaweboon, S.; Thaweboon, B. Evaluation of host β-globin gene fragment lengths in peri-implant crevicular fluid during the wound healing process: A pilot study. Int. J. Oral Maxillofac. Implant. 2015, 30, 1295–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, M.; Tatsumi, J.; Kato, Y.; Suda, S.; Nunokawa, Y.; Kobayashi, Y.; Takeda, H.; Araki, H.; Shin, K.; Okuda, K.; et al. Osteocalcin, deoxypyridinoline and interleukin-1beta in peri-implant crevicular fluid of patients with peri-implantitis. Clin. Oral Implant. Res. 2002, 13, 637–643. [Google Scholar] [CrossRef]
- Arikan, F.; Buduneli, N.; Lappin, D.F. C-telopeptide pyridinoline crosslinks of type I collagen, soluble RANKL, and osteoprotegerin levels in crevicular fluid of dental implants with peri-implantitis: A case-control study. Int. J. Oral Maxillofac. Implant. 2011, 26, 282–289. [Google Scholar]
- Candel-Martí, M.E.; Flichy-Fernández, A.J.; Alegre-Domingo, T.; Ata-Ali, J.; Peñarrocha-Diago, M.A. Interleukins IL-6, IL-8, IL-10, IL-12 and periimplant disease. An update. Med. Oral Patol. Oral Cir. Bucal. 2011, 16, e518-21. [Google Scholar] [CrossRef] [PubMed]
- Bhavsar, I.; Miller, C.S.; Ebersole, J.L.; Dawson, D.R., 3rd; Thompson, K.L.; Al-Sabbagh, M. Biological response to peri-implantitis treatment. J. Periodontal. Res. 2019, 54, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Carozzo, S.; Pulliero, A.; Zhabayeva, D.; Ravetti, J.L.; Bersimbaev, R. Extracellular MicroRNA in liquid biopsy: Applicability in cancer diagnosis and prevention. Am. J. Cancer Res. 2016, 6, 1461–1493. [Google Scholar] [PubMed]
- Menini, M.; Delucchi, F.; Baldi, D.; Pera, F.; Bagnasco, F.; Pesce, P. Macrophagic Inflammatory Response Next to Dental Implants with Different Macro- and Micro-Structure: An In Vitro Study. Appl. Sci. 2021, 11, 5324. [Google Scholar] [CrossRef]
- Herrmann, M.; Seibel, M. The amino- and carboxyterminal cross-linked telopeptides of collagen type I, NTX-I and CTX-I: A comparative review. Clin. Chim. Acta 2008, 393, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Blavier, L.; Delaisse, J.M. Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. J. Cell Sci. 1995, 108, 3649–3659. [Google Scholar] [CrossRef] [PubMed]
- Gualini, F.; Berglundh, T. Immunohistochemical characteristics of inflammatory lesions at implants. J. Clin. Periodontol. 2003, 30, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Guillonneau, C.; Bezie, S.; Anegon, I. Immunoregulatory properties of the cytokine IL-34. Cell. Mol. Life Sci. 2017, 74, 2569–2586. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Dellepiane, E.; Chvartszaid, D.; Baldi, D.; Schiavetti, I.; Pera, P. Influence of Different Surface Characteristics on Peri-implant Tissue Behavior: A Six-Year Prospective Report. Int. J. Prostho. 2015, 28, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Pesce, P.; Canullo, L.; Grusovin, M.G.; de Bruyn, H.; Cosyn, J.; Pera, P. Systematic review of some prosthetic risk factors for periimplantitis. J. Prosthet. Dent. 2015, 114, 346–350. [Google Scholar] [CrossRef]
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Ma et al., 2000 [27] | No | No | Unclear | Unclear | No | No | Unclear | Unclear |
Plagnat et al., 2002 [12] | Yes | Yes | Yes | Yes | Unclear | Unclear | Yes | Yes |
Ma et al., 2003 [28] | Yes | Unclear | No | Unclear | Unclear | Unclear | Yes | Yes |
Yamalik et al., 2012 [29] | yes | Unclear | Yes | Unclear | Yes | Yes | Yes | Yes |
Yaghobee et al., 2013 [30] | Yes | Yes | Unclear | Unclear | Yes | Unclear | Yes | Yes |
Sakamoto et al., 2018 [31] | Yes | Yes | Yes | Unclear | Yes | Yes | Yes | Yes |
Lira-Junior et al., 2020 [32] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Algohar et al., 2020 [33] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Menini et al., 2021 [20] | Unclear | Yes | Yes | Unclear | Unclear | Yes | Yes | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delucchi, F.; Canepa, C.; Canullo, L.; Pesce, P.; Isola, G.; Menini, M. Biomarkers from Peri-Implant Crevicular Fluid (PICF) as Predictors of Peri-Implant Bone Loss: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 3202. https://doi.org/10.3390/ijms24043202
Delucchi F, Canepa C, Canullo L, Pesce P, Isola G, Menini M. Biomarkers from Peri-Implant Crevicular Fluid (PICF) as Predictors of Peri-Implant Bone Loss: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(4):3202. https://doi.org/10.3390/ijms24043202
Chicago/Turabian StyleDelucchi, Francesca, Camilla Canepa, Luigi Canullo, Paolo Pesce, Gaetano Isola, and Maria Menini. 2023. "Biomarkers from Peri-Implant Crevicular Fluid (PICF) as Predictors of Peri-Implant Bone Loss: A Systematic Review" International Journal of Molecular Sciences 24, no. 4: 3202. https://doi.org/10.3390/ijms24043202
APA StyleDelucchi, F., Canepa, C., Canullo, L., Pesce, P., Isola, G., & Menini, M. (2023). Biomarkers from Peri-Implant Crevicular Fluid (PICF) as Predictors of Peri-Implant Bone Loss: A Systematic Review. International Journal of Molecular Sciences, 24(4), 3202. https://doi.org/10.3390/ijms24043202