The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy
Abstract
:1. Introduction
2. The Human Virome and Its Body Habitats
3. The Role of the Viruses in Health and Disease
3.1. Bacteriophages
3.2. Eukariotic Viruses
4. The Eukaryotic Virobiota and the Immune System Control
The Eukaryotic Virobiota and the Immunodeficiency
5. Virus Infection and Nephropathy
6. Hepatitis B and C and Glomerulonephritis
Virus-Associated Glomerulonephritis | Virus Type | Immunological Traits | Clinical Features |
---|---|---|---|
MN | HBV | HBsAg, HBcAg, or HBeAg immune complex with IgG deposition at subepithelial level | Lower levels of circulating complement; stronger segmental glomerular damage, mesangial cell proliferation and tubulointerstitial damage [72]. |
MPGN | HBV HCV | HBsAg- IgG immune complex | Reduced serum C3 levels; nephritic/nephrotic syndrome. Lobular appearance of the glomerulus with cleavage of the basement membrane and mesangial, subendothelial and subepithelial deposits [73,74]. |
MC | HBV | HBs-IgG or IgM immune complex | Severe renal manifestations involving nephrotic-range proteinuria and acute kidney disease (AKI) [64]. |
PAN | HBV HCV | HBsAg-related immune complex | Vascular immune complex deposition |
7. Human Immunodeficiency Virus (HIV) and Glomerulonephritis
8. Parvovirus B19, Cytomegalovirus, and Glomerulonephritis
9. IgA Nephropathy and Viruses
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The Gut Microbiota and Host Health: A New Clinical Frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Malinen, E.; Krogius-Kurikka, L.; Lyra, A.; Nikkilä, J.; Jääskeläinen, A.; Rinttilä, T.; Vilpponen-Salmela, T.; von Wright, A.J.; Palva, A. Association of Symptoms with Gastrointestinal Microbiota in Irritable Bowel Syndrome. World J. Gastroenterol. 2010, 16, 4532–4540. [Google Scholar] [CrossRef] [PubMed]
- Ciofi, C.; de Boer, M.; Bruford, M.W.; Hecht, M.K.; Wallace, B.; Macintyre, R.J.; Lenk, P.; Eidenmueller, B.; Staudter, H.; Wicker, R.; et al. Human Gut Microbes Associated with Obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Tang, C.; Li, N.; Li, J. Molecular-Phylogenetic Characterization of the Microbiota in Ulcerated and Non-Ulcerated Regions in the Patients with Crohn’s Disease. PLoS ONE 2012, 7, e34939. [Google Scholar] [CrossRef]
- Lagier, J.C.; Million, M.; Hugon, P.; Armougom, F.; Raoult, D. Human Gut Microbiota: Repertoire and Variations. Front. Cell. Infect. Microbiol. 2012, 2, 136. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, Å. Effect of Antimicrobial Agents on the Ecological Balance of Human Microflora. Lancet Infect. Dis. 2001, 1, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.J.; Cusack, S.; O’Sullivan, O.; Greene-Diniz, R.; de Weerd, H.; Flannery, E.; Marchesi, J.R.; Falush, D.; Dinan, T.; Fitzgerald, G.; et al. Composition, Variability, and Temporal Stability of the Intestinal Microbiota of the Elderly. Proc. Natl. Acad. Sci. USA 2011, 108, 4586–4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpellini, E.; Ianiro, G.; Attili, F.; Bassanelli, C.; de Santis, A.; Gasbarrini, A. The Human Gut Microbiota and Virome: Potential Therapeutic Implications. Dig. Liver Dis. 2015, 47, 1007–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cover, T.L.; Blaser, M.J. Helicobacter Pylori in Health and Disease. Gastroenterology 2009, 136, 1863–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, R.; Costa, H.; Parkhouse, R.M.E. Virus Manipulation of Cell Cycle. Protoplasma 2012, 249, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Versteeg, G.A.; García-Sastre, A. Viral Tricks to Grid-Lock the Type I Interferon System. Curr. Opin. Microbiol. 2010, 13, 508–516. [Google Scholar] [CrossRef]
- Spriggs, M.K. One Step Ahead of the Game: Viral Immunomodulatory Molecules. Annu. Rev. Immunol. 2003, 14, 101–130. [Google Scholar] [CrossRef]
