Cell Sorting-Directed Selection of Bacterial Cells in Bigger Sizes Analyzed by Imaging Flow Cytometry during Experimental Evolution
Abstract
:1. Introduction
2. Results
2.1. Dynamics of Bacterial Morphology in Cell Sorting-Directed Experimental Evolutions
2.2. Verifications of Cell Morphologies via Various Microscopic Technologies
2.3. Whole Genome Sequencing Revealed a Mutation in the amiC Gene
2.4. Long-Chain Phenotype Mediated by C-Terminal Loss of the amiC Gene
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain and Medium
4.2. Cell Sorting and Passage
4.3. Imaging Flow Cytometry
4.4. Confocal Microscopy and Scanning Electron Microscopy (SEM)
4.5. Polymerase Chain Replication (PCR)
4.6. Genome Mutation Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Teeseling, M.C.F.; de Pedro, M.A.; Cava, F. Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting. Front. Microbiol. 2017, 8, 1264. [Google Scholar] [CrossRef] [PubMed]
- Young, K.D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 2006, 70, 660–703. [Google Scholar] [CrossRef] [PubMed]
- Kysela, D.T.; Randich, A.M.; Caccamo, P.D.; Brun, Y.V. Diversity Takes Shape: Understanding the mechanistic and adaptive basis of bacterial morphology. PLoS Biol. 2016, 14, e1002565. [Google Scholar] [CrossRef] [PubMed]
- Young, K.D. Bacterial morphology: Why have different shapes? Curr. Opin. Microbiol. 2007, 10, 596–600. [Google Scholar] [CrossRef]
- Young, K.D. Bacterial shape: Two-dimensional questions and possibilities. Annu. Rev. Microbiol. 2010, 64, 223–240. [Google Scholar] [CrossRef]
- Graumann, P.L. Dynamics of bacterial cytoskeletal elements. Cell Motil. Cytoskelet. 2009, 66, 909–914. [Google Scholar] [CrossRef]
- Vats, P.; Yu, J.; Rothfield, L. The dynamic nature of the bacterial cytoskeleton. Cell Mol. Life Sci. 2009, 66, 3353–3362. [Google Scholar] [CrossRef]
- den Blaauwen, T.; de Pedro, M.A.; Nguyen-Disteche, M.; Ayala, J.A. Morphogenesis of rod-shaped sacculi. FEMS Microbiol. Rev. 2008, 32, 321–344. [Google Scholar] [CrossRef]
- Young, K.D. Bacterial shape. Mol. Microbiol. 2003, 49, 571–580. [Google Scholar] [CrossRef]
- Varma, A.; Young, K.D. FtsZ collaborates with penicillin binding proteins to generate bacterial cell shape in Escherichia coli. J. Bacteriol. 2004, 186, 6768–6774. [Google Scholar] [CrossRef] [Green Version]
- Bendezú, F.O.; Hale, C.A.; Bernhardt, T.G.; De Boer, P.A. RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J. 2009, 28, 193–204. [Google Scholar] [CrossRef]
- Jones, L.J.; Carballido-Lopez, R.; Errington, J. Control of cell shape in bacteria: Helical, actin-like filaments in Bacillus subtilis. Cell 2001, 104, 913–922. [Google Scholar] [CrossRef]
- Kruse, T.; Moller-Jensen, J.; Lobner-Olesen, A.; Gerdes, K. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J. 2003, 22, 5283–5292. [Google Scholar] [CrossRef]
- Takacs, C.N.; Poggio, S.; Charbon, G.; Pucheault, M.; Vollmer, W.; Jacobs-Wagner, C. MreB drives de novo rod morphogenesis in Caulobacter crescentus via remodeling of the cell wall. J. Bacteriol. 2010, 192, 1671–1684. [Google Scholar] [CrossRef]
- McKenney, P.T.; Driks, A.; Eichenberger, P. The Bacillus subtilis endospore: Assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 2013, 11, 33–44. [Google Scholar] [CrossRef]
