Theoretical Study of Charge Mobility in Crystal Porphine and a Computer Design of a Porphine-Based Semiconductive Discotic Liquid Mesophase
Abstract
:1. Introduction
2. Theory and Methods
3. Results
3.1. Conductivity of Crystalline Porphine
3.2. The Effects of Substituents in the Porphine Ring
3.3. Dependence of the Value of the Transfer Integral on the Mutual Orientation of Molecules
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MOO | molecular orbital overlap |
DIPRO | dimer projection |
KMC | kinetic Monte Carlo |
IP | ionization potential |
EA | electron affinity |
TPP | tetraphenylporphine |
TAP | tetra-allyl-porphine |
TnBuP | tetra-n-butyl-porphine |
DCV2T | dicyanovinyldithiophene |
CT | charge transfer |
References
- Nguyen, T.P.; Shim, J.H.; Lee, J.Y. Density functional theory studies of hole mobility in picene and pentacene crystals. J. Phys. Chem. C Nanomater. Interfaces 2015, 119, 11301–11310. [Google Scholar] [CrossRef]
- Termine, R.; Golemme, A. Charge mobility in discotic liquid crystals. Int. J. Mol. Sci. 2021, 22, 877. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Bu, X.; Wang, J.; Lv, Z.; Han, S.T.; Zhou, Y. Evolutionary 2D organic crystals for optoelectronic transistors and neuromorphic computing. Neuromorphic Comput. Eng. 2022, 2, 012001. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, H.; Lv, D.; Yu, R.; Li, E.; He, L.; Chen, Q.; Chen, H.; Guo, T. High-Performance organic synaptic transistors with an ultrathin active layer for neuromorphic computing. ACS Appl. Mater. Interfaces 2021, 13, 8672–8681. [Google Scholar] [CrossRef]
- Huang, X.; Liu, C.; Jiang, Y.G.; Zhou, P. In-memory computing to break the memory wall. Chin. Phys. B 2020, 29, 078504. [Google Scholar] [CrossRef]
- Goswami, S.; Matula, A.J.; Rath, S.P.; Hedström, S.; Saha, S.; Annamalai, M.; Sengupta, D.; Patra, A.; Ghosh, S.; Jani, H.; et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 2017, 16, 1216–1224. [Google Scholar] [CrossRef]
- Coropceanu, V.; Cornil, J.; da Silva Filho, D.A.; Olivier, Y.; Silbey, R.; Brédas, J.L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926–952. [Google Scholar] [CrossRef]
- Schrader, M.; Körner, C.; Elschner, C.; Andrienko, D. Charge transport in amorphous and smectic mesophases of dicyanovinyl-substituted oligothiophenes. J. Mater. Chem. 2012, 22, 22258. [Google Scholar] [CrossRef]
- Ma, P.; Chen, Y.; Cai, X.; Wang, H.; Zhang, Y.; Gao, Y.; Jiang, J. Organic field effect transistors based on 5, 10, 15, 20-tetrakis(4-pentyloxyphenyl)porphyrin single crystal. Synth. Met. 2010, 160, 510–515. [Google Scholar] [CrossRef]
- Hoang, M.H.; Choi, D.H.; Lee, S.J. Organic field-effect transistors based on semiconducting porphyrin single crystals. Synth. Met. 2012, 162, 419–425. [Google Scholar] [CrossRef]
- Minari, T.; Seto, M.; Nemoto, T.; Isoda, S.; Tsukagoshi, K.; Aoyagi, Y. Molecular-packing-enhanced charge transport in organic field-effect transistors based on semiconducting porphyrin crystals. Appl. Phys. Lett. 2007, 91, 123501. [Google Scholar] [CrossRef] [Green Version]
- Dao, Q.D.; Fujii, A.; Ozaki, M. Fabrication of tandem solar cells with all-solution processed multilayer structure using non-peripherally substituted octahexyl tetrabenzotriazaporphyrins. Jpn. J. Appl. Phys. 2016, 55, 03DB01. [Google Scholar] [CrossRef]
- Yang, G.; Tang, Y.; Li, X.; Ågren, H.; Xie, Y. Efficient solar cells based on porphyrin dyes with flexible chains attached to the auxiliary benzothiadiazole acceptor: Suppression of dye aggregation and the effect of distortion. ACS Appl. Mater. Interfaces 2017, 9, 36875–36885. [Google Scholar] [CrossRef]