- Khan, N.; Gowthaman, U.; Pahari, S.; Agrewala, J.N. Manipulation of Costimulatory Molecules by Intracellular Pathogens: Veni, Vidi, Vici!! PLoS Pathog. 2012, 8, e1002676. [Google Scholar] [CrossRef] [Green Version]
- Horst, D.; Verweij, M.C.; Davison, A.J.; Ressing, M.E.; Wiertz, E.J.H.J. Viral Evasion of T Cell Immunity: Ancient Mechanisms Offering New Applications. Curr. Opin. Immunol. 2011, 23, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Carl, J.W.; Trgovcich, J.; Hannenhalli, S. Widespread Evidence of Viral MiRNAs Targeting Host Pathways. BMC Bioinform. 2013, 14 (Suppl. 2), S3. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Xia, J.; Tastan, O.; Singh, I.; Kshirsagar, M.; Carbonell, J.; Klein-Seetharaman, J. Virus Interactions with Human Signal Transduction Pathways. Int. J. Comput. Biol. Drug Des. 2011, 4, 83. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, M.T.; Amirmozafari, N.; Shariati, A.; Hallajzadeh, M.; Mirkalantari, S.; Khoshbayan, A.; Jazi, F.M. How Phages Overcome the Challenges of Drug Resistant Bacteria in Clinical Infections. Infect. Drug Resist. 2020, 13, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe 2019, 25, 219–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, V.L.; Fitzpatrick, A.D.; Islam, Z.; Maxwell, K.L. The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence. Adv. Virus Res. 2019, 103, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Sweere, J.M.; van Belleghem, J.D.; Ishak, H.; Bach, M.S.; Popescu, M.; Sunkari, V.; Kaber, G.; Manasherob, R.; Suh, G.A.; Cao, X.; et al. Bacteriophage Trigger Antiviral Immunity and Prevent Clearance of Bacterial Infection. Science 2019, 363, eaat9691. [Google Scholar] [CrossRef] [PubMed]
- Gogokhia, L.; Buhrke, K.; Bell, R.; Hoffman, B.; Brown, D.G.; Hanke-Gogokhia, C.; Ajami, N.J.; Wong, M.C.; Ghazaryan, A.; Valentine, J.F.; et al. Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host Microbe 2019, 25, 285–299.e8. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Bushman, F.D. The Human Virome: Assembly, Composition and Host Interactions. Nat. Rev. Microbiol. 2021, 19, 514–527. [Google Scholar] [CrossRef]
- Virgin, H.W. The Virome in Mammalian Physiology and Disease. Cell 2014, 157, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Prasad, N.; Patel, M.R. Infection-Induced Kidney Diseases. Front. Med. 2018, 5, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Feng, J.; Zhou, Q.; Luo, L.; Meng, T.; Zhong, Y.; Tang, W.; Deng, S.; Li, X. Respiratory Syncytial Virus Exacerbates Kidney Damages in IgA Nephropathy Mice via the C5a-C5AR1 Axis Orchestrating Th17 Cell Responses. Front. Cell. Infect. Microbiol. 2019, 9, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, N.E.; Wolfish, N.; McLaine, P.; Phipps, P.; Rossier, E. Role of Respiratory Viruses in Exacerbations of Primary Nephrotic Syndrome. J. Pediatr. 1986, 108, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Day, N.K.; Geiger, H.; McLean, R.; Resnick, J.; Michael, A.; Good, R.A. The Association of Respiratory Infection, Recurrent Hematuria, and Focal Glomerulonephritis with Activation of the Complement System in the Cold. J. Clin. Investig. 1973, 52, 1698–1706. [Google Scholar] [CrossRef] [Green Version]
- Young, J.C.; Chehoud, C.; Bittinger, K.; Bailey, A.; Diamond, J.M.; Cantu, E.; Haas, A.R.; Abbas, A.; Frye, L.; Christie, J.D.; et al. Viral Metagenomics Reveal Blooms of Anelloviruses in the Respiratory Tract of Lung Transplant Recipients. Am. J. Transplant. 2015, 15, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monaco, C.L.; Gootenberg, D.B.; Zhao, G.; Handley, S.A.; Ghebremichael, M.S.; Lim, E.S.; Lankowski, A.; Baldridge, M.T.; Wilen, C.B.; Flagg, M.; et al. Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host Microbe 2016, 19, 311. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Deng, X.; Linsuwanon, P.; Bangsberg, D.; Bosco Bwana, M.; Hunt, P.; Martin, J.N.; Deeks, S.G.; Delwart, E.; Hospital, F.G.; et al. AIDS Alters the Commensal Plasma Virome. J. Virol. 2013, 87, 10912–10915. [Google Scholar] [CrossRef]
