Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival
Abstract
:1. Introduction
2. Characterization of Lon Protease
2.1. Structure of Bacterial Lon Protease
2.2. Substrate Specificity of Bacterial Lon Protease
2.3. Role of Redox Switch in Modulating Lon-MEDIATED Proteolysis
3. Role of Lon Protease in the Virulence of Pathogenic Bacteria
3.1. Pseudomonas Aeruginosa
3.2. Salmonella Typhimurium
3.3. Yersinia Species
3.4. Brucella abortus
3.5. Escherichia coli
4. Bacterial Lon Protease-Mediated Stress Response
4.1. Lon Protease Provides Bacteria with the Tool to Combat Stress Conditions
4.2. Lon Protease Modulates Toxin-Antitoxin (TA) Module Proteome
4.3. Polyphosphate-Lon Protease Complex during Amino Acid Starvation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takaya, A.; Tomoyasu, T.; Tokumitsu, A.; Morioka, M.; Yamamoto, T. The ATP-Dependent Lon Protease of Salmonella Enterica Serovar Typhimurium Regulates Invasion and Expression of Genes Carried on Salmonella Pathogenicity Island 1. J. Bacteriol. 2002, 184, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Barkad, M.A.; Bayraktar, A.; Doruk, T.; Tunca, S. Effect of Lon Protease Overexpression on Endotoxin Production and Stress Resistance in Bacillus Thuringiensis. Curr. Microbiol. 2021, 78, 3483–3493. [Google Scholar] [CrossRef] [PubMed]
- Bittner, L.M.; Arends, J.; Narberhaus, F. Mini Review: ATP Dependent Proteases in Bacteria. Biopolymers 2016, 105, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Nishii, W.; Kukimoto-Niino, M.; Terada, T.; Shirouzu, M.; Muramatsu, T.; Kojima, M.; Kihara, H.; Yokoyama, S. A Redox Switch Shapes the Lon Protease Exit Pore to Facultatively Regulate Proteolysis. Nat. Chem. Biol. 2015, 11, 46–51. [Google Scholar] [CrossRef]
- Micevski, D.; Dougan, D.A. Proteolytic Regulation of Stress Response Pathways in Escherichia coli. Regul. Proteolysis Microorg. 2013, 66, 105–128. [Google Scholar]
- Coscia, F.; Lowe, J. Cryo EM Structure of the Full Length Lon Protease from Thermus Thermophilus. FEBS Lett. 2021, 595, 2691–2700. [Google Scholar] [CrossRef]
- He, L.; Luo, D.; Yang, F.; Li, C.; Zhang, X.; Deng, H.; Zhang, J.-R. Multiple Domains of Bacterial and Human Lon Proteases Define Substrate Selectivity. Emerg. Microbes Infect. 2018, 7, 149. [Google Scholar] [CrossRef]
- Shin, M.; Puchades, C.; Asmita, A.; Puri, N.; Adjei, E.; Wiseman, R.L.; Karzai, A.W.; Lander, G.C. Structural Basis for Distinct Operational Modes and Protease Activation in AAA+ Protease Lon. Sci. Adv. 2020, 6, eaba8404. [Google Scholar] [CrossRef]
- Botos, I.; Lountos, G.T.; Wu, W.; Cherry, S.; Ghirlando, R.; Kudzhaev, A.M.; Rotanova, T.V.; de Val, N.; Tropea, J.E.; Gustchina, A. Cryo-EM Structure of Substrate-Free E. coli Lon Protease Provides Insights into the Dynamics of Lon Machinery. Curr. Res. Struct. Biol. 2019, 1, 13–20. [Google Scholar] [CrossRef]
- Jean, N.L.; Rutherford, T.J.; Lowe, J. FtsK in Motion Reveals Its Mechanism for Double-Stranded DNA Translocation. Proc. Natl. Acad. Sci. USA 2020, 117, 14202–14208. [Google Scholar] [CrossRef]
