Atomistic Study for the Tantalum and Tantalum–Tungsten Alloy Threshold Displacement Energy under Local Strain
Abstract
:1. Introduction
2. Results
2.1. The Free Strained TDE
2.1.1. The Evaluation for Pure Ta
2.1.2. The Evaluation of TDE for Ta–W Alloy (Effect of W Contents)
2.2. Strained TDE
2.3. Effects of Strain on the Directional Dependent TDE
3. Methods
3.1. TDE Calculation for Pure Ta
3.2. TDE Calculation for Ta–W Alloy
3.3. Strain Application
3.4. DFT Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonard, K.J.; Busby, J.T.; Hoelzer, D.T.; Zinkle, S.J. Nb-Base FS-85 Alloy as a Candidate Structural Material for Space Reactor Applications: Effects of Thermal Aging. Met. Mater. Trans. A Phys. Metall. Mater. Sci. 2009, 40, 838–855. [Google Scholar] [CrossRef]
- Stephenson, R.L. Creep-Rupture Properties of Unalloyed Tantalum; Ta-10%W and T-111 Alloys, ORNL-TM-1994; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1967.
- Lin, Z.; Lavernia, E.J.; Mohamed, F. High-temperature deformation in a Ta–W alloy. Acta Mater. 1999, 47, 1181–1194. [Google Scholar] [CrossRef]
- Zhou, J.-Q.; Khan, A.S.; Cai, R.; Chen, L. Comparative Study on Constitutive Modeling of Tantalum and Tantalum Tungsten Alloy. J. Iron Steel Res. Int. 2006, 13, 68–74. [Google Scholar] [CrossRef]
- Ipatova, I.; Wady, P.; Shubeita, S.; Barcellini, C.; Impagnatiello, A.; Jimenez-Melero, E. Radiation-induced void formation and ordering in Ta–W alloys. J. Nucl. Mater. 2017, 495, 343–350. [Google Scholar] [CrossRef]
- Knabl, W.; Leichtfried, G.; Stickler, R. Refractory Metals and Refractory Metal Alloys; Springer Handbooks: Berlin, Germany, 2018; pp. 307–337. [Google Scholar] [CrossRef]
- Kaletta, D. The Role of Gases in Radiation Damage Patterns; Kernforschungszentrum Karlsruhe, Kaletta Inst. Für Mater. Und Festkörperforsch: Stuttgart, Germany, 1979. [Google Scholar]
- Barrow, A.; Korinek, A.; Daymond, M. Evaluating zirconium–zirconium hydride interfacial strains by nano-beam electron diffraction. J. Nucl. Mater. 2013, 432, 366–370. [Google Scholar] [CrossRef]
- Leonard, K. Radiation Effects in Refractory Metals and Alloys; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 181–213. [Google Scholar] [CrossRef]
- Banisalman, M.J.; Oda, T. Atomistic simulation for strain effects on threshold displacement energies in refractory metals. Comput. Mater. Sci. 2018, 158, 346–352. [Google Scholar] [CrossRef]
- Djaafri, A.; Kadoun, A.; Khodja, M.D.; Elías, A.; Djaafri, T. Study of Point Defect Distributions in Tantalum. Acta Phys. Pol. A 2018, 133, 39–44. [Google Scholar] [CrossRef]
- Ravelo, R.; Germann, T.C.; Guerrero, O.; An, Q.; Holian, B.L. Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations. Phys. Rev. B 2013, 88, 134101. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.W. Defects and Radiation Damage in Metals; Cambridge University Press: Cambridge, UK, 1974; Available online: https://books.google.co.kr/books?id=7wPjPAAACAAJ (accessed on 9 August 2022).
- Gaylord, N.G.; Ballantine, D.S. The effects of radiation on materials and components. J. F. Kircher and R. E. Bowman, Eds. Reinhold, New York, 1964. xi + 690 pp. $22.50. J. Appl. Polym. Sci. 1965, 9, 1599. [Google Scholar] [CrossRef]
- Norgett, M.; Robinson, M.; Torrens, I. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 1975, 33, 50–54. [Google Scholar] [CrossRef]
- Salman, M.B.; Kilic, M.E.; Banisalman, M.J. Formation of Interstitial Dislocation Loops by Irradiation in Alpha-Iron under Strain: A Molecular Dynamics Study. Crystals 2021, 11, 317. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, J.; Liu, L.; Hu, W.; Gao, N.; Gao, F.; Deng, H. Development of the interatomic potentials for W-Ta system. Comput. Mater. Sci. 2019, 163, 91–99. [Google Scholar] [CrossRef]
- Setyawan, W.; Nandipati, G.; Kurtz, R.J. Ab initio study of interstitial cluster interaction with Re, Os, and Ta in W. J. Nucl. Mater. 2017, 484, 30–41. [Google Scholar] [CrossRef]
- Nguyen-Manh, D.; Horsfield, A.P.; Dudarev, S.L. Self-interstitial atom defects in bcc transition metals: Group-specific trends. Phys. Rev. B 2006, 73, 020101. [Google Scholar] [CrossRef]
- Youngblood, G.; Myhra, S.; DeFord, J.W. Measurements of the Threshold Displacement Energy in Ta and Nb. Phys. Rev. 1969, 188, 1101–1107. [Google Scholar] [CrossRef]
- Saile, B. The Temperature Dependence of the Effective Threshold Energy for Atom Displacement in Tantalum. Phys. Status Solidi (A) 1985, 89, K143–K145. [Google Scholar] [CrossRef]
- Biget, M.; Maury, F.; Vajda, P.; Lucasson, A. Near-threshold displacements in tantalum single crystals. Phys. Rev. B 1979, 19, 820–830. [Google Scholar] [CrossRef]