- Wehrens, M.; Ershov, D.; Rozendaal, R.; Walker, N.; Schultz, D.; Kishony, R.; Levin, P.A.; Tans, S.J. Size laws and division ring dynamics in filamentous Escherichia coli cells. Curr. Biol. 2018, 28, 972–979. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Mobley, H.L. Merging mythology and morphology: The multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 2012, 10, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.M.; Lockatell, C.V.; Johnson, D.E.; Mobley, H.L. Visualization of Proteus mirabilis morphotypes in the urinary tract: The elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect. Immun. 2003, 71, 3607–3613. [Google Scholar] [CrossRef]
- Partridge, J.D.; Harshey, R.M. More than motility: Salmonella flagella contribute to overriding friction and facilitating colony hydration during swarming. J. Bacteriol. 2013, 195, 919–929. [Google Scholar] [CrossRef]
- Marshall, D.J.; Malerba, M.; Lines, T.; Sezmis, A.L.; Hasan, C.M.; Lenski, R.E.; McDonald, M.J. Long-term experimental evolution decouples size and production costs in Escherichia coli. Proc. Natl. Acad. Sci. USA 2022, 119, e2200713119. [Google Scholar] [CrossRef]
- Grant, N.A.; Abdel Magid, A.; Franklin, J.; Dufour, Y.; Lenski, R.E. Changes in cell size and shape during 50,000 generations of experimental evolution with Escherichia coli. J. Bacteriol. 2021, 203, e00469-20. [Google Scholar] [CrossRef] [PubMed]
- Good, B.H.; McDonald, M.J.; Barrick, J.E.; Lenski, R.E.; Desai, M.M. The dynamics of molecular evolution over 60,000 generations. Nature 2017, 551, 45–50. [Google Scholar] [CrossRef]
- Lu, H.; Aida, H.; Kurokawa, M.; Chen, F.; Xia, Y.; Xu, J.; Li, K.; Ying, B.W.; Yomo, T. Primordial mimicry induces morphological change in Escherichia coli. Commun. Biol. 2022, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Ou, F.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. Absolute bacterial cell enumeration using flow cytometry. J. Appl. Microbiol. 2017, 123, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.R.; Hands, C.L.; Coello-Garcia, T.; Sani, B.S.; Ott, A.I.G.; Smith, S.J.; Davenport, R.J. A flow cytometry method for bacterial quantification and biomass estimates in activated sludge. J. Microbiol Methods 2019, 160, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Felip, M.; Andreatta, S.; Sommaruga, R.; Straskrabova, V.; Catalan, J. Suitability of flow cytometry for estimating bacterial biovolume in natural plankton samples: Comparison with microscopy data. Appl. Environ. Microbiol. 2007, 73, 4508–4514. [Google Scholar] [CrossRef]
- Gasol, J.M.; Del Giorgio, P.A. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 2008, 64, 197–224. [Google Scholar] [CrossRef]
- Andreatta, S.; Wallinger, M.M.; Piera, J.; Catalan, J.; Psenner, R.; Hofer, J.S.; Sommaruga, R. Tools for discrimination and analysis of lake bacterioplankton subgroups measured by flow cytometry in a high-resolution depth profile. Aquat. Microb. Ecol. 2004, 36, 107–115. [Google Scholar] [CrossRef]
- Power, A.L.; Barber, D.G.; Groenhof, S.R.M.; Wagley, S.; Liu, P.; Parker, D.A.; Love, J. The application of imaging flow cytometry for characterisation and quantification of bacterial phenotypes. Front. Cell Infect. Microbiol. 2021, 11, 716592. [Google Scholar] [CrossRef]
- Alba, C.; Marin, A.C.; McNicholl, A.G.; Montalban-Arques, A.; Mora-Gutierrez, I.; Sanchez-Arroyo, A.J.; Soler, T.; Garcia-Fresnadillo, D.; Gisbert, J.P.; Alarcon, T.; et al. A quick flow cytometry protocol to assess Helicobacter pylori viability. J. Microbiol. Methods 2020, 177, 106043. [Google Scholar] [CrossRef]
- Narayana, S.K.; Mallick, S.; Siegumfeldt, H.; van den Berg, F. Bacterial flow cytometry and imaging as potential process monitoring tools for industrial biotechnology. Fermentation 2020, 6, 10. [Google Scholar] [CrossRef]