- Garcia Nafria, J.; Ondrovicova, G.; Blagova, E.; Levdikov, V.M.; Bauer, J.A.; Suzuki, C.K.; Kutejova, E.; Wilkinson, A.J.; Wilson, K.S. Structure of the Catalytic Domain of the Human Mitochondrial Lon Protease: Proposed Relation of Oligomer Formation and Activity. Protein Sci. 2010, 19, 987–999. [Google Scholar] [CrossRef] [Green Version]
- Kereiche, S.; Kovacik, L.; Bednar, J.; Pevala, V.; Kunova, N.; Ondrovicova, G.; Bauer, J.; Ambro, L.; Bellova, J.; Kutejova, E. The N-Terminal Domain Plays a Crucial Role in the Structure of a Full-Length Human Mitochondrial Lon Protease. Sci. Rep. 2016, 6, 33631. [Google Scholar] [CrossRef]
- Bota, D.A.; Davies, K.J.A. Mitochondrial Lon Protease in Human Disease and Aging: Including an Etiologic Classification of Lon-Related Diseases and Disorders. Free Radic. Biol. Med. 2016, 100, 188–198. [Google Scholar] [CrossRef]
- Culp, E.; Wright, G.D. Bacterial Proteases, Untapped Antimicrobial Drug Targets. J. Antibiot. 2017, 70, 366–377. [Google Scholar] [CrossRef]
- Leslie, D.J.; Heinen, C.; Schramm, F.D.; Thering, M.; Aakre, C.D.; Murray, S.M.; Laub, M.T.; Jonas, K. Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA. PLoS Genet. 2015, 11, e1005342. [Google Scholar] [CrossRef]
- Jonas, K.; Liu, J.; Chien, P.; Laub, M.T. Proteotoxic Stress Induces a Cell-Cycle Arrest by Stimulating Lon to Degrade the Replication Initiator DnaA. Cell 2013, 154, 623–636. [Google Scholar] [CrossRef]
- Herbst, K.; Bujara, M.; Heroven, A.K.; Opitz, W.; Weichert, M.; Zimmermann, A.; Dersch, P. Intrinsic Thermal Sensing Controls Proteolysis of Yersinia Virulence Regulator RovA. PLoS Pathog. 2009, 5, e1000435. [Google Scholar] [CrossRef]
- Kirthika, P.; Senevirathne, A.; Jawalagatti, V.; Park, S.; Lee, J.H. Deletion of the Lon Gene Augments Expression of Salmonella Pathogenicity Island (SPI)-1 and Metal Ion Uptake Genes Leading to the Accumulation of Bactericidal Hydroxyl Radicals and Host pro-Inflammatory Cytokine-Mediated Rapid Intracellular Clearance. Gut Microbes 2020, 11, 1695–1712. [Google Scholar] [CrossRef]
- Rogers, A.; Townsley, L.; Gallego-Hernandez, A.L.; Beyhan, S.; Kwuan, L.; Yildiz, F.H. The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio Cholerae. J. Bacteriol. 2016, 198, 973–985. [Google Scholar] [CrossRef]
- Song, X.; Zhang, H.; Ma, S.; Song, Y.; Lv, R.; Liu, X.; Yang, B.; Huang, D.; Liu, B.; Jiang, L. Transcriptome Analysis of Virulence Gene Regulation by the ATP-Dependent Lon Protease in Salmonella Typhimurium. Future Microbiol. 2019, 14, 1109–1122. [Google Scholar] [CrossRef]
- Marr, A.K.; Overhage, J.; Bains, M.; Hancock, R.E.W. The Lon Protease of Pseudomonas Aeruginosa Is Induced by Aminoglycosides and Is Involved in Biofilm Formation and Motility. Microbiology 2007, 153, 474–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breidenstein, E.B.M.; Bains, M.; Hancock, R.E.W. Involvement of the Lon Protease in the SOS Response Triggered by Ciprofloxacin in Pseudomonas Aeruginosa PAO1. Antimicrob. Agents Chemother. 2012, 56, 2879–2887. [Google Scholar] [CrossRef] [PubMed]