- Abbas, A.A.; Taylor, L.J.; Dothard, M.I.; Leiby, J.S.; Fitzgerald, A.S.; Khatib, L.A.; Collman, R.G.; Bushman, F.D. Redondoviridae, a Family of Small, Circular DNA Viruses of the Human Oro-Respiratory Tract Associated with Periodontitis and Critical Illness. Cell Host Microbe 2019, 25, 719–729.e4. [Google Scholar] [CrossRef]
- Spezia, P.G.; Macera, L.; Mazzetti, P.; Curcio, M.; Biagini, C.; Sciandra, I.; Turriziani, O.; Lai, M.; Antonelli, G.; Pistello, M.; et al. Redondovirus DNA in Human Respiratory Samples. J. Clin. Virol. 2020, 131, 104586. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.; Qian, L.; Deng, S.; Liu, L.; Xiao, W.; Zhou, Y. A Review of the Clinical Characteristics and Novel Molecular Subtypes of Endometrioid Ovarian Cancer. Front. Oncol. 2021, 11, 2116. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Human Gut Microbiota/Microbiome in Health and Diseases: A Review. Antonie Van Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The Microbiota Continuum along the Female Reproductive Tract and Its Relation to Uterine-Related Diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteside, S.A.; McGinniss, J.E.; Collman, R.G. The Lung Microbiome: Progress and Promise. J. Clin. Investig. 2021, 131, e150473. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Wylie, K.M.; Mihindukulasuriya, K.A.; Zhou, Y.; Sodergren, E.; Storch, G.A.; Weinstock, G.M. Metagenomic Analysis of Double-Stranded DNA Viruses in Healthy Adults. BMC Med. 2014, 12, 71. [Google Scholar] [CrossRef]
- Shkoporov, A.N.; Clooney, A.G.; Sutton, T.D.S.; Ryan, F.J.; Daly, K.M.; Nolan, J.A.; McDonnell, S.A.; Khokhlova, E.V.; Draper, L.A.; Forde, A.; et al. The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host Microbe 2019, 26, 527–541.e5. [Google Scholar] [CrossRef] [PubMed]
- Duerkop, B.A.; Hooper, L.V. Resident Viruses and Their Interactions with the Immune System. Nat. Immunol. 2013, 14, 654–659. [Google Scholar] [CrossRef]
- Zhang, T.; Breitbart, M.; Lee, W.H.; Run, J.Q.; Wei, C.L.; Soh, S.W.L.; Hibberd, M.L.; Liu, E.T.; Rohwer, F.; Ruan, Y. RNA Viral Community in Human Feces: Prevalence of Plant Pathogenic Viruses. PLoS Biol. 2005, 4, e3. [Google Scholar] [CrossRef] [Green Version]
- Belkaid, Y.; Harrison, O.J. Homeostatic Immunity and the Microbiota. Immunity 2017, 46, 562–576. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.M.; Sun, E.W.; Rogers, G.B.; Keating, D.J. The Influence of the Gut Microbiome on Host Metabolism through the Regulation of Gut Hormone Release. Front. Physiol. 2019, 10, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frontiers | That’s Disturbing! An Exploration of the Bacteriophage Biology of Change. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2013.00295/full (accessed on 5 December 2022).
- Neil, J.A.; Cadwell, K. The Intestinal Virome and Immunity. J. Immunol. 2018, 201, 1615–1624. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Lim, E.S.; Zhou, Y.; Zhao, G.; Bauer, I.K.; Droit, L.; Ndao, I.M.; Warner, B.B.; Tarr, P.I.; Wang, D.; Holtz, L.R. Early Life Dynamics of the Human Gut Virome and Bacterial Microbiome in Infants. Nat. Med. 2015, 21, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Reyes, A.; Blanton, L.V.; Cao, S.; Zhao, G.; Manary, M.; Trehan, I.; Smith, M.I.; Wang, D.; Virgin, H.W.; Rohwer, F.; et al. Gut DNA Viromes of Malawian Twins Discordant for Severe Acute Malnutrition. Proc. Natl. Acad. Sci. USA 2015, 112, 11941–11946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyschik, E.A.; Rasskazova, A.S.; Degtyareva, A.V.; Rebrikov, D.V.; Sukhikh, G.T. Torque Teno Virus Dynamics during the First Year of Life. Virol. J. 2018, 15, 96. [Google Scholar] [CrossRef] [Green Version]