- Pan, X.; Huang, S.; Zhu, B.; Xia, R.; Peng, X. All-porphyrin organic solar cells. Dyes Pigment. 2020, 180, 108503. [Google Scholar] [CrossRef]
- Concellón, A.; Marcos, M.; Romero, P.; Serrano, J.L.; Termine, R.; Golemme, A. Not only columns: High hole mobility in a discotic nematic mesophase formed by metal-containing porphyrin-core dendrimers. Angew. Chem. Int. Ed. 2016, 56, 1259–1263. [Google Scholar] [CrossRef]
- Concellón, A.; Termine, R.; Golemme, A.; Romero, P.; Marcos, M.; Serrano, J.L. Semiconducting and electropolymerizable liquid crystalline carbazole-containing porphyrin-core dendrimers. Org. Chem. Front. 2020, 7, 2008–2015. [Google Scholar] [CrossRef]
- Rajasree, S.S.; Li, X.; Deria, P. Physical properties of porphyrin-based crystalline metal-organic frameworks. Commun. Chem. 2021, 4. [Google Scholar] [CrossRef]
- Gorbunova, Y.G.; Enakieva, Y.Y.; Volostnykh, M.V.; Sinelshchikova, A.A.; Abdulaeva, I.A.; Birin, K.P.; Tsivadze, A.Y. Porous porphyrin-based metal-organic frameworks: Synthesis, structure, sorption properties and application prospects. Russ. Chem. Rev. 2022, 91, RCR5038. [Google Scholar] [CrossRef]
- Fu, C.; Sun, X.; Zhang, G.; Shi, P.; Cui, P. Porphyrin-based metal organic framework probe: Highly selective and sensitive fluorescent turn-on sensor for M3+ (Al3+, Cr3+, and Fe3+) ions. Inorg. Chem. 2021, 60, 1116–1123. [Google Scholar] [CrossRef]
- Marcus, R.A. Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1993, 32, 1111–1121. [Google Scholar] [CrossRef]
- Praveen, P.; Bhattacharya, A.; Kanagasekaran, T. A DFT study on the electronic and photophysical properties of biphenylyl/thiophene derivatives for organic light emitting transistors. Mater. Today Commun. 2020, 25, 101509. [Google Scholar] [CrossRef]
- Brédas, J.L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture. Chem. Rev. 2004, 104, 4971–5004. [Google Scholar] [CrossRef] [PubMed]
- Baumeier, B.; Kirkpatrick, J.; Andrienko, D. Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. Phys. Chem. Chem. Phys. 2010, 12, 11103. [Google Scholar] [CrossRef]
- Kirkpatrick, J. An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian. Int. J. Quantum Chem. 2007, 108, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2011, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2017, 8. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2007, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Savintseva, L.A.; Avdoshin, A.A.; Ignatov, S.K. Charge transport in biomimetic models of organic neuromorphous materials. Rus. J. Phys. Chem. B 2022, 16, 445–454. [Google Scholar] [CrossRef]
- Sure, R.; Grimme, S. Corrected small basis set Hartree-Fock method for large systems. J. Comput. Chem. 2013, 34, 1672–1685. [Google Scholar] [CrossRef] [PubMed]
- Poelking, C.; Andrienko, D. Long-Range embedding of molecular ions and excitations in a polarizable molecular environment. J. Chem. Theory Comput. 2016, 12, 4516–4523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordt, P.; Andrienko, D. Modeling of spatially correlated energetic disorder in organic semiconductors. J. Chem. Theory Comput. 2015, 12, 36–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rühle, V.; Lukyanov, A.; May, F.; Schrader, M.; Vehoff, T.; Kirkpatrick, J.; Baumeier, B.; Andrienko, D. Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 2011, 7, 3335–3345. [Google Scholar] [CrossRef]
- Brown, J.S. CATNIP, Version 1.9. Available online: https://joshuasbrown.github.io/docs/CATNIP/catnip_home.html (accessed on 23 December 2022).