- Sycuro, L.K.; Rule, C.S.; Petersen, T.W.; Wyckoff, T.J.; Sessler, T.; Nagarkar, D.B.; Khalid, F.; Pincus, Z.; Biboy, J.; Vollmer, W. Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Mol. Microbiol. 2013, 90, 869–883. [Google Scholar] [CrossRef]
- Laubacher, M.E.; Melquist, A.L.; Chandramohan, L.; Young, K.D. Cell sorting enriches Escherichia coli mutants that rely on peptidoglycan endopeptidases to suppress highly aberrant morphologies. J. Bacteriol. 2013, 195, 855–866. [Google Scholar] [CrossRef]
- Yoshida, M.; Tsuru, S.; Hirata, N.; Seno, S.; Matsuda, H.; Ying, B.W.; Yomo, T. Directed evolution of cell size in Escherichia coli. BMC Evol. Biol. 2014, 14, 257. [Google Scholar] [CrossRef]
- Volke, D.C.; Nikel, P.I. Getting bacteria in shape: Synthetic morphology approaches for the design of efficient microbial cell factories. Adv. Biosyst. 2018, 2, 1800111. [Google Scholar] [CrossRef]
- Posfai, G.; Plunkett, G., 3rd; Feher, T.; Frisch, D.; Keil, G.M.; Umenhoffer, K.; Kolisnychenko, V.; Stahl, B.; Sharma, S.S.; de Arruda, M.; et al. Emergent properties of reduced-genome Escherichia coli. Science 2006, 312, 1044–1046. [Google Scholar] [CrossRef]
- Davey, H.M.; Kell, D.B. Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev. 1996, 60, 641–696. [Google Scholar] [CrossRef]
- Uehara, T.; Dinh, T.; Bernhardt, T.G. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J. Bacteriol. 2009, 191, 5094–5107. [Google Scholar] [CrossRef]
- Rocaboy, M.; Herman, R.; Sauvage, E.; Remaut, H.; Moonens, K.; Terrak, M.; Charlier, P.; Kerff, F. The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain. Mol. Microbiol. 2013, 90, 267–277. [Google Scholar] [CrossRef]
- Mannik, J.; Wu, F.; Hol, F.J.; Bisicchia, P.; Sherratt, D.J.; Keymer, J.E.; Dekker, C. Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes. Proc. Natl. Acad. Sci. USA 2012, 109, 6957–6962. [Google Scholar] [CrossRef] [Green Version]
- Reshes, G.; Vanounou, S.; Fishov, I.; Feingold, M. Cell shape dynamics in Escherichia coli. Biophys. J. 2008, 94, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Toyota, H.; Kaneko, K.; Yomo, T. How selection affects phenotypic fluctuation. Mol. Syst. Biol. 2009, 5, 264. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.; Govers, S.K.; Irnov, I.; Dobihal, G.S.; Cornet, F.; Jacobs-Wagner, C. Genomewide phenotypic analysis of growth, cell morphogenesis, and cell cycle events in Escherichia coli. Mol. Syst. Biol. 2018, 14, e7573. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, W.; Joris, B.; Charlier, P.; Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 2008, 32, 259–286. [Google Scholar] [CrossRef]
- Egan, A.J.; Cleverley, R.M.; Peters, K.; Lewis, R.J.; Vollmer, W. Regulation of bacterial cell wall growth. FEBS J. 2017, 284, 851–867. [Google Scholar] [CrossRef]
- Bernhardt, T.G.; de Boer, P.A. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol. Microbiol. 2003, 48, 1171–1182. [Google Scholar] [CrossRef]
- Möll, A.; Dörr, T.; Alvarez, L.; Chao, M.C.; Davis, B.M.; Cava, F.; Waldor, M.K. Cell separation in Vibrio cholerae is mediated by a single amidase whose action is modulated by two nonredundant activators. J. Bacteriol. 2014, 196, 3937–3948. [Google Scholar] [CrossRef]
- Lenz, J.D.; Stohl, E.A.; Robertson, R.M.; Hackett, K.T.; Fisher, K.; Xiong, K.; Lee, M.; Hesek, D.; Mobashery, S.; Seifert, H.S. Amidase activity of AmiC controls cell separation and stem peptide release and is enhanced by NlpD in Neisseria gonorrhoeae. J. Biol. Chem. 2016, 291, 10916–10933. [Google Scholar] [CrossRef]
- Dubey, A.; Priyadarshini, R. Amidase activity is essential for medial localization of AmiC in Caulobacter crescentus. Curr. Genet. 2018, 64, 661–675. [Google Scholar] [CrossRef]