- Canuti, M.; Buka, S.; Jazaeri Farsani, S.M.; Oude Munnink, B.B.; Jebbink, M.F.; van Beveren, N.J.M.; de Haan, L.; Goldstein, J.; Seidman, L.J.; Tsuang, M.T.; et al. Reduced Maternal Levels of Common Viruses during Pregnancy Predict Offspring Psychosis: Potential Role of Enhanced Maternal Immune Activity? Schizophr. Res. 2015, 166, 248–254. [Google Scholar] [CrossRef]
- Chew, T.; Taylor, K.E.; Mossman, K.L. Innate and Adaptive Immune Responses to Herpes Simplex Virus. Viruses 2009, 1, 979–1002. [Google Scholar] [CrossRef]
- Barton, E.S.; White, D.W.; Cathelyn, J.S.; Brett-McClellan, K.A.; Engle, M.; Diamond, M.S.; Miller, V.L.; Virgin IV, H.W. Herpesvirus Latency Confers Symbiotic Protection from Bacterial Infection. Nature 2007, 447, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Shannon-Lowe, C.; Rickinson, A.B.; Bell, A.I. Epstein–Barr Virus-Associated Lymphomas. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, A.S.H.; Lai, K.N. Viral Nephropathy. Nat. Clin. Pract. Nephrol. 2006, 2, 254. [Google Scholar] [CrossRef]
- Glassock, R.J. Immune Complex-Induced Glomerular Injury in Viral Diseases: An Overview. Kidney Int. Suppl. 1991, 35, S5–S7. [Google Scholar] [PubMed]
- Hricik, D.E.; Chung-Park, M.; Sedor, J.R. Glomerulonephritis. N. Engl. J. Med. 1998, 339, 228–229. [Google Scholar] [CrossRef]
- Chadban, S.J.; Atkins, R.C. Glomerulonephritis. Lancet 2005, 365, 1797–1806. [Google Scholar] [CrossRef]
- Vinen, C.S.; Oliveira, D.B.G. Acute Glomerulonephritis. Postgrad. Med. J. 2003, 79, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Masset, C.; le Turnier, P.; Bressollette-Bodin, C.; Renaudin, K.; Raffi, F.; Dantal, J. Virus-Associated Nephropathies: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 12014. [Google Scholar] [CrossRef]
- Kong, D.; Wu, D.; Wang, T.; Li, T.; Xu, S.; Chen, F.; Jin, X.; Lou, G. Detection of Viral Antigens in Renal Tissue of Glomerulonephritis Patients without Serological Evidence of Hepatitis B Virus and Hepatitis C Virus Infection. Int. J. Infect. Dis. 2013, 17, e535–e538. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Quigg, R.J. Glomerular Diseases Associated With Hepatitis B and C. Adv. Chronic. Kidney Dis. 2015, 22, 343–351. [Google Scholar] [CrossRef]
- Fabrizi, F.; Messa, P.; Martin, P. Novel Evidence on Hepatitis C Virus–Associated Glomerular Disease. Kidney Int. 2014, 86, 466–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Gao, G.; Jiang, H.; Tang, Z.; Yu, Y.; Zang, G. Hepatitis B Virus-Associated Glomerulonephritis in HBsAg Serological-Negative Patients. Eur. J. Gastroenterol. Hepatol. 2015, 27, 65–69. [Google Scholar] [CrossRef]
- Chen, L.; Wu, C.; Fan, X.; Gao, J.; Yin, H.; Wang, T.; Wu, J.; Wen, S.W. Replication and Infectivity of Hepatitis B Virus in HBV-Related Glomerulonephritis. Int. J. Infect. Dis. 2009, 13, 394–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhimma, R.; Coovadia, H.M. Hepatitis B Virus-Associated Nephropathy. Am. J. Nephrol. 2004, 24, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Lin, C.C.; Chang, G.J.J.; King, C.C. Defect of Cell-Mediated Immune Response against Hepatitis B Virus: An Indication for Pathogenesis of Hepatitis-B-Virus-Associated Membranous Nephropathy. Nephron 1997, 76, 176–185. [Google Scholar] [CrossRef]
- Khedmat, H.; Taheri, S. Hepatitis B Virus-Associated Nephropathy: An International Data Analysis. Iran J. Kidney Dis. 2010, 4, 101–105. [Google Scholar] [PubMed]
- Cao, Y.; Zhang, Y.; Wang, S.; Zhao, M.; Zou, W. Simultaneous Occurrence of Hepatitis C Virus-Associated Glomerulonephritis and AL Amyloidosis. Nephrol. Dial. Transplant. 2009, 24, 2943–2945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamabe, H.; Nakamura, N.; Shimada, M.; Murakami, R.; Fujita, T.; Shimaya, Y.; Kitajima, M.; Urushizaka, M. Clinicopathological Study on Hepatitis C Virus-Associated Glomerulonephritis without Hepatitis C Virus in the Blood. Intern. Med. 2010, 49, 1321–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupin, W.L. Viral-Associated GN: Hepatitis B and Other Viral Infections. Clin. J. Am. Soc. Nephrol. 2017, 12, 1529–1533. [Google Scholar] [CrossRef] [Green Version]