- Plasser, F. TheoDORE: A toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys. 2020, 152, 084108. [Google Scholar] [CrossRef] [Green Version]
- Plasser, F.; Wormit, M.; Dreuw, A. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys. 2014, 141, 024106. [Google Scholar] [CrossRef] [Green Version]
- Saltsman, I.; Goldberg, I.; Balasz, Y.; Gross, Z. Porphine and pyrrole-substituted porphyrin from cyclocondensation of tripyrrane with mono-substituted pyrroles. Tetrahedron Lett. 2007, 48, 239–244. [Google Scholar] [CrossRef]
- Dupuis, P.; Roberge, R.; Sandorfy, C. The very low ionization potentials of porphyrins and the possible role of rydberg states in photosynthesis. Chem. Phys. Lett. 1980, 75, 434–437. [Google Scholar] [CrossRef]
- Nakato, Y.; Abe, K.; Tsubomura, H. Experimental determination of ionization potentials of tetraphenylporphine and metallotetraphenylporphines. Chem. Phys. Lett. 1976, 39, 358–360. [Google Scholar] [CrossRef]
- Khandelwal, S.C.; Roebber, J.L. The photoelectron spectra of tetraphenylporphine and some metallotetraphenylporphyrins. Chem. Phys. Lett. 1975, 34, 355–359. [Google Scholar] [CrossRef]
- Chen, H.L.; Pan, Y.H.; Groh, S.; Hagan, T.E.; Ridge, D.P. Gas-phase charge-transfer reactions and electron affinities of macrocyclic, anionic nickel complexes: Ni(SALEN), Ni(tetraphenylporphyrin), and derivatives. J. Am. Chem. Soc. 1991, 113, 2766–2767. [Google Scholar] [CrossRef]
- Checcoli, P.; Conte, G.; Salvatori, S.; Paolesse, R.; Bolognesi, A.; Berliocchi, M.; Brunetti, F.; D’Amico, A.; Carlo, A.D.; Lugli, P. Tetra-phenyl porphyrin based thin film transistors. Synth. Met. 2003, 138, 261–266. [Google Scholar] [CrossRef]
Carrier Type | , eV | , eV |
---|---|---|
Hole | 0.15 | 0.15 |
Electron | 0.07 | 0.07 |
Method | Carrier Type | X 1 | Y 1 | Z 1 |
---|---|---|---|---|
MOO | electron | 0.148 ± 0.006 | 0.013 ± 0.003 | 0.006 ± 0.002 |
hole | 0.036 ± 0.005 | 0.160 ± 0.006 | 0.127 ± 0.006 | |
DIPRO | electron | 0.004 ± 0.001 | 0.088 ± 0.005 | 0.007 ± 0.002 |
hole | 0.097 ± 0.007 | 0.561 ± 0.011 | 0.172 ± 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savintseva, L.; Avdoshin, A.; Ignatov, S.; Novikov, A. Theoretical Study of Charge Mobility in Crystal Porphine and a Computer Design of a Porphine-Based Semiconductive Discotic Liquid Mesophase. Int. J. Mol. Sci. 2023, 24, 736. https://doi.org/10.3390/ijms24010736
Savintseva L, Avdoshin A, Ignatov S, Novikov A. Theoretical Study of Charge Mobility in Crystal Porphine and a Computer Design of a Porphine-Based Semiconductive Discotic Liquid Mesophase. International Journal of Molecular Sciences. 2023; 24(1):736. https://doi.org/10.3390/ijms24010736
Chicago/Turabian StyleSavintseva, Liana, Alexander Avdoshin, Stanislav Ignatov, and Alexander Novikov. 2023. "Theoretical Study of Charge Mobility in Crystal Porphine and a Computer Design of a Porphine-Based Semiconductive Discotic Liquid Mesophase" International Journal of Molecular Sciences 24, no. 1: 736. https://doi.org/10.3390/ijms24010736
APA StyleSavintseva, L., Avdoshin, A., Ignatov, S., & Novikov, A. (2023). Theoretical Study of Charge Mobility in Crystal Porphine and a Computer Design of a Porphine-Based Semiconductive Discotic Liquid Mesophase. International Journal of Molecular Sciences, 24(1), 736. https://doi.org/10.3390/ijms24010736