- Olsson, P.; Becquart, C.S.; Domain, C. Ab initio threshold displacement energies in iron. Mater. Res. Lett. 2016, 4, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Guerra, E.; Ortíz-Chi, F.; Curtarolo, S.; de Coss, R. Pressure effects on the electronic structure and superconducting critical temperature of Li2B2. J. Phys. Condens. Matter 2014, 26, 115701. [Google Scholar] [CrossRef]
- Banisalman, M.J.; Park, S.; Oda, T. Evaluation of the threshold displacement energy in tungsten by molecular dynamics calculations. J. Nucl. Mater. 2017, 495, 277–284. [Google Scholar] [CrossRef]
- Maury, F.; Biget, M.; Vajda, P.; Lucasson, A. Frenkel pair creation and stage I recovery in W crystals irradiated near threshold. Radiat. Eff. 1978, 38, 53–65. [Google Scholar] [CrossRef]
- Maury, F.; Vajda, P.; Biget, M.; Lucasson, A. Anisotropy of the displacement energy in single crystals of molybdenum. Radiat. Eff. 1975, 25, 175–185. [Google Scholar] [CrossRef]
- Duty, C.E.; Zinkle, S.J.; Luther, R.F.; Buckman, R.W.; Gold, R.E.; Ballout, Y.A. The potential of tantalum alloys for space nuclear applications. In Proceedings of the American Nuclear Society Annual Meeting Embedded Topical: Space Nuclear Power, San Diego, CA, USA, 5–9 June 2005; pp. 294–302. [Google Scholar]
- Siddiqui, A.; Treherne, D. Optical properties of some transition metals at infrared frequencies. Infrared Phys. 1977, 17, 33–42. [Google Scholar] [CrossRef]
- Jokl, M.; Vitek, V.; McMahon, C. A microscopic theory of brittle fracture in deformable solids: A relation between ideal work to fracture and plastic work. Acta Met. 1980, 28, 1479–1488. [Google Scholar] [CrossRef]
- Wu, X.; Kong, X.-S.; You, Y.-W.; Liu, C.; Fang, Q.; Chen, J.-L.; Luo, G.-N.; Wang, Z. Effects of alloying and transmutation impurities on stability and mobility of helium in tungsten under a fusion environment. Nucl. Fusion 2013, 53, 073049. [Google Scholar] [CrossRef]
- Pettifor, D.G. Bonding and Structure of Molecules and Solids; Clarendon: Oxford, UK, 1995. [Google Scholar]
- Li, B.; Wang, L.; Jian, W.R.; Jun-Cheng, E.; Ma, H.H.; Luo, S.N. Irradiation-initiated plastic deformation in prestrained single-crystal copper. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 368, 60–65. [Google Scholar] [CrossRef]
- Robinson, M.; Marks, N.A.; Whittle, K.R.; Lumpkin, G.R. Systematic calculation of threshold displacement energies: Case study in rutile. Phys. Rev. B 2012, 85, 104105. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Virtual Lab. Inc. January 01 Materials Square. 2017. Available online: https://www.materialssquare.com/ (accessed on 9 August 2022).
- Rycroft, C.H. VORO++: A three-dimensional Voronoi cell library in C++. Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 041111. [Google Scholar] [CrossRef]
- Fu, J.; Ding, W.; Zheng, M.; Mao, X. Molecular dynamics study on threshold displacement energies in Fe-Cr alloys. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 419, 1–7. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Nestell, J.J.E.; Christy, R.W. Optical conductivity of bcc transition metals: V, Nb, Ta, Cr, Mo, W. Phys. Rev. B 1980, 21, 3173–3179. [Google Scholar] [CrossRef]
- You, Y.W.; Kong, X.S.; Wu, X.; Liu, C.S.; Fang, Q.F.; Chen, J.L.; Luo, G.N. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment. Nucl. Fusion. 2017, 57, 086006. [Google Scholar] [CrossRef]
- Cao, Z.; Pan, M.; Hu, K.; Huang, Z.; Lv, Y.; Wen, S.; Zhao, Y.; Deng, H. Effect of titanium on the precipitation behaviors of transmutation elements in tungsten-titanium alloys from first-principles calculations. Fusion Eng. Des. 2020, 158, 111673. [Google Scholar] [CrossRef]
- Beeler, B.; Asta, M.; Hosemann, P.; Grønbech-jensen, N. Effects of applied strain on radiation damage generation in body- centered cubic iron. J. Nucl. Mater. 2015, 459, 159–165. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bany Salman, M.; Park, M.; Banisalman, M.J. Atomistic Study for the Tantalum and Tantalum–Tungsten Alloy Threshold Displacement Energy under Local Strain. Int. J. Mol. Sci. 2023, 24, 3289. https://doi.org/10.3390/ijms24043289
Bany Salman M, Park M, Banisalman MJ. Atomistic Study for the Tantalum and Tantalum–Tungsten Alloy Threshold Displacement Energy under Local Strain. International Journal of Molecular Sciences. 2023; 24(4):3289. https://doi.org/10.3390/ijms24043289
Chicago/Turabian StyleBany Salman, Mohammad, Minkyu Park, and Mosab Jaser Banisalman. 2023. "Atomistic Study for the Tantalum and Tantalum–Tungsten Alloy Threshold Displacement Energy under Local Strain" International Journal of Molecular Sciences 24, no. 4: 3289. https://doi.org/10.3390/ijms24043289
APA StyleBany Salman, M., Park, M., & Banisalman, M. J. (2023). Atomistic Study for the Tantalum and Tantalum–Tungsten Alloy Threshold Displacement Energy under Local Strain. International Journal of Molecular Sciences, 24(4), 3289. https://doi.org/10.3390/ijms24043289