- Priyadarshini, R.; de Pedro, M.A.; Young, K.D. Role of peptidoglycan amidases in the development and morphology of the division septum in Escherichia coli. J. Bacteriol. 2007, 189, 5334–5347. [Google Scholar] [CrossRef] [Green Version]
- Heidrich, C.; Templin, M.F.; Ursinus, A.; Merdanovic, M.; Berger, J.; Schwarz, H.; de Pedro, M.A.; Holtje, J.V. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 2001, 41, 167–178. [Google Scholar] [CrossRef]
- Christianson, D.W.; Mangani, S.; Shoham, G.; Lipscomb, W.N. Binding of D-phenylalanine and D-tyrosine to carboxypeptidase A. J. Biol. Chem. 1989, 264, 12849–12853. [Google Scholar] [CrossRef]
- Goto, S.; Ohbayashi, T.; Takeshita, K.; Sone, T.; Matsuura, Y.; Mergaert, P.; Kikuchi, Y. A peptidoglycan amidase mutant of Burkholderia insecticola adapts an L-form-like shape in the gut symbiotic organ of the bean bug Riptortus pedestris. Microbes Environ. 2020, 35, ME20107. [Google Scholar] [CrossRef]
- Mueller, E.A.; Iken, A.G.; Ali Ozturk, M.; Winkle, M.; Schmitz, M.; Vollmer, W.; Di Ventura, B.; Levin, P.A. The active repertoire of Escherichia coli peptidoglycan amidases varies with physiochemical environment. Mol. Microbiol. 2021, 116, 311–328. [Google Scholar] [CrossRef]
- Ying, B.W.; Tsuru, S.; Seno, S.; Matsuda, H.; Yomo, T. Gene expression scaled by distance to the genome replication site. Mol. Biosyst. 2014, 10, 375–379. [Google Scholar] [CrossRef]
- Matsushita-Ishiodori, Y.; Hanczyc, M.M.; Wang, A.; Szostak, J.W.; Yomo, T. Using imaging flow cytometry to quantify and optimize giant vesicle production by water-in-oil emulsion transfer methods. Langmuir 2019, 35, 2375–2382. [Google Scholar] [CrossRef]
- Wang, C.; Xia, Y.; Liu, Y.; Kang, C.; Lu, N.; Tian, D.; Lu, H.; Han, F.; Xu, J.; Yomo, T. CleanSeq: A pipeline for contamination detection, cleanup, and mutation verifications from microbial genome sequencing data. Appl. Sci. 2022, 12, 6209. [Google Scholar] [CrossRef]
- Schraivogel, D.; Kuhn, T.M.; Rauscher, B.; Rodriguez-Martinez, M.; Paulsen, M.; Owsley, K.; Middlebrook, A.; Tischer, C.; Ramasz, B.; Ordonez-Rueda, D.; et al. High-speed fluorescence image-enabled cell sorting. Science 2022, 375, 315–320. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, D.; Wang, C.; Liu, Y.; Zhang, Y.; Caliari, A.; Lu, H.; Xia, Y.; Xu, B.; Xu, J.; Yomo, T. Cell Sorting-Directed Selection of Bacterial Cells in Bigger Sizes Analyzed by Imaging Flow Cytometry during Experimental Evolution. Int. J. Mol. Sci. 2023, 24, 3243. https://doi.org/10.3390/ijms24043243
Tian D, Wang C, Liu Y, Zhang Y, Caliari A, Lu H, Xia Y, Xu B, Xu J, Yomo T. Cell Sorting-Directed Selection of Bacterial Cells in Bigger Sizes Analyzed by Imaging Flow Cytometry during Experimental Evolution. International Journal of Molecular Sciences. 2023; 24(4):3243. https://doi.org/10.3390/ijms24043243
Chicago/Turabian StyleTian, Di, Caiyan Wang, Yunfei Liu, Yueyue Zhang, Adriano Caliari, Hui Lu, Yang Xia, Boying Xu, Jian Xu, and Tetsuya Yomo. 2023. "Cell Sorting-Directed Selection of Bacterial Cells in Bigger Sizes Analyzed by Imaging Flow Cytometry during Experimental Evolution" International Journal of Molecular Sciences 24, no. 4: 3243. https://doi.org/10.3390/ijms24043243
APA StyleTian, D., Wang, C., Liu, Y., Zhang, Y., Caliari, A., Lu, H., Xia, Y., Xu, B., Xu, J., & Yomo, T. (2023). Cell Sorting-Directed Selection of Bacterial Cells in Bigger Sizes Analyzed by Imaging Flow Cytometry during Experimental Evolution. International Journal of Molecular Sciences, 24(4), 3243. https://doi.org/10.3390/ijms24043243