Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability
Abstract
:1. Introduction
2. Markers of Structural Integrity
3. Oxidative Markers
4. Genetic Markers
5. Epigenetic Markers
6. Protein Markers
6.1. Sperm Proteins
6.2. Seminal Plasma Proteins
7. Fatty Acids
8. Strategies to Improve the Semen Quality of Poor Freezers
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Royere, D.; Barthelemy, C.; Hamamah, S.; Lansac, J. Cryopreservation of Spermatozoa: A 1996 Review. Hum. Reprod. Update 1996, 2, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Polge, C.; Smith, A.U.; Parkes, A.S. Revival of Spermatozoa after Vitrification and Dehydration at Low Temperatures. Nature 1949, 164, 666. [Google Scholar] [CrossRef] [PubMed]
- Sanger, W.G.; Olson, J.H.; Sherman, J.K. Semen Cryobanking for Men with Cancer—Criteria Change. Fertil. Steril. 1992, 58, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Ong, C.; Durairajanayagam, D. Contemporary and Future Insights into Fertility Preservation in Male Cancer Patients. Transl. Androl. Urol. 2014, 3, 27–40. [Google Scholar] [CrossRef]
- Oberoi, B.; Kumar, S.; Talwar, P. Study of Human Sperm Motility Post Cryopreservation. Med. J. Armed Forces India 2014, 70, 349–353. [Google Scholar] [CrossRef]
- Khalil, W.A.; El-Harairy, M.A.; Zeidan, A.E.B.; Hassan, M.A.E.; Mohey-Elsaeed, O. Evaluation of Bull Spermatozoa during and after Cryopreservation: Structural and Ultrastructural Insights. Int. J. Vet. Sci. Med. 2018, 6 (Suppl. 1), S49–S56. [Google Scholar] [CrossRef]
- Nynca, J.; Judycka, S.; Liszewska, E.; Dobosz, S.; Krzyś, M.; Ciereszko, A. Effect of Double Freezing Fish Semen on Sperm Motility and Fertility. Aquaculture 2021, 530, 735782. [Google Scholar] [CrossRef]
- Pezo, F.; Romero, F.; Zambrano, F.; Sánchez, R.S. Preservation of Boar Semen: An Update. Reprod. Domest. Anim. 2019, 54, 423–434. [Google Scholar] [CrossRef]
- Schäfer-Somi, S.; Tichy, A. Canine Post-Thaw Sperm Quality Can Be Predicted by Using CASA, and Classification and Regression Tree (CART)-Analysis. Pol. J. Vet. Sci 2019, 22, 51–59. [Google Scholar] [CrossRef]
- Davis, R.O.; Drobnis, E.Z.; Overstreet, J.W. Application of Multivariate Cluster, Discriminate Function, and Stepwise Regression Analyses to Variable Selection and Predictive Modeling of Sperm Cryosurvival. Fert. Ster. 1995, 63, 1051–1057. [Google Scholar] [CrossRef]
- Núñez-Martínez, I.; Morán, J.M.; Peña, F.J. A three-step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: Changes after cryopreservation. Reprod. Domest. Anim. 2006, 41, 408–415. [Google Scholar] [CrossRef]
- Barthelemy, C.; Royere, D.; Hammahah, S.; Lebos, C.; Tharanne, M.J.; Lansac, J. Ultrastructural Changes in Membranes and Acrosome of Human Sperm during Cryopreservation. Arch. Androl. 1990, 25, 29–40. [Google Scholar] [CrossRef] [PubMed]
- De Leeuw, F.E.; Chen, H.-C.; Colenbrander, B.; Verkleij, A.J. Cold-Induced Ultrastructural Changes in Bull and Boar Sperm Plasma Membranes. Cryobiology 1990, 27, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Holt, W.V.; Head, M.F.; North, R.D. Freeze-Induced Membrane Damage in Ram Spermatozoa Is Manifested after Thawing: Observations with Experimental Cryomicroscopy1. Biol. Reprod. 1992, 46, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Giraud, M.; Motta, C.; Boucher, D.; Grizard, G. Membrane Fluidity Predicts the Outcome of Cryopreservation of Human Spermatozoa. Hum. Reprod. 2000, 15, 2160–2164. [Google Scholar] [CrossRef] [PubMed]
- Karger, S.; Geiser, B.; Grau, M.; Burfeind, O.; Heuwieser, W.; Arlt, S.P. Prognostic Value of a Pre-Freeze Hypo-Osmotic Swelling Test on the Post-Thaw Quality of Dog Semen. Anim. Reprod. Sci. 2016, 166, 141–147. [Google Scholar] [CrossRef]
- Osorio Melendez, C.; Quintero-Moreno, A.; Nava-Trujillo, H.; Guillen, J.R.; Añez, J.C.G. Evaluation of the sperm acrosome integrity in cryopreserved buffalo semen using two staining methods: Sperm-blue[R] and eosin-nigrosin. Rev. CES Med. Vet. Zootec. 2016, 11, 192. [Google Scholar]
- Felipe-Pérez, Y.E.; Juárez-Mosqueda, M.L.; Hernández-González, E.O.; Valencia, J.J. Viability of fresh and frozen bull sperm compared by two staining techniques. Acta Vet. Bras. 2008, 2, 123–130. [Google Scholar]
- Prihantoko, K.D.; Yuliastuti, F.; Haniarti, H.; Kusumawati, A.; Widayati, D.T.; Budiyanto, A. The Acrosome Integrity Examination of Post-Thawed Spermatozoa of Several Ongole Grade Bull in Indonesia Using Giemsa Staining Method. IOP Conf. Ser. Earth Environ. Sci. 2020, 478, 012042. [Google Scholar] [CrossRef]
- Gopalkrishnan, K. Standardized Procedures in Human Semen Analysis. Curr. Sci. 1995, 68, 353–362. [Google Scholar]
- Benko, F.; Mohammadi-Sangcheshmeh, A.; Ďuračka, M.; Lukáč, N.; Tvrdá, E. In Vitro versus Cryo-Induced Capacitation of Bovine Spermatozoa, Part 1: Structural, Functional, and Oxidative Similarities and Differences. PLoS ONE 2022, 17, e0276683. [Google Scholar] [CrossRef] [PubMed]
- Watts, J. Measurement of Membrane Integrity in Canine Spermatozoa Using a Fluorescent Computer-Assisted Spermatozoal Quantification Method and Manual Counting after Eosin-Nigrosin Staining Compared with Manual Counting after CFDA/PI Staining. Reprod. Domest. Anim. 2019, 54, 1583–1595. [Google Scholar] [CrossRef] [PubMed]
- Tvrdá, E.; Dianová, L.; Ďuračka, M.; Kirchner, R. The Effect of Resveratrol on the Vitality of Mice Epididymal Spermatozoa. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 457–461. [Google Scholar] [CrossRef]
- Ded, L.; Dostalova, P.; Zatecka, E.; Dorosh, A.; Komrskova, K.; Peknicova, J. Fluorescent Analysis of Boar Sperm Capacitation Process in Vitro. Reprod. Biol. Endocrinol. 2019, 17, 109. [Google Scholar] [CrossRef]
- Partyka, A.; Niaski, W.; Ochot, M. Methods of Assessment of Cryopreserved Semen. In Current Frontiers in Cryobiology; Katkov, I., Ed.; IntechOpen: London, UK, 2012; pp. 547–574. [Google Scholar] [CrossRef]
- Peña, F.J. Detecting Subtle Changes in Sperm Membranes in Veterinary Andrology. Asian J. Androl. 2007, 9, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Nagy, S.; Jansen, J.; Topper, E.K.; Gadella, B.M. A Triple-Stain Flow Cytometric Method to Assess Plasma- and Acrosome-Membrane Integrity of Cryopreserved Bovine Sperm Immediately after Thawing in Presence of Egg-Yolk Particles1. Biol. Reprod. 2003, 68, 1828–1835. [Google Scholar] [CrossRef]
- Karunakaran, M.; Devanathan, T.G. Evaluation of Bull Semen for Fertility-Associated Protein, in Vitro characters and Fertility. J. Appl. Anim. Res. 2016, 45, 136–144. [Google Scholar] [CrossRef]
- Kwon, W.-S.; Shin, D.-H.; Ryu, D.-Y.; Khatun, A.; Rahman, M.S.; Pang, M.-G. Applications of Capacitation Status for Litter Size Enhancement in Various Pig Breeds. Asian-Australas. J. Anim. Sci. 2018, 31, 842–850. [Google Scholar] [CrossRef]
- Ryu, D.-Y.; Song, W.-H.; Pang, W.-K.; Yoon, S.-J.; Rahman, M.S.; Pang, M.-G. Freezability Biomarkers in Bull Epididymal Spermatozoa. Sci. Rep. 2019, 9, 12797. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Kwon, W.-S.; Rahman, M.S.; Lee, J.-S.; Pang, M.-G. A Novel Approach to Identifying Physical Markers of Cryo-Damage in Bull Spermatozoa. PLoS ONE 2015, 10, e0126232. [Google Scholar] [CrossRef]