- Nast, C.C. Infection-Related Glomerulonephritis: Changing Demographics and Outcomes. Adv. Chronic. Kidney Dis. 2012, 19, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Venkataseshan, V.S.; Lieberman, K.; Kim, D.U.; Thung, S.N.; Dikman, S.; D’agati, V.; Susin, M.; Valderrama, E.; Gauthier, B.; Prakash, A.; et al. Hepatitis-B-Associated Glomerulonephritis: Pathology, Pathogenesis, and Clinical Course. Medicine 1990, 69, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wei, R.B.; Tang, L.; Wu, J.; Zhang, X.G.; Chen, X.M. Clinical and Pathological Analysis of Hepatitis B Virus-Related Membranous Nephropathy and Idiopathic Membranous Nephropathy. Clin. Nephrol. 2012, 78, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Sabry, A.A.; Sobh, M.A.; Irving, W.L.; Grabowska, A.; Wagner, B.E.; Fox, S.; Kudesia, G.; Meguid El Nahas, A.M. A Comprehensive Study of the Association between Hepatitis C Virus and Glomerulopathy. Nephrol. Dial. Transplant. 2002, 17, 239–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupin, W.L. Viral-Associated GN: Hepatitis C and HIV. Clin. J. Am. Soc. Nephrol. 2017, 12, 1337–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfano, G.; Cappelli, G.; Fontana, F.; di Lullo, L.; di Iorio, B.; Bellasi, A.; Guaraldi, G. Kidney Disease in HIV Infection. J. Clin. Med. 2019, 8, 1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyatt, C.M.; Klotman, P.E.; D’Agati, V.D. HIV-Associated Nephropathy: Clinical Presentation, Pathology, and Epidemiology in the Era of Antiretroviral Therapy. Semin. Nephrol. 2008, 28, 513–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reghine, É.L.; Foresto, R.D.; Kirsztajn, G.M. HIV-Related Nephropathy: New Aspects of an Old Paradigm. Rev. Assoc. Med. Bras. 2020, 66 (Suppl. 1), s75–s81. [Google Scholar] [CrossRef]
- Eitner, F.; Cui, Y.; Hudkins, K.L.; Stokes, M.B.; Segerer, S.; Mack, M.; Lewis, P.L.; Abraham, A.A.; Schlöndorff, D.; Gallo, G.; et al. Chemokine Receptor CCR5 and CXCR4 Expression in HIV-Associated Kidney Disease. J. Am. Soc. Nephrol. 2000, 11, 856–867. [Google Scholar] [CrossRef]
- Hatsukari, I.; Singh, P.; Hitosugi, N.; Messmer, D.; Valderrama, E.; Teichberg, S.; Chaung, W.; Gross, E.; Schmidtmayerova, H.; Singhal, P.C. DEC-205-Mediated Internalization of HIV-1 Results in the Establishment of Silent Infection in Renal Tubular Cells. J. Am. Soc. Nephrol. 2007, 18, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Mikulak, J.; Singhals, P.C. HIV-1 and Kidney Cells: Better Understanding of Viral Interaction. Nephron. Exp. Nephrol. 2010, 115, e15. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Singhal, P.C. APOL1 and Kidney Cell Function. Am. J. Physiol. Renal. Physiol. 2019, 317, F463–F477. [Google Scholar] [CrossRef] [PubMed]
- Kopp, J.B.; Heymann, J.; Winkler, C.A. APOL1 Renal Risk Variants: Fertile Soil for HIV-Associated Nephropathy. Semin. Nephrol. 2017, 37, 514. [Google Scholar] [CrossRef] [PubMed]
- Goyal, R.; Singhal, P.C. APOL1 Risk Variants and the Development of HIV-Associated Nephropathy. FEBS J. 2021, 288, 5586–5597. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Q.; Huang, Y.L.; Huang, J.; Zheng, J.L.; Qian, G.X. RIG-I Detects HIV-1 Infection and Mediates Type I Interferon Response in Human Macrophages from Patients with HIV-1-Associated Neurocognitive Disorders. Genet. Mol. Res. 2015, 14, 13799. [Google Scholar] [CrossRef]
- Histol Histopathol, Vol 21, Tanji et Al. Available online: https://www.hh.um.es/Abstracts/Vol_21/21_4/21_4_393.htm (accessed on 5 December 2022).
