Effect of the Enhanced Production of Chlorophyll b on the Light Acclimation of Tomato
Abstract
:1. Introduction
2. Results
2.1. BCF Was Overexpressed in Transgenic Tomato Plants
2.2. Physiological Characters of BCF Overexpressing Tomato Plants
2.3. BCF Overexpressing Plants Grow Better Than WT under LL Conditions
2.4. Phenotypic and Chl Metabolic Characterization of WT and BCF-OE Plants under HL Conditions
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Construction and Tomato Transformation
4.3. Chl Analysis
4.4. Chl Fluorescence Measurements
4.5. Immunoblot Analysis
4.6. Biomass Measurements
4.7. Quantification of Anthocyanin
4.8. Determination of Net Photosynthesis Rate (Pn)
4.9. Detection of ROS
4.10. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCF | Transgenic Plants Expressing BC Domains of CAO Fused with FLAG Tag. |
CAO | Chlorophyllide a Oxygenase |
Chl a | Chlorophyll a |
Chl b | Chlorophyll b |
Chl | Chlorophyll |
DAB | 3,3-Diaminobenzidine |
DW | Dry Weight |
FW | Fresh Weight |
H2O2 | Hydrogen Peroxide |
HL | High Light |
LL | Low Light |
PAP | Production of Anthocyanin Pigment |
PPFD | Photosynthetic Photon Flux Density |
ROS | Reactive Oxygen Species |
WT | Wild-type |
References
- Lu, T.; Meng, Z.; Zhang, G.; Qi, M.; Sun, Z.; Liu, Y.; Li, T. Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front. Plant Sci. 2017, 8, e365. [Google Scholar] [CrossRef]
- Zhan, J.; Huang, W.; Wang, L. Research of weak light stress physiology in plants. Chin. Bull. Bot. 2003, 20, 43–50. [Google Scholar]
- Porter, A.M. Effect of light intensity on the photosynthetic efficiency of tomato plants. Plant Physiol. 1937, 12, 225–252. [Google Scholar] [PubMed]
- Fristedt, R.; Vener, A.V. High light induced disassembly of photosystem II supercomplexes in Arabidopsis requires STN7-dependent phosphorylation of CP29. PLoS ONE 2011, 6, e24565. [Google Scholar] [CrossRef] [PubMed]
- Green, B.R.; Durnford, D.G. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu. Rev. Plant Biol. 1996, 47, 685–714. [Google Scholar] [CrossRef]
- Kasahara, M.; Kagawa, T.; Oikawa, K.; Suetsugu, N.; Miyao, M.; Wada, M. Chloroplast avoidance movement reduces photodamage in plants. Nature 2002, 420, 829–832. [Google Scholar] [CrossRef]
- Tanaka, R.; Tanaka, A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim. Et Biophys. Acta. 2011, 1807, 968–976. [Google Scholar] [CrossRef]
- Tanaka, R.; Koshino, Y.; Sawa, S.; Ishiguro, S.; Okada, K.; Tanaka, A. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant J. 2001, 26, 365–373. [Google Scholar] [CrossRef]
- Masuda, T.; Tanaka, A.; Melis, A. Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol. Biol. 2003, 51, 757–771. [Google Scholar] [CrossRef]
- Harper, A.L.; von Gesjen, S.E.; Linford, A.S.; Peterson, M.P.; Faircloth, R.S.; Thissen, M.M.; Brusslan, J.A. Chlorophyllide a oxygenase mRNA and protein levels correlate with the chlorophyll a/b ratio in Arabidopsis thaliana. Photosynth. Res. 2004, 79, 149–159. [Google Scholar] [CrossRef]
- Pattanayak, G.K.; Biswal, A.K.; Reddy, V.S.; Tripathy, B.C. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem. Biophys. Res. Commun. 2005, 326, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Yamasato, A.; Nagata, N.; Tanaka, R.; Tanaka, A. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 2005, 17, 1585–1597. [Google Scholar] [CrossRef]
- Sakuraba, Y.; Yamasato, A.; Tanaka, R.; Tanaka, A. Functional analysis of N-terminal domains of Arabidopsis chlorophyllide a oxygenase. Plant Physiol. Biochem. 2007, 45, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Sakuraba, Y.; Tanaka, R.; Yamasato, A.; Tanaka, A. Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. J. Biol. Chem. 2009, 284, 36689–36699. [Google Scholar] [CrossRef] [PubMed]
- Nakagawara, E.; Sakuraba, Y.; Yamasato, A.; Tanaka, R.; Tanaka, A. Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J. 2007, 49, 800–809. [Google Scholar] [CrossRef]
- Sakuraba, Y.; Yokono, M.; Akimoto, S.; Tanaka, R.; Tanaka, A. Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant Cell Physiol. 2010, 51, 1055–1065. [Google Scholar] [CrossRef]
- Biswal, A.K.; Pattanayak, G.K.; Pandey, S.S.; Leelavathi, S.; Reddy, V.S.; Tripathy, B.C. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol. 2012, 159, 433–449. [Google Scholar] [CrossRef]
- Hirashima, M.; Satoh, S.; Tanaka, R.; Tanaka, A. Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J. Biol. Chem. 2006, 281, 15385–15393. [Google Scholar] [CrossRef]
- Eddy, R.; Hahn, D.T.; Aschenbeck, L. 101 ways to try to grow arabidopsis: What light intensity worked best in this study? Can high intensity discharge lights be used? Purdue Methods Arab. Growth 2008, 13. Available online: http://docs.lib.purdue.edu/pmag/13 (accessed on 5 May 2022).