- Yeste, M. Sperm Cryopreservation Update: Cryodamage, Markers, and Factors Affecting the Sperm Freezability in Pigs. Theriogenology 2016, 85, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Yeste, M. Recent Advances in Boar Sperm Cryopreservation: State of the Art and Current Perspectives. Reprod. Domest. Anim. 2015, 50, 71–79. [Google Scholar] [CrossRef]
- Gonzalez, M.; Prashar, T.; Connaughton, H.; Barry, M.; Robker, R.; Rose, R. Restoring Sperm Quality Post-Cryopreservation Using Mitochondrial-Targeted Compounds. Antioxidants 2022, 11, 1808. [Google Scholar] [CrossRef] [PubMed]
- Vašíček, J.; Baláži, A.; Svoradová, A.; Vozaf, J.; Dujíčková, L.; Makarevich, A.V.; Bauer, M.; Chrenek, P. Comprehensive Flow-Cytometric Quality Assessment of Ram Sperm Intended for Gene Banking Using Standard and Novel Fertility Biomarkers. Int. J. Mol. Sci. 2022, 23, 5920. [Google Scholar] [CrossRef]
- Marchetti, C.; Jouy, N.; Leroy-Martin, B.; Defossez, A.; Formstecher, P.; Marchetti, P. Comparison of Four Fluorochromes for the Detection of the Inner Mitochondrial Membrane Potential in Human Spermatozoa and Their Correlation with Sperm Motility. Hum. Reprod. 2004, 19, 2267–2276. [Google Scholar] [CrossRef]
- Alamo, A.; De Luca, C.; Mongioì, L.M.; Barbagallo, F.; Cannarella, R.; La Vignera, S.; Calogero, A.E.; Condorelli, R.A. Mitochondrial Membrane Potential Predicts 4-Hour Sperm Motility. Biomedicines 2020, 8, 196. [Google Scholar] [CrossRef]
- Sui, H.; Sheng, M.; Luo, H.; Liu, G.; Meng, F.; Cao, Z.; Zhang, Y. Characterization of Freezability-Associated Metabolites in Boar Semen. Theriogenology 2023, 196, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Gosálvez, J.; López-Fernández, C.; Fernández, J.L.; Gouraud, A.; Holt, W.V. Relationships between the Dynamics of Iatrogenic DNA Damage and Genomic Design in Mammalian Spermatozoa from Eleven Species. Mol. Reprod. Dev. 2011, 78, 951–961. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Llavanera, M.; Mateo-Otero, Y.; Garcia-Bonavila, E.; Delgado-Bermúdez, A.; Yeste, M. Direct but Not Indirect Methods Correlate the Percentages of Sperm with Altered Chromatin to the Intensity of Chromatin Damage. Front. Vet. Sci. 2021, 8, 719319. [Google Scholar] [CrossRef]
- Evenson, D.P. Sperm Chromatin Structure Assay (SCSA®). Methods Mol. Biol. 2012, 927, 147–164. [Google Scholar] [CrossRef]
- Yeste, M.; Estrada, E.; Casas, I.; Bonet, S.; Rodríguez-Gil, J.E. Good and Bad Freezability Boar Ejaculates Differ in the Integrity of Nucleoprotein Structure after Freeze-Thawing but Not in ROS Levels. Theriogenology 2013, 79, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Jakop, U.; Engel, K.M.; Hürland, M.; Müller, P.; Osmers, J.-H.; Jung, M.; Schulze, M. Lipid Alterations by Oxidative Stress Increase Detached Acrosomes after Cryopreservation of Semen in Holstein Bulls. Theriogenology 2022, 197, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Segundo Salinas, M.B.; Lertwichaikul, T.; Khunkaew, C.; Boonyayatra, S.; Sringarm, K.; Chuammitri, P.; Sathanawongs, A. Freezability Biomarkers in the Epididymal Spermatozoa of Swamp Buffalo. Cryobiology 2022, 106, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Soto, J.C.; Landeras, J.; Gadea, J. Spermatozoa and Seminal Plasma Fatty Acids as Predictors of Cryopreservation Success. Andrology 2012, 1, 365–375. [Google Scholar] [CrossRef]
- Vigolo, V.; Giaretta, E.; Da Dalt, L.; Damiani, J.; Gabai, G.; Bertuzzo, F.; Falomo, M.E. Relationships between Biomarkers of Oxidative Stress in Seminal Plasma and Sperm Motility in Bulls before and after Cryopreservation. Animals 2022, 12, 2534. [Google Scholar] [CrossRef]
- Elisa, G.; Gianfranco, G.; Beatrice, M.; Diego, B.; Anna, D.; Veronica, V.; Elena, F.M.; Lucio, Z. Evaluation of Metabolomic Profiling and Oxidative Stress Markers of Bull Seminal Plasma and Their Relationship with Sperm Motility before and after Thawing. Anim. Reprod. Sci. 2022, 247, 107107. [Google Scholar] [CrossRef]
- Catalán, J.; Yánez-Ortiz, I.; Tvarijonaviciute, A.; González-Arostegui, L.G.; Rubio, C.P.; Yeste, M.; Miró, J.; Barranco, I. Impact of Seminal Plasma Antioxidants on Donkey Sperm Cryotolerance. Antioxidants 2022, 11, 417. [Google Scholar] [CrossRef]
- Li, J.; Barranco, I.; Tvarijonaviciute, A.; Molina, M.F.; Martinez, E.A.; Rodriguez-Martinez, H.; Parrilla, I.; Roca, J. Seminal Plasma Antioxidants Are Directly Involved in Boar Sperm Cryotolerance. Theriogenology 2018, 107, 27–35. [Google Scholar] [CrossRef]
- Gilbert, I.; Bissonnette, N.; Boissonneault, G.; Vallée, M.; Robert, C. A molecular analysis of the population of mRNA in bovine spermatozoa. Reproduction 2007, 133, 1073–1086. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X. Gene transcripts in spermatozoa: Markers of male infertility. Clin. Chim. Acta 2012, 413, 1035–1038. [Google Scholar] [CrossRef]
- Fraser, L.; Brym, P.; Pareek, C.S.; Mogielnicka-Brzozowska, M.; Paukszto, L.; Jastrzebski, J.P.; Wasilewska-Sakowska, K.; Mańkowska, A.; Sobiech, P.; Zukowski, K. Transcriptome analysis of boar spermatozoa with different freezability using RNA-Seq. Theriogenology 2020, 142, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Jodar, M.; Sendler, E.; Moskovtsev, S.I.; Librach, C.L.; Goodrich, R.; Swanson, S.; Hauser, R.; Diamond, M.P.; Krawetz, S.A. Response to Comment on “Absence of sperm RNA elements correlates with idiopathic male infertility”. Sci. Transl. Med. 2016, 8, 353tr1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parthipan, S.; Selvaraju, S.; Somashekar, L.; Arangasamy, A.; Sivaram, M.; Ravindra, J. Spermatozoal transcripts expression levels are predictive of semen quality and conception rate in bulls (Bos taurus). Theriogenology 2017, 98, 41–49. [Google Scholar] [CrossRef]
- Nazari, H.; Ahmadi, E.; Hosseini Fahraji, H.; Afzali, A.; Davoodian, N. Cryopreservation and its effects on motility and gene expression patterns and fertilizing potential of bovine epididymal sperm. Vet. Med. Sci. 2021, 7, 127–135. [Google Scholar] [CrossRef]
- Bissonnette, N.; Levesque-Sergerie, J.P.; Thibault, C.; Boissonneault, G. Spermatozoal transcriptome profiling for bull sperm motility: A potential tool to evaluate semen quality. Reproduction 2009, 138, 65–80. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhu, H.; Hao, H.; Zhao, X.; Qin, T.; Wang, D. Comparative transcript profiling of gene expression of fresh and frozen-thawed bull sperm. Theriogenology 2015, 83, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Yathish, H.M.; Kumar, S.; Dubey, P.P.; Modi, R.P.; Chaudhary, R.; Kumar, A.S.; Ghosh, S.K.; Sarkar, M.; Sivamani, B. Profiling of sperm gene transcripts in crossbred (Bos taurus × Bos indicus) bulls. Anim. Reprod. Sci. 2017, 177, 25–34. [Google Scholar] [CrossRef]
- Fraser, L. Markers for Sperm Freezability and Relevance of Transcriptome Studies in Semen Cryopreservation: A Review. In Theriogenology; Payan-Carreira, R., Ed.; IntechOpen: London, UK, 2017; pp. 47–62. [Google Scholar] [CrossRef]
- Card, C.J.; Kreiger, K.E.; Kaproth, M.; Sartini, B.L. Oligo-dT selected spermatozoal transcript profiles differ among higher and lower fertility dairy sires. Anim. Reprod. Sci. 2017, 177, 105–123. [Google Scholar] [CrossRef]
- Pang, W.; Son, J.; Ryu, D.; Rahman, M.S.; Park, Y.; Pang, M. Heat shock protein family D member 1 in boar spermatozoa is strongly related to the litter size of inseminated sows. J. Anim. Sci. Biotechnol. 2022, 13, 42. [Google Scholar] [CrossRef]