- He, J.C.; Husain, M.; Sunamoto, M.; D’Agati, V.D.; Klotman, M.E.; Iyengar, R.; Klotman, P.E. Nef Stimulates Proliferation of Glomerular Podocytes through Activation of Src-Dependent Stat3 and MAPK1,2 Pathways. J. Clin. Investig. 2004, 114, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Lu, T.C.; Chuang, P.Y.; Fang, W.; Ratnam, K.; Xiong, H.; Ouyang, X.; Shen, Y.; Levy, D.E.; Hyink, D.; et al. Reduction of Stat3 Activity Attenuates HIV-Induced Kidney Injury. J. Am. Soc. Nephrol. 2009, 20, 2138–2146. [Google Scholar] [CrossRef] [Green Version]
- Fine, D.M.; Wasser, W.G.; Estrella, M.M.; Atta, M.G.; Kuperman, M.; Shemer, R.; Rajasekaran, A.; Tzur, S.; Racusen, L.C.; Skorecki, K. APOL1 Risk Variants Predict Histopathology and Progression to ESRD in HIV-Related Kidney Disease. J. Am. Soc. Nephrol. 2012, 23, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Katuri, A.; Bryant, J.L.; Patel, D.; Patel, V.; Andhavarapu, S.; Asemu, G.; Davis, H.; Makar, T.K. HIVAN Associated Tubular Pathology with Reference to ER Stress, Mitochondrial Changes, and Autophagy. Exp. Mol. Pathol. 2019, 106, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Ayasolla, K.; Jha, A.; Mishra, A.; Vashistha, H.; Lan, X.; Qayyum, M.; Chinnapaka, S.; Purohit, R.; Mikulak, J.; et al. Disrupted Apolipoprotein L1-MiR193a Axis Dedifferentiates Podocytes through Autophagy Blockade in an APOL1 Risk Milieu. Am. J. Physiol. Cell. Physiol. 2019, 317, C209–C225. [Google Scholar] [CrossRef]
- Gebeshuber, C.A.; Kornauth, C.; Dong, L.; Sierig, R.; Seibler, J.; Reiss, M.; Tauber, S.; Bilban, M.; Wang, S.; Kain, R.; et al. Focal Segmental Glomerulosclerosis Is Induced by MicroRNA-193a and Its Downregulation of WT1. Nat. Med. 2013, 19, 481–487. [Google Scholar] [CrossRef]
- Wierenga, K.J.J.; Serjeant, B.E.; Serjeant, G.R.; Williams, W.; Miller, M.; Shah, D.J.; Pattison, J.R.; Brink, N.; Griffiths, M. Glomerulonephritis after Human Parvovirus Infection in Homozygous Sickle-Cell Disease. Lancet 1995, 346, 475–476. [Google Scholar] [CrossRef]
- Chandra, P.; Kopp, J.B. Viruses and Collapsing Glomerulopathy: A Brief Critical Review. Clin. Kidney J. 2013, 6, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailly, E.; Stefic, K.; Gatault, P.; Miquelestorena-Standley, E.; Machet, M.C.; Barbet, C.; Barin, F.; Halimi, J.M. Prevention of Parvovirus B19-Induced Repetitive Acute Kidney Failure by Subcutaneous Immunoglobulins. Fundam Clin. Pharm. 2020, 34, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Sperber, G.H. Book Review: Developmental Juvenile Osteology—2nd Edition. Forensic Med. Anat. Res. 2017, 5, 15–17. [Google Scholar] [CrossRef] [Green Version]
- Prema, K.S.J.; Prasad, N.D.S.; Kurien, A.A. Cytomegalovirus Induced Collapsing Glomerulopathy and Necrotizing Glomerulonephritis in a Renal Allograft Recipient. Indian J. Nephrol. 2019, 29, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Cullen, B.R. MicroRNAs as Mediators of Viral Evasion of the Immune System. Nat. Immunol. 2013, 14, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruggeman, L.A. Common Mechanisms of Viral Injury to the Kidney. Adv. Chronic. Kidney Dis. 2019, 26, 164–170. [Google Scholar] [CrossRef]
- Stark, T.J.; Arnold, J.D.; Spector, D.H.; Yeo, G.W. High-Resolution Profiling and Analysis of Viral and Host Small RNAs during Human Cytomegalovirus Infection. J. Virol. 2012, 86, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seikrit, C.; Rauen, T.; Floege, J. IgA Nephropathy. Nephrologe 2022, 15, 336–342. [Google Scholar] [CrossRef]
- He, J.W.; Zhou, X.J.; Lv, J.C.; Zhang, H. Perspectives on How Mucosal Immune Responses, Infections and Gut Microbiome Shape IgA Nephropathy and Future Therapies. Theranostics 2020, 10, 11462–11478. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, F.; Curci, C.; di Leo, V.; Gallone, A.; Pesce, F.; Gesualdo, L. A New Vision of IgA Nephropathy: The Missing Link. Int. J. Mol. Sci. 2019, 21, 189. [Google Scholar] [CrossRef] [Green Version]