- Li, M.; Kim, C. Chloroplast ROS and stress signaling. Plant Commun. 2022, 3, e100264. [Google Scholar] [CrossRef]
- Kim, C. ROS-driven oxidative modification: Its impact on chloroplasts-nucleus communication. Front. Plant Sci. 2020, 10, e1729. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Rothstein, S.J. ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signal. Behav. 2018, 13, e1451708. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.S.; Tohge, T.; Fernie, A.R.; Grimm, B. The genomes uncoupled-dependent signalling pathway coordinates plastid biogenesis with the synthesis of anthocyanins. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, e20190403. [Google Scholar] [CrossRef] [PubMed]
- Koncz, C.; Schell, J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 1986, 204, 383–396. [Google Scholar] [CrossRef]
- Earley, K.W.; Haag, J.R.; Pontes, O.; Opper, K.; Juehne, T.; Song, K.; Pikaard, C.S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 2006, 45, 616–629. [Google Scholar] [CrossRef]
- Hu, X.; Tanaka, A.; Tanaka, R. Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples. Plant Methods 2013, 9, e19. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta (BBA)-Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Jia, T.; Ito, H.; Hu, X.; Tanaka, A. Accumulation of the NON-YELLOW COLORING 1 protein of the chlorophyll cycle requires chlorophyll b in Arabidopsis thaliana. Plant J. 2015, 81, 586–596. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, S.; Yu, W.; Wu, X.; Wang, W.; Peng, F.; Xiao, Y. PpSnRK1α overexpression alters the response to light and affects photosynthesis and carbon metabolism in tomato. Physiol. Plant. 2021, 173, 1808–1823. [Google Scholar] [CrossRef]
- Wu, G.; Spalding, E.P. Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc. Natl. Acad. Sci. USA 2007, 104, 18813–18818. [Google Scholar] [CrossRef]
- Lange, H.; Shropshire, W.; Mohr, H. An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol. 1971, 47, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.J.; Driever, S.M.; Kromdijk, J.; McGrath, J.; Leakey, A.D.B.; Siebke, K.; Demetriades-Shah, T.; Bonnage, S.; Peloe, T.; Lawson, T.; et al. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax. Sci. Rep. 2016, 6, e20694. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.A.; Dangl, J.L.; Jones, J.D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 2002, 99, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Fryer, M.J.; Oxborough, K.; Mullineaux, P.M.; Baker, N.R. Imaging of photo-oxidative stress responses in leaves. J. Exp. Bot. 2002, 53, 1249–1254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.; Zada, A.; Jia, T.; Hu, X. Effect of the Enhanced Production of Chlorophyll b on the Light Acclimation of Tomato. Int. J. Mol. Sci. 2023, 24, 3377. https://doi.org/10.3390/ijms24043377
Khan I, Zada A, Jia T, Hu X. Effect of the Enhanced Production of Chlorophyll b on the Light Acclimation of Tomato. International Journal of Molecular Sciences. 2023; 24(4):3377. https://doi.org/10.3390/ijms24043377
Chicago/Turabian StyleKhan, Imran, Ahmad Zada, Ting Jia, and Xueyun Hu. 2023. "Effect of the Enhanced Production of Chlorophyll b on the Light Acclimation of Tomato" International Journal of Molecular Sciences 24, no. 4: 3377. https://doi.org/10.3390/ijms24043377
APA StyleKhan, I., Zada, A., Jia, T., & Hu, X. (2023). Effect of the Enhanced Production of Chlorophyll b on the Light Acclimation of Tomato. International Journal of Molecular Sciences, 24(4), 3377. https://doi.org/10.3390/ijms24043377