- Mańkowska, A.; Gilun, P.; Zasiadczyk, L.; Sobiech, P.; Fraser, L. Expression of TXNRD1, HSPA4L and ATP1B1 Genes Associated with the Freezability of Boar Sperm. Int. J. Mol. Sci. 2022, 23, 9320. [Google Scholar] [CrossRef]
- Intasqui, P.; Camargo, M.; Del Giudice, P.T.; Spaine, D.M.; Carvalho, V.M.; Cardozo, K.H.M.; Cedenho, A.P.; Bertolla, R.P. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation. J. Assist. Reprod. Genet. 2013, 30, 1187–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Z.; Wang, S.; Han, P.; Jiang, X.; Liu, Z.; Sun, H.; Tang, M.; Wang, W.; Tang, J.; Zhang, W. Aconitate 2 (ACO2) and pyruvate kinase M2 (PKM2) are good predictors of human sperm freezability. Int. J. Clin. Exp. Med. 2018, 11, 7995–8002. [Google Scholar]
- Salicioni, A.M.; Gervasi, M.G.; Sosnik, J.; Tourzani, D.A.; Nayyab, S.; Caraballo, D.A.; Visconti, P.E. Testis-specific serine kinase protein family in male fertility and as targets for non-hormonal male contraception. Biol. Reprod. 2020, 103, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, H.; Fu, G.; Wang, Y.; Du, S.; Yu, L.; Wei, Y.; Chen, S. Testis-specific serine/threonine protein kinase 4 (Tssk4) phosphorylates Odf2 at Ser-76. Sci. Rep. 2016, 6, 22861. [Google Scholar] [CrossRef]
- Mańkowska, A.; Brym, P.; Sobiech, P.; Fraser, L. Promoter polymorphisms in STK35 and IFT27 genes and their associations with boar sperm freezability. Theriogenology 2022, 189, 199–208. [Google Scholar] [CrossRef]
- Mańkowska, A.; Brym, P.; Paukszto, L.; Jastrzebski, J.P.; Fraser, L. Gene polymorphisms in boar Spermatozoa and Their Associations with Post-Thaw Semen Quality. Int. J. Mol. Sci. 2020, 21, 1902. [Google Scholar] [CrossRef]
- Khan, I.M.; Cao, Z.; Liu, H.; Khan, A.; Rahman, S.U.; Khan, M.Z.; Sathanawongs, A.; Zhang, Y. Impact of cryopreservation on Spermatozoa Freeze-Thawed Traits and Relevance OMICS to Assess Sperm Cryo-Tolerance in Farm Animals. Front. Vet. Sci. 2021, 8, 609180. [Google Scholar] [CrossRef]
- Wang, M.; Todorov, P.; Wang, W.; Isachenko, E.; Rahimi, G.; Mallmann, P.; Isachenko, V. Cryoprotectants-Free Vitrification and Conventional Freezing of Human Spermatozoa: A Comparative Transcript Profiling. Int. J. Mol. Sci. 2022, 23, 3047. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, D.; Chang, Y.; Li, Y.; Zhang, M.; Zhou, G.; Peng, Z.; Zeng, C. Cryopreservation of boar sperm induces differential microRNAs expression. Cryobiology 2017, 76, 24–33. [Google Scholar] [CrossRef]
- Mani, S.; Ghosh, J.; Coutifaris, C.; Sapienza, C.; Mainigi, M. Epigenetic changes and assisted reproductive technologies. Epigenetics 2020, 15, 12–25. [Google Scholar] [CrossRef]
- Tahmasbpour Marzouni, E.; Ilkhani, H.; Beigi Harchegani, A.; Shafaghatian, H.; Layali, I.; Shahriary, A. Epigenetic Modifications, A New Approach to Male Infertility Etiology: A Review. Int. J. Fertil. Steril. 2022, 16, 1–9. [Google Scholar] [PubMed]
- Åsenius, F.; Danson, A.F.; Marzi, S.J. DNA methylation in human sperm: A systematic review. Hum. Reprod. Update 2020, 26, 841–873. [Google Scholar] [CrossRef] [PubMed]
- Gunes, S.; Esteves, S.C. Role of genetics and epigenetics in male infertility. Andrologia 2021, 53, e13586. [Google Scholar] [CrossRef] [PubMed]
- Sujit, K.M.; Singh, V.; Trivedi, S.; Singh, K.; Gupta, G.; Rajender, S. Increased DNA methylation in the spermatogenesis-associated (SPATA) genes correlates with infertility. Andrology 2020, 8, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Chi, F.; Zhao, M.; Li, K.; Lin, A.Q.; Li, Y.; Teng, X. DNA methylation status of imprinted H19 and KvDMR1 genes in human placentas after conception using assisted reproductive technology. Ann. Transl. Med. 2020, 8, 854. [Google Scholar] [CrossRef]
- Vieweg, M.; Dvorakova-Hortova, K.; Dudkova, B.; Waliszewski, P.; Otte, M.; Oels, B.; Hajimohammad, A.; Turley, H.; Schorsch, M.; Schuppe, H.; et al. Methylation analysis of histone H4K12ac-associated promoters in sperm of healthy donors and subfertile patients. Clin. Epigenetics 2015, 7, 31. [Google Scholar] [CrossRef]
- Schon, S.B.; Luense, L.L.; Wang, X.; Bartolomei, M.S.; Coutofaris, C.; Gracia, B.A.; Berger, S.L. Histone modification signatures in human sperm distinguish clinical abnormalities. J. Assist. Reprod. Genet. 2019, 36, 267–275. [Google Scholar] [CrossRef]
- Patel, D.P.; Jenkins, T.G.; Aston, K.I.; Guo, J.; Pastuszak, A.W.; Hanson, H.A.; Hotaling, J.M. Harnessing the full potential of reproductive genetics and epigenetics for male infertility in the era of “big data”. Fertil. Steril. 2020, 113, 478–488. [Google Scholar] [CrossRef]
- Crapster, J.A.; Rack, P.G.; Hellmann, Z.J.; Le, A.D.; Adams, C.M.; Leib, R.D.; Elias, J.E.; Perrino, J.; Behr, B.; Li, Y.; et al. HIPK4 is essential for murine spermiogenesis. eLife 2020, 9, e50209. [Google Scholar] [CrossRef]
- Giacone, F.; Cannarella, R.; Mongioì, L.M.; Alamo, A.; Condorelli, R.A.; Calogero, A.E.; Vignera, S.L. Epigenetics of Male Fertility: Effects on Assisted Reproductive Techniques. World J. Men’s Health 2019, 37, 148–156. [Google Scholar] [CrossRef]
- Zeng, C.; Peng, W.; Ding, L.; He, L.; Zhang, Y.; Fang, D.; Tang, K. A preliminary study on epigenetic changes during boar spermatozoa cryopreservation. Cryobiology 2014, 69, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Dixon, M.P.; Kueh, A.J.; Voss, A.K. Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol. Cell. Biol. 2008, 28, 5093–5105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, M.; Mahdavi, A.H.; Shafari, M.; Shahverdi, A. Cryopreservation of rooster semen: Evidence for the epigenetic modifications of thawed sperm. Theriogenology 2020, 142, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Audrich, C.; Schreiner, B.; Ille, N.; Alvarenga, M.; Scarlet, D. Cytosine methylation of sperm DNA in horse semen after cryopreservation. Theriogenology 2016, 86, 1347–1352. [Google Scholar] [CrossRef]
- La Spina, F.A.; Romanato, M.; Brugo-Olmedo, S.; De Vincentiis, S.; Julianelli, V.; Rivera, R.M.; Buffone, M.G. Heterogenous distribution of histone methylation in mature human sperm. J. Assist. Reprod. Genet. 2014, 31, 45–49. [Google Scholar] [CrossRef]
- Rotondo, J.C.; Lanzillotti, C.; Mazziotta, C.; Tognon, M.; Martini, F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front. Cell Dev. Biol. 2021, 9, 689624. [Google Scholar] [CrossRef]
- Harchegani, A.B.; Shafaghatian, H.; Tahmasbpour, E.; Shahriary, A. Regulatory Functions of microRNAs in Male Reproductive Health: A New Approach to Understanding Male Infertility. Reprod. Sci. 2018, 1933719118765972. [Google Scholar] [CrossRef]
- Holland, A.; Ohlendieck, K. Comparative profiling of the sperm proteome. Proteomics 2015, 15, 632–648. [Google Scholar] [CrossRef]
- Perez-Patiño, C.; Barranco, I.; Parrilla, I.; Valero, M.L.; Martinez, E.A.; Rodriguez-Martinez, H.; Roca, J. Characterization of the porcine seminal plasma proteome comparing ejaculate portions. J. Proteom. 2016, 142, 15–23. [Google Scholar] [CrossRef]
- Agarwal, A.; Panner Selvam, M.K.; Baskaran, S. Proteomic Analyses of Human Sperm Cells: Understanding the Role of Proteins and Molecular Pathways Affecting Male Reproductive Health. Int. J. Mol. Sci. 2020, 21, 1621. [Google Scholar] [CrossRef]