- Floege, J. The Pathogenesis of IgA Nephropathy: What Is New and How Does It Change Therapeutic Approaches? Am. J. Kidney Dis. 2011, 58, 992–1004. [Google Scholar] [CrossRef] [PubMed]
- Coppo, R.; Amore, A.; Peruzzi, L.; Vergano, L.; Camilla, R. Innate Immunity and IgA Nephropathy. J. Nephrol. 2010, 23, 626. [Google Scholar] [PubMed]
- Coppo, R. The Intestine–Renal Connection in IgA Nephropathy. Nephrol. Dial. Transplant. 2015, 30, 360–366. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.N. Pathogenesis of IgA Nephropathy. Nat. Rev. Nephrol. 2012, 8, 275–283. [Google Scholar] [CrossRef]
- Suzuki, H.; Kiryluk, K.; Novak, J.; Moldoveanu, Z.; Herr, A.B.; Renfrow, M.B.; Wyatt, R.J.; Scolari, F.; Mestecky, J.; Gharavi, A.G.; et al. The Pathophysiology of IgA Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 1795–1803. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Li, X.K. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front. Med. 2020, 7, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharavi, A.G.; Moldoveanu, Z.; Wyatt, R.J.; Barker, C.V.; Woodford, S.Y.; Lifton, R.P.; Mestecky, J.; Novak, J.; Julian, B.A. Aberrant IgA1 Glycosylation Is Inherited in Familial and Sporadic IgA Nephropathy. J. Am. Soc. Nephrol. 2008, 19, 1008–1014. [Google Scholar] [CrossRef] [Green Version]
- Kiryluk, K.; Novak, J. The Genetics and Immunobiology of IgA Nephropathy. J. Clin. Investig. 2014, 124, 2325–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallustio, F.; Curci, C.; Chaoul, N.; Fontò, G.; Lauriero, G.; Picerno, A.; Divella, C.; di Leo, V.; de Angelis, M.; ben Mkaddem, S.; et al. High Levels of Gut-Homing Immunoglobulin A+ B Lymphocytes Support the Pathogenic Role of Intestinal Mucosal Hyperresponsiveness in Immunoglobulin A Nephropathy Patients. Nephrol. Dial. Transplant. 2021, 36, 452–464. [Google Scholar] [CrossRef]
- Moreno-Gallego, J.L.; Chou, S.P.; di Rienzi, S.C.; Goodrich, J.K.; Spector, T.D.; Bell, J.T.; Youngblut, N.D.; Hewson, I.; Reyes, A.; Ley, R.E. Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host Microbe 2019, 25, 261–272.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollino, C.; Vischini, G.; Coppo, R. IgA Nephropathy and Infections. J. Nephrol. 2016, 29, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Tomino, Y.; Yagame, M.; Omata, F.; Nomoto, Y.; Sakai, H. A Case of IgA Nephropathy Associated with Adeno- and Herpes Simplex Viruses. Nephron 1987, 47, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, X.; Nishi, S.; Narita, I.; Gejyo, F. Relationship between Tonsils and IgA Nephropathy as Well as Indications of Tonsillectomy. Kidney Int. 2004, 65, 1135–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Sato, H.; Tsukada, H.; Arakawa, M.; Nakatomi, Y. Haemophilus Parainfluenzae Antigen and Antibody in Renal Biopsy Samples and Serum of Patients with IgA Nephropathy. Lancet 1994, 343, 12–16. [Google Scholar] [CrossRef]
- Tomino, Y.; Yagame, M.; Suga, T.; Miura, M.; Endoh, M.; Nomoto, Y.; Sakai, H. Detection of Viral Antigens in Patients with IgA Nephropathy. Jpn. J. Med. 1989, 28, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yu, Z.; Huang, Y.; Yang, K.; He, T.; Xiao, T.; Yu, Y.; Li, Y.; Liu, L.; Xiong, J.; et al. Clinicopathological Features, Risk Factors, and Outcomes of Immunoglobulin A Nephropathy Associated with Hepatitis B Virus Infection. J. Nephrol. 2021, 34, 1887–1896. [Google Scholar] [CrossRef]
- Dey, A.K.; Bhattacharya, A.; Majumdar, A. Hepatitis C as a Potential Cause of IgA Nephropathy. Indian J. Nephrol. 2013, 23, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Li, Z.; Ge, H.; Deng, H. Successful Interferon-α Treatment in a Patient with IgA Nephropathy Associated with Hepatitis C Virus Infection. Intern. Med. 2010, 49, 2531–2532. [Google Scholar] [CrossRef] [Green Version]