- Beeram, E.; Suman, B.; Divya, B. Proteins as the Molecular Markers of Male Fertility. J. Hum. Reprod. Sci. 2019, 12, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Patiño, C.; Parrilla, I.; Li, J.; Barranco, I.; Martínez, E.A.; Rodriguez-Martínez, H.; Roca, J. The Proteome of Pig Spermatozoa Is Remodeled During Ejaculation. Mol. Cell. Proteom. 2019, 18, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samanta, L.; Parida, R.; Dias, T.R.; Agarwal, A. The enigmatic seminal plasma: A proteomics insight from ejaculation to fertilization. Reprod. Biol. Endocrinol. 2018, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Albero, M.C.; González-Brusi, L.; Cots, P.; Luongo, C.; Abril-Sánchez, S.; Ros-Santaella, J.L.; Pintus, E.; Ruiz-Díaz, S.; Barros-García, C.; Sánchez-Calabuig, M.J.; et al. Protein Identification of Spermatozoa and Seminal Plasma in Bottlenose Dolphin (Tursiops truncatus). Front. Cell Dev. Biol. 2021, 9, 673961. [Google Scholar] [CrossRef] [PubMed]
- Kutchy, N.A.; Dogan, S.; Wang, X.; Topper, E.; Kaya, A.; Memili, E. Application of Proteomics to Identify Fertility Markers in Angus Bull Sperm. HAYATI J. Biosci. 2020, 27, 116. [Google Scholar] [CrossRef]
- Mendonça, G.A.; Morandi Filho, R.; Terêncio Souza, E.; Schwarz Gaggini, T.; Silva-Mendonça, M.C.A.; Antunes, R.C.; Beletti, M.E. Isolation and identification of proteins from swine sperm chromatin and nuclear matrix. Anim. Reprod. 2017, 14, 418–428. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, H.; Hu, C.; Hao, H.; Zhang, J.; Li, K.; Zhao, X.; Qin, T.; Zhao, K.; Zhu, H.; et al. Identification of differentially expressed proteins in fresh and frozen-thawed boar spermatozoa by iTRAQ-coupled 2D LC-MS/MS. Reproduction 2014, 147, 321–330. [Google Scholar] [CrossRef]
- Magalhães, M.J., Jr.; Martins, L.F.; Senra, R.L.; Santos, T.F.; Okano, D.S.; Pereira, P.R.; Faria-Campos, A.; Campos, S.V.; Guimarães, J.D.; Baracat-Pereira, M.C. Differential abundances of four forms of Binder of SPerm 1 in the seminal plasma of Bos taurus indicus bulls with different patterns of semen freezability. Theriogenology 2016, 86, 766–777. [Google Scholar] [CrossRef]
- Bogle, O.A.; Kumar, K.; Attardo-Parrinello, C.; Lewis, S.E.; Estanyol, J.M.; Ballescà, J.L.; Oliva, R. Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology 2017, 5, 10–22. [Google Scholar] [CrossRef]
- Zhang, X.G.; Hu, S.; Han, C.; Zhu, Q.C.; Yan, G.J.; Hu, J.H. Association of heat shock protein 90 with motility of post-thawed sperm in bulls. Cryobiology 2015, 70, 164–169. [Google Scholar] [CrossRef]
- Zhang, X.G.; Hong, J.Y.; Yan, G.J.; Wang, Y.F.; Li, Q.W.; Hu, J.H. Association of heat shock protein 70 with motility of frozen-thawed sperm in bulls. Czech J. Anim. Sci. 2015, 60, 256–262. [Google Scholar] [CrossRef]
- Moura, A.A.; Memili, E. Functional aspects of seminal plasma and sperm proteins and their potential as molecular markers of fertility. Anim. Reprod. 2016, 13, 191–199. [Google Scholar] [CrossRef]
- Naaby-Hansen, S.; Herr, J.C. Heat shock proteins on the human sperm surface. J. Reprod. Immunol. 2010, 84, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Beere, H.M. “The stress of dying”: The role of heat shock proteins in the regulation of apoptosis. J. Cell Sci. 2004, 117, 2641–2651. [Google Scholar] [CrossRef]
- Vos, M.J.; Hageman, J.; Carra, S.; Kampinga, H.H. Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 2008, 47, 7001–7011. [Google Scholar] [CrossRef]
- Purandhar, K.; Jena, P.K.; Prajapati, B.; Rajput, P.; Seshadri, S. Understanding the role of heat shock protein isoforms in male fertility, aging and apoptosis. World J. Men’s Health 2014, 32, 123–132. [Google Scholar] [CrossRef]
- Sun, P.; Wang, Y.; Gao, T.; Li, K.; Zheng, D.; Liu, A.; Ni, Y. Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. Reprod. Biol. Endocrinol. 2021, 19, 39. [Google Scholar] [CrossRef]
- Pratt, W.B. The hsp90-based chaperone system: Involvement in signal transduction from a variety of hormone and growth factor receptors. Proc. Soc. Exp. Biol. Med. 1998, 217, 420–434. [Google Scholar] [CrossRef]
- Kamaruddin, M.; Kroetsch, T.; Basrur, P.K.; Hansen, P.J.; King, W.A. Immunolocalization of heat shock protein 70 in bovine spermatozoa. Andrologia 2004, 36, 327–334. [Google Scholar] [CrossRef]
- Spinaci, M.; Volpe, S.; Bernardini, C.; De Ambrogi, M.; Tamanini, C.; Seren, E.; Galeati, G. Immunolocalization of heat shock protein 70 (Hsp 70) in boar spermatozoa and its role during fertilization. Mol. Reprod. Dev. 2005, 72, 534–541. [Google Scholar] [CrossRef]
- Calle-Guisado, V.; Bragado, M.J.; García-Marín, L.J.; González-Fernández, L. HSP90 maintains boar spermatozoa motility and mitochondrial membrane potential during heat stress. Anim. Reprod. Sci. 2017, 187, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, Y.F.; Wang, H.; Wang, C.W.; Zan, L.S.; Hu, J.H.; Li, Q.W.; Jia, Y.H.; Ma, G.J. HSP90 expression correlation with the freezing resistance of bull sperm. Zygote 2014, 22, 239–245. [Google Scholar] [CrossRef]
- Holt, W.V.; Del Valle, I.; Fazeli, A. Heat shock protein A8 stabilizes the bull sperm plasma membrane during cryopreservation: Effects of breed, protein concentration, and mode of use. Theriogenology 2015, 84, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Luconi, M.; Cantini, G.; Baldi, E.; Forti, G. Role of a-kinase anchoring proteins (AKAPs) in reproduction. Front. Biosci. 2011, 16, 1315–1330. [Google Scholar] [CrossRef] [PubMed]
- Visconti, P.E.; Johnson, L.R.; Oyaski, M.; Fornés, M.; Moss, S.B.; Gerton, G.L.; Kopf, G.S. Regulation, localization, and anchoring of protein kinase A subunits during mouse sperm capacitation. Dev. Biol. 1997, 192, 351–363. [Google Scholar] [CrossRef]
- Turner, R.M.; Casas-Dolz, R.; Schlingmann, K.L.; Hameed, S. Characterization of an A-kinase anchor protein in equine spermatozoa and examination of the effect of semen cooling and cryopreservation on the binding of that protein to the regulatory subunit of protein kinase-A. Am. J. Vet. Res. 2005, 66, 1056–1064. [Google Scholar] [CrossRef]
- Blommaert, D.; Sergeant, N.; Delehedde, M.; Jouy, N.; Mitchell, V.; Franck, T.; Donnay, I.; Lejeune, J.P.; Serteyn, D. Expression, localization, and concentration of A-kinase anchor protein 4 (AKAP4) and its precursor (proAKAP4) in equine semen: Promising marker correlated to the total and progressive motility in thawed spermatozoa. Theriogenology 2019, 131, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Yeste, M.; Morato, R.; Rodriguez-Gil, J.E.; Bonet, S.; Prieto-Martinez, N. Aquaporins in the male reproductive tract and sperm: Functional implications and cryobiology. Reprod. Domest. Anim. 2017, 52, 12–27. [Google Scholar] [CrossRef]
- Ariadna, D.-B.; Marc, L.; Leira, F.-B.; Sandra, R.; Yentel, M.-O.; Sergi, B.; Isabel, B.; Beatriz, F.-F.; Marc, Y. Aquaglyceroporins but not orthodox aquaporins are involved in the cryotolerance of pig spermatozoa. J. Anim. Sci. Biotechnol. 2019, 10, 77. [Google Scholar]
- Prieto-Martínez, N.; Vilagran, I.; Morató, R.; Rivera Del Álamo, M.M.; Rodríguez-Gil, J.E.; Bonet, S.; Yeste, M. Relationship of aquaporins 3 (AQP3), 7 (AQP7), and 11 (AQP11) with boar sperm resilience to withstand freeze-thawing procedures. Andrology 2017, 5, 1153–1164. [Google Scholar] [CrossRef]
- Delgado-Bermúdez, A.; Noto, F.; Bonilla-Correal, S.; Garcia-Bonavila, E.; Catalán, J.; Papas, M.; Bonet, S.; Miró, J.; Yeste, M. Cryotolerance of Stallion Spermatozoa Relies on Aquaglyceroporins rather than Orthodox Aquaporins. Biology 2019, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Hirayama, H.; Fukuda, S.; Kageyama, S.; Naito, A.; Yoshino, H.; Moriyasu, S.; Yamazaki, T.; Sakamoto, K.; Hayakawa, H.; et al. Expression and localization of aquaporins 3 and 7 in bull spermatozoa and their relevance to sperm motility after cryopreservation. J. Reprod. Dev. 2018, 64, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Martínez, N.; Morató, R.; Vilagran, I.; Rodríguez-Gil, J.E.; Bonet, S.; Yeste, M. Aquaporins in boar spermatozoa. Part II: Detection and localisation of aquaglyceroporin 3. Reprod. Fertil. Dev. 2017, 29, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Martínez, N.; Vilagran, I.; Morató, R.; Rodríguez-Gil, J.E.; Yeste, M.; Bonet, S. Aquaporins 7 and 11 in boar spermatozoa: Detection, localisation and relationship with sperm quality. Reprod. Fertil. Dev. 2016, 28, 663–672. [Google Scholar] [CrossRef]
- Morató, R.; Prieto-Martínez, N.; Muiño, R.; Hidalgo, C.O.; Rodríguez-Gil, J.E.; Bonet, S.; Yeste, M. Aquaporin 11 is related to cryotolerance and fertilising ability of frozen-thawed bull spermatozoa. Reprod. Fertil. Dev. 2018, 30, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Song, W.H.; Ryu, D.Y.; Pang, W.K.; Yoon, S.J.; Rahman, M.S.; Pang, M.G. NT5C1B and FH are closely associated with cryoprotectant tolerance in spermatozoa. Andrology 2020, 8, 221–230. [Google Scholar] [CrossRef]
- Casas, I.; Sancho, S.; Briz, M.; Pinart, E.; Bussalleu, E.; Yeste, M.; Bonet, S. Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. Theriogenology 2009, 72, 930–948. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.; Ping, P.; Wang, G.; Yuan, X.; Sun, F. Outer dense fibers stabilize the axoneme to maintain sperm motility. J. Cell. Mol. Med. 2018, 22, 1755–1768. [Google Scholar] [CrossRef] [PubMed]
- Vilagran, I.; Yeste, M.; Sancho, S.; Rigau, T.; Rivera del Alamo, M.M.; Bonet, S. Is Voltage-Dependent Anion Channel 2 (VDAC2) a good marker to predict boar sperm freezability? Reprod. Domest. Anim. 2014, 49, 100. [Google Scholar]
- Vilagran, I.; Castillo, J.; Bonet, S.; Sancho, S.; Yeste, M.; Estanyol, J.M.; Oliva, R. Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) are good markers to predict boar sperm freezing capacity. Theriogenology 2013, 80, 443–450. [Google Scholar] [CrossRef]
- Han, Z.; Wang, Z.; Cheng, G.; Liu, B.; Li, P.; Li, J.; Wang, W.; Yin, C.; Zhang, W. Presence, localization, and origin of clusterin in normal human spermatozoa. J. Assist. Reprod. Genet. 2012, 29, 751–757. [Google Scholar] [CrossRef]
- Linck, R.; Fu, X.; Lin, J.; Ouch, C.; Schefter, A.; Steffen, W.; Warren, P.; Nicastro, D. Insights into the structure and function of ciliary and flagellar doublet microtubules: Tektins, Ca2+-binding proteins, and stable protofilaments. J. Biol. Chem. 2014, 289, 17427–17444. [Google Scholar] [CrossRef]
- Akintayo, A.; Légaré, C.; Sullivan, R. Dicarbonyl L-xylulose reductase (DCXR), a “moonlighting protein” in the bovine epididymis. PLoS ONE 2015, 10, e0120869. [Google Scholar] [CrossRef]
- Sun, W.; Jiang, S.; Su, J.; Zhang, J.; Bao, X.; Ding, R.; Shi, P.; Li, S.; Wu, C.; Zhao, G.; et al. The effects of cryopreservation on the acrosome structure, enzyme activity, motility, and fertility of bovine, ovine, and goat sperm. Anim. Reprod. 2021, 17, e20200219. [Google Scholar] [CrossRef]
- Schlingmann, K.; Michaut, M.A.; McElwee, J.L.; Wolff, C.A.; Travis, A.J.; Turner, R.M. Calmodulin and CaMKII in the sperm principal piece: Evidence for a motility-related calcium/calmodulin pathway. J. Androl. 2007, 28, 706–716. [Google Scholar] [CrossRef]
- Babbitt, S.E.; Sutherland, M.C.; San Francisco, B.; Mendez, D.L.; Kranz, R.G. Mitochondrial cytochrome c biogenesis: No longer an enigma. Trends Biochem. Sci. 2015, 40, 446–455. [Google Scholar] [CrossRef]
- Baker, M.A.; Krutskikh, A.; Curry, B.J.; Hetherington, L.; Aitken, R.J. Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa. Biol. Reprod. 2005, 73, 334–342. [Google Scholar] [CrossRef]
- Milardi, D.; Grande, G.; Vincenzoni, F.; Messana, I.; Pontecorvi, A.; De Marinis, L.; Castagnola, M.; Marana, R. Proteomic approach in the identification of fertility pattern in seminal plasma of fertile men. Fertil. Steril. 2012, 97, 67–73. [Google Scholar] [CrossRef]
- Robertson, S.A. Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res. 2005, 322, 43–52. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Agarwal, A. Proteomic Profiling of Seminal Plasma Proteins in Varicocele Patients. World J. Men’s Health 2021, 39, 90–98. [Google Scholar] [CrossRef]
- Martins, A.D.; Panner Selvam, M.K.; Agarwal, A.; Alves, M.G.; Baskaran, S. Alterations in seminal plasma proteomic profile in men with primary and secondary infertility. Sci. Rep. 2020, 10, 7539. [Google Scholar] [CrossRef]
- Cunha Bustamante-Filho, I.; Renato Menegassi, S.; Ribas Pereira, G.; Dias Salton, G.; Mosena Munari, F.; Roberto Schneider, M.; Costa Mattos, R.; Otávio Jardim Barcellos, J.; Pereira Laurino, J.; Obino Cirne-Lima, E.; et al. Bovine seminal plasma osteopontin: Structural modelling, recombinant expression and its relationship with semen quality. Andrologia 2021, 53, e13905. [Google Scholar] [CrossRef] [PubMed]
- D’Occhio, M.J.; Campanile, G.; Zicarelli, L.; Visintin, J.A.; Baruselli, P.S. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol. Reprod. Dev. 2020, 87, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.A.; Koc, H.; Chapman, D.A.; Killian, G.J. Identification of proteins in the accessory sex gland fluid associated with fertility indexes of dairy bulls: A proteomic approach. J. Androl. 2006, 27, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Kumar, D.; Singh, I.; Yadav, P.S. Seminal Plasma Proteome: Promising Biomarkers for Bull Fertility. Agric. Res. 2012, 1, 78–86. [Google Scholar] [CrossRef]
- Gonçalves, R.F.; Chapman, D.A.; Bertolla, R.P.; Eder, I.; Killian, G.J. Pre-treatment of cattle semen or oocytes with purified milk osteopontin affects in vitro fertilization and embryo development. Anim. Reprod. Sci. 2008, 108, 375–383. [Google Scholar] [CrossRef]
- Boccia, L.; Di Francesco, S.; Neglia, G.; De Blasi, M.; Longobardi, V.; Campanile, G.; Gasparrini, B. Osteopontin improves sperm capacitation and in vitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology 2013, 80, 212–217. [Google Scholar] [CrossRef]
- Hao, Y.; Murphy, C.N.; Spate, L.; Wax, D.; Zhong, Z.; Samuel, M.; Mathialagan, N.; Schatten, H.; Prather, R.S. Osteopontin improves in vitro development of porcine embryos and decreases apoptosis. Mol. Reprod. Dev. 2008, 75, 291–298. [Google Scholar] [CrossRef]
- Cancel, A.M.; Chapman, D.A.; Killian, G.J. Osteopontin is the 55-kilodalton fertility-associated protein in Holstein bull seminal plasma. Biol. Reprod. 1997, 57, 1293–1301. [Google Scholar] [CrossRef]
- Rego, J.P.; Martins, J.M.; Wolf, C.A.; van Tilburg, M.; Moreno, F.; Monteiro-Moreira, A.C.; Moreira, R.A.; Santos, D.O.; Moura, A.A. Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls. J. Anim. Sci. 2016, 94, 5308–5320. [Google Scholar] [CrossRef]