- Sallustio, F.; Serino, G.; Cox, S.N.; Gassa, A.D.; Curci, C.; de Palma, G.; Banelli, B.; Zaza, G.; Romani, M.; Schena, F.P. Aberrantly Methylated DNA Regions Lead to Low Activation of CD4+ T-Cells in IgA Nephropathy. Clin. Sci. 2016, 130, 733–746. [Google Scholar] [CrossRef]
- Rops, A.L.W.M.M.; Jansen, E.; van der Schaaf, A.; Pieterse, E.; Rother, N.; Hofstra, J.; Dijkman, H.B.P.M.; van de Logt, A.E.; Wetzels, J.; van der Vlag, J.; et al. Interleukin-6 Is Essential for Glomerular Immunoglobulin A Deposition and the Development of Renal Pathology in Cd37-Deficient Mice. Kidney Int. 2018, 93, 1356–1366. [Google Scholar] [CrossRef] [PubMed]
- Fabio, S.; Curci, C.; Teresa Cimmarusti, M.; Picerno, A.; de Palma, G.; Sivo, C.; Annese, F.; Fontò, G.; Stasi, A.; Pesce, F.; et al. Elevated Levels of IL-6 in IgA Nephropathy Patients Are Induced by an Epigenetically-Driven Mechanism Triggered by Viral and Bacterial RNA. medRxiv 2022. [Google Scholar] [CrossRef]
- Zachova, K.; Kosztyu, P.; Zadrazil, J.; Matousovic, K.; Vondrak, K.; Hubacek, P.; Julian, B.A.; Moldoveanu, Z.; Novak, Z.; Kostovcikova, K.; et al. Role of Epstein-Barr Virus in Pathogenesis and Racial Distribution of IgA Nephropathy. Front. Immunol. 2020, 11, 267. [Google Scholar] [CrossRef] [Green Version]
- Zerbe, C.M.; Cole, J.L. Regulation of Protein Kinase R by Epstein-Barr Virus EBER1 RNA. Biochemistry 2020, 59, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Farooq, H.; Aemaz Ur Rehman, M.; Asmar, A.; Asif, S.; Mushtaq, A.; Qureshi, M.A. The Pathogenesis of COVID-19-Induced IgA Nephropathy and IgA Vasculitis: A Systematic Review. J. Taibah Univ. Med. Sci. 2022, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Perrin, P.; Bassand, X.; Benotmane, I.; Bouvier, N. Gross Hematuria Following SARS-CoV-2 Vaccination in Patients with IgA Nephropathy. Kidney Int. 2021, 100, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Bronz, G.; Faré, P.B.; Lava, S.A.G.; Bianchetti, M.G.; Simonetti, G.D.; Scoglio, M.; Beretta-Piccoli, B.T.; Agostoni, C.; Milani, G.P. Coronavirus Disease 2019, Vaccination against Coronavirus and Immunoglobulin A-Mediated Diseases: Systematic Literature Review. J. Autoimmun. 2022, 132, 102899. [Google Scholar] [CrossRef]
APOL1 RRVs-Dependent Autophagy Blocking Mechanisms in Podocytes |
---|
Inhibition of autophagosomes maturation via stimulating the formation of Rubicon- UV Radiation Resistance Associated gene protein (UVRAG) complexes. |
Inhibition of lysosome reformation due to the accumulation of autophagolysosomes, reducing mTOR expression [91]. |
Upregulation of miR-193a expression, a known inducer of oxidative stress that stimulates cell death in podocytes, destabilizing adherens junction, disorganizing the actin cytoskeleton and blocking autophagy [91]. As a result, it causes decreased assembly of the PI3KC3-autophagy-related protein 14L and PI3KC3-UVRAG complexes needed for nucleation and maturation of autophagosomes [92]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sallustio, F.; Picerno, A.; Montenegro, F.; Cimmarusti, M.T.; Di Leo, V.; Gesualdo, L. The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy. Int. J. Mol. Sci. 2023, 24, 3897. https://doi.org/10.3390/ijms24043897
Sallustio F, Picerno A, Montenegro F, Cimmarusti MT, Di Leo V, Gesualdo L. The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy. International Journal of Molecular Sciences. 2023; 24(4):3897. https://doi.org/10.3390/ijms24043897
Chicago/Turabian StyleSallustio, Fabio, Angela Picerno, Francesca Montenegro, Maria Teresa Cimmarusti, Vincenzo Di Leo, and Loreto Gesualdo. 2023. "The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy" International Journal of Molecular Sciences 24, no. 4: 3897. https://doi.org/10.3390/ijms24043897
APA StyleSallustio, F., Picerno, A., Montenegro, F., Cimmarusti, M. T., Di Leo, V., & Gesualdo, L. (2023). The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy. International Journal of Molecular Sciences, 24(4), 3897. https://doi.org/10.3390/ijms24043897