- Jobim, M.I.; Oberst, E.R.; Salbego, C.G.; Souza, D.O.; Wald, V.B.; Tramontina, F.; Mattos, R.C. Two-dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability. Theriogenology 2004, 61, 255–266. [Google Scholar] [CrossRef]
- Gomes, F.P.; Park, R.; Viana, A.G.; Fernandez-Costa, C.; Topper, E.; Kaya, A.; Memili, E.; Yates, J.R., 3rd; Moura, A.A. Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci. Rep. 2020, 10, 14661. [Google Scholar] [CrossRef] [PubMed]
- Plante, G.; Prud’homme, B.; Fan, J.; Lafleur, M.; Manjunath, P. Evolution and function of mammalian binder of sperm proteins. Cell Tissue Res. 2016, 363, 105–127. [Google Scholar] [CrossRef] [PubMed]
- Plante, G.; Thérien, I.; Lachance, C.; Leclerc, P.; Fan, J.; Manjunath, P. Implication of the human Binder of SPerm Homolog 1 (BSPH1) protein in capacitation. Mol. Hum. Reprod. 2014, 20, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Rayees Dar, M.; Singh, M.; Sharma, R.; Thakur, S.; Sheikh, A.A.; Bhat, S.A. Bovine Fertility as Regulated by Sperm Binding Proteins: A Review. Asian J. Anim. Vet. Adv. 2018, 13, 6–13. [Google Scholar] [CrossRef]
- Bergeron, A.; Crête, M.H.; Brindle, Y.; Manjunath, P. Low-density lipoprotein fraction from hen’s egg yolk decreases the binding of the major proteins of bovine seminal plasma to sperm and prevents lipid efflux from the sperm membrane. Biol. Reprod. 2004, 70, 708–717. [Google Scholar] [CrossRef]
- Plante, G.; Lusignan, M.F.; Lafleur, M.; Manjunath, P. Interaction of milk proteins and Binder of Sperm (BSP) proteins from boar, stallion and ram semen. Reprod. Biol. Endocrinol. 2015, 13, 92. [Google Scholar] [CrossRef]
- Aquino-Cortez, A.; Pinheiro, B.Q.; Lima, D.B.C.; Silva, H.V.R.; Mota-Filho, A.C.; Martins, J.A.M.; Rodriguez-Villamil, P.; Moura, A.A.; Silva, L.D.M. Proteomic characterization of canine seminal plasma. Theriogenology 2017, 95, 178–186. [Google Scholar] [CrossRef]
- González-Cadavid, V.; Martins, J.A.; Moreno, F.B.; Andrade, T.S.; Santos, A.C.; Monteiro-Moreira, A.C.; Moreira, R.A.; Moura, A.A. Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology 2014, 82, 697–707. [Google Scholar] [CrossRef]
- Souza, C.E.; Rego, J.P.; Lobo, C.H.; Oliveira, J.T.; Nogueira, F.C.; Domont, G.B.; Fioramonte, M.; Gozzo, F.C.; Moreno, F.B.; Monteiro-Moreira, A.C.; et al. Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. J. Proteom. 2012, 75, 4436–4456. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, E.; Kratz, E.M. Could the glycosylation analysis of seminal plasma clusterin become a novel male infertility biomarker? Mol. Reprod. Dev. 2020, 87, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Boe-Hansen, G.B.; Rego, J.P.; Crisp, J.M.; Moura, A.A.; Nouwens, A.S.; Li, Y.; Venus, B.; Burns, B.M.; McGowan, M.R. Seminal plasma proteins and their relationship with percentage of morphologically normal sperm in 2-year-old Brahman (Bos indicus) bulls. Anim. Reprod. Sci. 2015, 162, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Trougakos, I.P. The molecular chaperone apolipoprotein J/Clusterin as a sensor of oxidative stress: Implications in therapeutic approaches—A mini-review. Gerontology 2013, 59, 514–523. [Google Scholar] [CrossRef]
- Miranda, P.V.; Tezon, J.G. Characterization of fibronectin as a marker for human epididymal sperm maturation. Mol. Reprod. Dev. 1992, 33, 443–450. [Google Scholar] [CrossRef]
- Martínez-León, E.; Osycka-Salut, C.; Signorelli, J.; Pozo, P.; Pérez, B.; Kong, M.; Morales, P.; Pérez-Martínez, S.; Díaz, E.S. Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway. Hum. Reprod. 2015, 30, 2138–2151. [Google Scholar] [CrossRef] [PubMed]
- Druart, X.; Rickard, J.P.; Mactier, S.; Kohnke, P.L.; Kershaw-Young, C.M.; Bathgate, R.; Gibb, Z.; Crossett, B.; Tsikis, G.; Labas, V.; et al. Proteomic characterization and cross species comparison of mammalian seminal plasma. J. Proteom. 2013, 91, 13–22. [Google Scholar] [CrossRef]
- Rungruangsak, J.; Suwimonteerabutr, J.; Buranaamnuay, K.; Asawakarn, S.; Chantavisoote, N.; Pisitkun, T.; Chaweewan, K.; Tummaruk, P. Difference of seminal plasma and sperm proteins in good and poor freezability boar ejaculates. Vet. Stanica 2022, 53, 113–126. [Google Scholar] [CrossRef]
- Vilagran, I.; Yeste, M.; Sancho, S.; Castillo, J.; Oliva, R.; Bonet, S. Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of Fibronectin 1 as sperm freezability marker. Andrology 2015, 3, 345–356. [Google Scholar] [CrossRef]
- Novak, S.; Smith, T.A.; Paradis, F.; Burwash, L.; Dyck, M.K.; Foxcroft, G.R.; Dixon, W.T. Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions. Theriogenology 2010, 74, 956–967. [Google Scholar] [CrossRef]
- Restrepo, G.; Rojano, B.; Usuga, A. Relationship of cysteine-rich secretory protein-3 gene and protein with semen quality in stallions. Reprod. Domest. Anim. 2019, 54, 39–45. [Google Scholar] [CrossRef]
- Usuga, A.; Rojano, B.A.; Restrepo, G. Association of the cysteine-rich secretory protein-3 (CRISP-3) and some of its polymorphisms with the quality of cryopreserved stallion semen. Reprod. Fertil. Dev. 2018, 30, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Jobim, M.I.; Trein, C.; Zirkler, H.; Gregory, R.M.; Sieme, H.; Mattos, R.C. Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their relation with semen freezability. Theriogenology 2011, 76, 765–771. [Google Scholar] [CrossRef]
- Yu, J.; Li, M.; Ji, C.; Li, X.; Li, H.; Liu, G.; Wang, Y.; Liu, G.; Wang, T.; Che, X.; et al. Comparative proteomic analysis of seminal plasma proteins in relation to freezability of Dezhou donkey semen. Anim. Reprod. Sci. 2021, 231, 106794. [Google Scholar] [CrossRef]
- Wysocki, P.; Orzołek, A.; Strzeżek, J.; Koziorowska-Gilun, M.; Zasiadczyk, Ł.; Kordan, W. The activity of N-acetyl-β-hexosaminidase in boar seminal plasma is linked with semen quality and its suitability for cryopreservation. Theriogenology 2015, 83, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Miranda, P.V.; González-Echeverría, F.; Blaquier, J.A.; Mahuran, D.J.; Tezón, J.G. Evidence for the participation of beta-hexosaminidase in human sperm-zona pellucida interaction in vitro. Mol. Hum. Reprod. 2000, 6, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Valencia, J.; Yeste, M.; Quintero-Moreno, A.; Niño-Cardenas, C.D.P.; Henao, F.J. Relative content of Niemann-Pick C2 protein (NPC2) in seminal plasma, but not that of spermadhesin AQN-1, is related to boar sperm cryotolerance. Theriogenology 2020, 145, 181–189. [Google Scholar] [CrossRef]
- Tanaka, T.; Urade, Y.; Kimura, H.; Eguchi, N.; Nishikawa, A.; Hayaishi, O. Lipocalin-type prostaglandin D synthase (beta-trace) is a newly recognized type of retinoid transporter. J. Biol. Chem. 1997, 272, 15789–15795. [Google Scholar] [CrossRef]
- Valencia, J.; Gómez, G.; López, W.; Mesa, H.; Henao, F.J. Relationship between HSP90a, NPC2 and L-PGDS proteins to boar semen freezability. J. Anim. Sci. Biotechnol. 2017, 8, 21. [Google Scholar] [CrossRef]
- Roncoletta, M.; Morani, E.S.C.; Franceschini, P.H.; Ramos, P.R.R. Caracterização da proteína 26 kDa do plasma seminal e sua relação com a congelabilidade do sêmen de touros. Arq. Fac. Vet. UFRGS 2000, 28, 323. [Google Scholar]
- Brito, M.F.; Auler, P.A.; Tavares, G.C.; Rezende, C.P.; Almeida, G.M.F.; Pereira, F.L.; Leal, C.A.G.; Moura, A.A.; Figueiredo, H.C.P.; Henry, M. Label-free proteome of water buffalo (Bubalus bubalis) seminal plasma. Reprod. Domest. Anim. 2018, 53, 1243–1246. [Google Scholar] [CrossRef]
- Ekhlasi-Hundrieser, M.; Gohr, K.; Wagner, A.; Tsolova, M.; Petrunkina, A.; Töpfer-Petersen, E. Spermadhesin AQN1 is a candidate receptor molecule involved in the formation of the oviductal sperm reservoir in the pig. Biol. Reprod. 2005, 73, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Barranco, I.; Padilla, L.; Pérez-Patiño, C.; Vazquez, J.M.; Martínez, E.A.; Rodríguez-Martínez, H.; Roca, J.; Parrilla, I. Seminal Plasma Cytokines Are Predictive of the Outcome of Boar Sperm Preservation. Front. Vet. Sci. 2019, 6, 436. [Google Scholar] [CrossRef] [PubMed]
- Naz, R.K.; Chauhan, S.C.; Rose, L.P. Expression of alpha and gamma interferon receptors in the sperm cell. Mol. Reprod. Dev. 2000, 56, 189–197. [Google Scholar] [CrossRef]
- Mühl, H.; Pfeilschifter, J. Anti-inflammatory properties of pro-inflammatory interferon-gamma. Int. Immunopharmacol. 2003, 3, 1247–1255. [Google Scholar] [CrossRef]
- Oddi, S.; Carluccio, A.; Ciaramellano, F.; Mascini, M.; Bucci, R.; Maccarrone, M.; Robbe, D.; Dainese, E. Cryotolerance of equine spermatozoa correlates with specific fatty acid pattern: A pilot study. Theriogenology 2021, 172, 88–94. [Google Scholar] [CrossRef]
- Vieira, L.A.; Matás, C.; Torrecillas, A.; Saez, F.; Gadea, J. Seminal plasma components from fertile stallions involved in the epididymal sperm freezability. Andrology 2021, 9, 728–743. [Google Scholar] [CrossRef]
- Evans, H.C.; Dinh, T.T.N.; Hardcastle, M.L.; Gilmore, A.A.; Ugur, M.R.; Hitit, M.; Jousan, F.D.; Nicodemus, M.C.; Memili, E. Advancing Semen Evaluation Using Lipidomics. Front. Vet. Sci. 2021, 8, 601794. [Google Scholar] [CrossRef]
- Hezavehei, M.; Sharafi, M.; Kouchesfahani, H.M.; Henkel, R.; Agarwal, A.; Esmaeili, V.; Shahverdi, A. Sperm Cryopreservation: A Review on Current Molecular Cryobiology and Advanced Approaches. Reprod. BioMed. Online 2018, 37, 327–339. [Google Scholar] [CrossRef]
- Sharma, Y.; Sharma, M. Sperm Cryopreservation: Principles and Biology. J. Infertil. Reprod. Biol. 2020, 8, 43–48. [Google Scholar]
- Zini, A.; Al-Hathal, N. Antioxidant Therapy in Male Infertility: Fact or Fiction? Asian J. Androl. 2011, 13, 374–381. [Google Scholar] [CrossRef]
- Prathalingam, N.S.; Holt, W.V.; Revell, S.G.; Mirczuk, S.; Fleck, R.A.; Watson, P.F. Impact of Antifreeze Proteins and Antifreeze Glycoproteins on Bovine Sperm during Freeze-Thaw. Theriogenology 2006, 66, 1894–1900. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.; Badyakar, D.; Chakrabarty, J. Role of Membrane Lipid Fatty Acids in Sperm Cryopreservation. Adv. Androl. 2014, 2014, 190542. [Google Scholar] [CrossRef]
- Ros-Santaella, J.L.; Pintus, E. Plant Extracts as Alternative Additives for Sperm Preservation. Antioxidants 2021, 10, 772. [Google Scholar] [CrossRef] [PubMed]
- Griveau, J.F.; Le Lannou, D. Effects of antioxidants on human sperm preparation techniques. Int. J. Androl. 1994, 17, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Oeda, T.; Henkel, R.; Ohmori, H.; Schill, W.B. Scavenging effect of N-acetyl-L-cysteine against reactive oxygen species in human semen: A possible therapeutic modality for male factor infertility? Andrologia 1997, 29, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Kanwar, K.C. Effect of vitamin E on human sperm motility and lipid peroxidation in vitro. Asian J. Androl. 1999, 1, 151–154. [Google Scholar] [PubMed]
- Zheng, R.L.; Zhang, H. Effects of ferulic acid on fertile and asthenozoospermic infertile human sperm motility, viability, lipid peroxidation, and cyclic nucleotides. Free Radic. Biol. Med. 1997, 22, 581–586. [Google Scholar] [CrossRef]
- Calamera, J.C.; Fernandez, P.J.; Buffone, M.G.; Acosta, A.A.; Doncel, G.F. Effects of long-term in vitro incubation of human spermatozoa: Functional parameters and catalase effect. Andrologia 2001, 33, 79–86. [Google Scholar] [CrossRef]
- Chi, H.J.; Kim, J.H.; Ryu, C.S.; Lee, J.Y.; Park, J.S.; Chung, D.Y.; Choi, S.Y.; Kim, M.H.; Chun, E.K.; Roh, S.I. Protective effect of antioxidant supplementation in sperm-preparation medium against oxidative stress in human spermatozoa. Hum. Reprod. 2008, 23, 1023–1028. [Google Scholar] [CrossRef]
- Donnelly, E.T.; McClure, N.; Lewis, S.E. Glutathione and hypotaurine in vitro: Effects on human sperm motility, DNA integrity and production of reactive oxygen species. Mutagenesis 2000, 15, 61–68. [Google Scholar] [CrossRef]
- Donnelly, E.T.; McClure, N.; Lewis, S.E. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis 1999, 14, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.M.; Lewis, S.E.; McKelvey-Martin, V.J.; Thompson, W. The effects of antioxidant supplementation during Percoll preparation on human sperm DNA integrity. Hum. Reprod. 1998, 13, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Dewry, R.K.; Srivastava, R.; Nath, S.; Mohanty, T.K. Targeted Antioxidant Delivery Modulates Mitochondrial Functions, Ameliorates Oxidative Stress and Preserve Sperm Quality during Cryopreservation. Theriogenology 2022, 179, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Roca, J.; Gil, M.A.; Vázquez, J.M.; Martínez, E.A. Adjustments on the Cryopreservation Conditions Reduce the Incidence of Boar Ejaculates with Poor Sperm Freezability. Theriogenology 2007, 67, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.; Rodríguez, M.J.; Gil, M.A.; Carvajal, G.; Garcia, E.M.; Cuello, C.; Vazquez, J.M.; Martinez, E.A. Survival and in Vitro Fertility of Boar Spermatozoa Frozen in the Presence of Superoxide Dismutase And/or Catalase. J. Androl. 2005, 26, 15–24. [Google Scholar] [PubMed]
- Hernández, M.; Roca, J.; Calvete, J.J.; Sanz, L.; Muiño-Blanco, T.; Cebrián-Pérez, J.A.; Vázquez, J.M.; Martínez, E.A. Cryosurvival and in Vitro Fertilizing Capacity Postthaw Is Improved When Boar Spermatozoa Are Frozen in the Presence of Seminal Plasma from Good Freezer Boars. J. Androl. 2007, 28, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Jovičić, M.; Chmelíková, E.; Sedmíková, M. Cryopreservation of Boar Semen. Czech J. Anim. Sci. 2020, 65, 115–123. [Google Scholar] [CrossRef]
- Eberhardt, M.; Prochowska, S.; Duszewska, A.M.; Van Soom, A.; Olech, W.; Niżański, W. The Influence of Percoll® Density Gradient Centrifugation before Cryopreservation on the Quality of Frozen Wisent (Bison Bonasus) Epididymal Spermatozoa. BMC Vet. Res. 2022, 18, 305. [Google Scholar] [CrossRef]
- Durfey, C.L.; Swistek, S.E.; Liao, S.F.; Crenshaw, M.A.; Clemente, H.J.; Thirumalai, R.V.K.G.; Steadman, C.S.; Ryan, P.L.; Willard, S.T.; Feugang, J.M. Nanotechnology-Based Approach for Safer Enrichment of Semen with Best Spermatozoa. J. Anim. Sci. Biotechnol. 2019, 10, 14. [Google Scholar] [CrossRef]
Biomarker | Source | Fertility Association | Regulatory Function | Reference |
---|---|---|---|---|
TSSK6, PRM 1, PRM 2 | Bulls | Decreased in poor freezers | (TSSK6) DNA condensation during post-meiotic chromatin remodeling; (PRM1/2) packaging and protecting DNA | [55] |
PLCZ1, CRISP2, CLGN1, ADAM5P | Bulls | Expressed in high post-thawed motile spermatozoa | (PLCZ1 and CRISP2) regulation of ion channels and Ca2+ oscillations during sperm capacitation; (CLGN1) spermatogenesis regulator; (ADAM5P) sperm–egg fusion | [56] |
RLP31, GCLC, CYB5R4, CCT5 | Bulls | Upregulated in good freezers | (RLP31) protein interactions, (GCLC) catalyzes the ATP-dependent ligation; (CYB5R4) endoplasmatic reticulum stress response pathway; (CCT5) folding of proteins upon ATP hydrolysis | [57,58,59] |
COX7C | Bulls | Downregulated in low-fertility group | (COX7C) catalysis of electron transfer from reduced cytochrome c to oxygen | [60] |
HSPD1 | Boars | Expressed in good-freezability group | (HSPD1) protection against heat shock | [61] |
TXNRD1, HSPA4L, ATP1B1 | Boars | Associated with poor/reduced freezability | (TXNRD1) inflammation and oxidative stress regulator; (HSPA4L) protection against heat stress; (ATP1B1) Na+/K+ transmembrane exchange | [62] |
FOS, NFATC3, EAF2, BAMBI, PTPRU, PTPN2, MT-ND, ACADM | Boars | Expressed in poor freezers | (FOS) glucose metabolism; (NFATC3) inflammatory regulator; (EAF2) DNA repair mechanisms; (BAMBI) sperm cell differentiation; (PTPRU and PTPN2) signaling molecules; (MT-ND) NADH dehydrogenase synthesis; (ACADM) acyl-CoA dehydrogenase synthesis | [59] |
TPX-1, LDHC, AKAP4, HSBP1, CLU | Humans | Overexpressed in samples with low fragmentation index | (TPX-1) catalyzes the reduction of hydrogen peroxide; (LDHC) maintenance of glycolysis and ATP production in sperm flagellum, (AKAP4) regulator of sperm motility; (HSBP1) protection against heat stress; (CLU) sperm maturation and capacitation | [63] |
ACO2, PKM2 | Humans | Present in good freezers | (ACO2) mitochondrial metabolism; (PKM2) generation of ATP | [64] |
Biomarker | Source | Fertility Association | Reference |
---|---|---|---|
A-kinase anchor protein 4 | Stallions | Decreased levels proportional to a decline in post-thaw spermatozoa motility | [118] |
High expression in fresh and frozen–thawed spermatozoa of good freezers | [119] | ||
Boars | Overexpression in samples with high freezability | [32] | |
Acrosin | Humans | Underexpressed in frozen–thawed spermatozoa in comparison to native spermatozoa | [101] |
Acrosin-binding protein | Boars | Higher levels in good freezers in comparison to poor freezers | [132] |
Apoptosis-inducing factor 1-mitochondrial | Humans | Underexpressed in frozen–thawed spermatozoa in comparison to native sperm | [101] |
Aquaporin 3 | Boars | High amounts in spermatozoa of good freezability | [122,125] |
Stallions | High amounts in spermatozoa of good post-thaw quality | [123] | |
Bulls | High amounts in spermatozoa of good post-thaw quality | [124] | |
Aquaporin 7 | Boars | High amounts in spermatozoa of good freezability | [122,125,126] |
Stallions | High amounts in spermatozoa of good post-thaw quality | [123] | |
Aquaporin 11 | Bulls | High amounts in spermatozoa of good post-thaw quality | [124,127] |
Stallions | High amounts in spermatozoa of good post-thaw quality | [123] | |
ATP1β1 | Bulls | Significantly higher in spermatozoa highly tolerant to cryopreservation | [30] |
Calmodulin | Humans | Underexpressed in frozen–thawed spermatozoa in comparison to native sperm | [101] |
Carbonic anhydrase 2 | Humans | Underexpressed in frozen–thawed spermatozoa in comparison to native sperm | [101] |
Clusterin | Humans | Overexpressed in frozen–thawed spermatozoa in comparison to native spermatozoa | [101] |
Cytochrome | Humans | Underexpressed in frozen–thawed spermatozoa in comparison to native spermatozoa | [101] |
Cytosolic 5-nucleotidase 1B | Bulls | Overexpressed in high cryoprotective agent-tolerant spermatozoa | [128] |
Fumarate hydratase | Bulls | Overexpressed in high cryoprotective agent-tolerant spermatozoa | [128] |
Glucose transporter 3 | Boars | High in good-freezability spermatozoa | [129] |
Heat shock protein 70 | Bull | Expression proportional to frozen–thawed spermatozoa motility | [103] |
Boar | Overexpression in high-freezability boars | [32,113] | |
Heat shock protein 90 | Bull | Expression proportional to frozen–thawed spermatozoa motility | [102] |
Higher levels in bulls with high cryoresistance | [104] | ||
Boars | High in good-freezability spermatozoa | [129] | |
Histone H4 | Humans | Overexpressed in frozen–thawed spermatozoa in comparison to native spermatozoa | [101] |
Inositol monophosphatase 1 | Humans | Underexpressed in frozen–thawed spermatozoa in comparison to native spermatozoa | [101] |
L-xylulose reductase | Humans | Overexpressed in frozen–thawed spermatozoa in comparison to native spermatozoa | [101] |
NADH-cytochrome b5 reductase2 | Humans | Underexpressed in frozen–thawed spermatozoa in comparison to native spermatozoa | [101] |
Outer dense fiber 2 | Boars | Increased in frozen–thawed spermatozoa | [99] |
Phosphoglycerate mutase 2 | Humans | Underexpressed in frozen–thawed spermatozoa in comparison to native spermatozoa | [101] |
Triosephosphate isomerase 1 | Boars | Increased in frozen–thawed spermatozoa | [99] |
Voltage-dependent anion channel 2 | Boars | Higher levels in good freezers in comparison to poor freezers | [131] |
Biomarker | Source | Fertility Association | Reference |
---|---|---|---|
Binder of sperm proteins | Bull | High in samples with good post-thaw quality | [154] |
Abundant in seminal plasma of high semen freezability | [100] | ||
Clusterin | Bull | Abundant in seminal plasma of high semen freezability | [153] |
High in samples with good post-thaw quality | [154] | ||
Cysteine-rich secretory protein-3 | Stallion | High in samples with good post-thaw quality | [173] |
Abundant in seminal plasma of high semen freezability | [174] | ||
Donkey | High abundance in semen with optimal freezability | [175] | |
Fibronectin-1 | Boar | High abundance in good-freezability semen | [169,170] |
Horse seminal plasma protein 2 | Stallion | Abundant in seminal plasma of high semen freezability | [174] |
Lipocalin-type prostaglandin D synthase | Boar | Abundant in seminal plasma of high semen freezability | [180] |
N-acetyl-β-hexosaminidase | Boar | High activity in semen with low post-thaw quality | [176] |
Niemann-Pick C2 protein | Boar | High abundance in semen with low post-thaw quality | [178,180] |
Osteopontin | Bull | Abundant in seminal plasma of high semen freezability | [152,153] |
High in samples with good post-thaw quality | [154] | ||
Spermadhesins | Bull | High in samples with good post-thaw quality | [154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ďuračka, M.; Benko, F.; Tvrdá, E. Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. Int. J. Mol. Sci. 2023, 24, 3379. https://doi.org/10.3390/ijms24043379
Ďuračka M, Benko F, Tvrdá E. Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. International Journal of Molecular Sciences. 2023; 24(4):3379. https://doi.org/10.3390/ijms24043379
Chicago/Turabian StyleĎuračka, Michal, Filip Benko, and Eva Tvrdá. 2023. "Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability" International Journal of Molecular Sciences 24, no. 4: 3379. https://doi.org/10.3390/ijms24043379
APA StyleĎuračka, M., Benko, F., & Tvrdá, E. (2023). Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. International Journal of Molecular Sciences, 24(4), 3379. https://doi.org/10.3390/ijms24043379