- Ching, C.; Yang, B.; Onwubueke, C.; Lazinski, D.; Camilli, A.; Godoy, V.G. Lon Protease Has Multifaceted Biological Functions in Acinetobacter Baumannii. J. Bacteriol. 2019, 201, e00536-18. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Decatur, A.L.; Rather, P.N.; Moran Jr, C.P.; Losick, R. Bacillus Subtilis Lon Protease Prevents Inappropriate Transcription of Genes under the Control of the Sporulation Transcription Factor Sigma G. J. Bacteriol. 1994, 176, 6528–6537. [Google Scholar] [CrossRef]
- Jaskolska, M.; Gerdes, K. CRP Dependent Positive Autoregulation and Proteolytic Degradation Regulate Competence Activator Sxy of Escherichia coli. Mol. Microbiol. 2015, 95, 833–845. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bree, A.C.; Liu, J.; Patrick, J.E.; Chien, P.; Kearns, D.B. Adaptor-Mediated Lon Proteolysis Restricts Bacillus Subtilis Hyperflagellation. Proc. Natl. Acad. Sci. USA 2015, 112, 250–255. [Google Scholar] [CrossRef]
- Bissonnette, S.A.; Rivera Rivera, I.; Sauer, R.T.; Baker, T.A. The IbpA and IbpB Small Heat Shock Proteins Are Substrates of the AAA+ Lon Protease. Mol. Microbiol. 2010, 75, 1539–1549. [Google Scholar] [CrossRef]
- Simmons, L.A.; Grossman, A.D.; Walker, G.C. Clp and Lon Proteases Occupy Distinct Subcellular Positions in Bacillus Subtilis. J. Bacteriol. 2008, 190, 6758–6768. [Google Scholar] [CrossRef]
- He, L.; Nair, M.K.M.; Chen, Y.; Liu, X.; Zhang, M.; Hazlett, K.R.O.; Deng, H.; Zhang, J.-R. The Protease Locus of Francisella Tularensis LVS Is Required for Stress Tolerance and Infection in the Mammalian Host. Infect. Immun. 2016, 84, 1387–1402. [Google Scholar] [CrossRef]
- Figaj, D.; Czaplewska, P.; Przepiora, T.; Ambroziak, P.; Potrykus, M.; Skorko-Glonek, J. Lon Protease Is Important for Growth under Stressful Conditions and Pathogenicity of the Phytopathogen, Bacterium Dickeya Solani. Int. J. Mol. Sci. 2020, 21, 3687. [Google Scholar] [CrossRef]
- Bianchi, A.A.; Baneyx, F. Hyperosmotic Shock Induces the 32 and E Stress Regulons of Escherichia coli. Mol. Microbiol. 1999, 34, 1029–1038. [Google Scholar] [CrossRef] [Green Version]
- Zeinert, R.D.; Baniasadi, H.; Tu, B.P.; Chien, P. The Lon Protease Links Nucleotide Metabolism with Proteotoxic Stress. Mol. Cell 2020, 79, 758–767. [Google Scholar] [CrossRef]
- Goff, S.A.; Goldberg, A.L. An Increased Content of Protease La, the Lon Gene Product, Increases Protein Degradation and Blocks Growth in Escherichia coli. J. Biol. Chem. 1987, 262, 4508–4515. [Google Scholar] [CrossRef]
- Christensen, S.K.; Maenhaut Michel, G.; Mine, N.; Gottesman, S.; Gerdes, K.; Van Melderen, L. Overproduction of the Lon Protease Triggers Inhibition of Translation in Escherichia coli: Involvement of the YefM YoeB Toxin Antitoxin System. Mol. Microbiol. 2004, 51, 1705–1717. [Google Scholar] [CrossRef]
- Demir, Z.; Bayraktar, A.; Tunca, S. One Extra Copy of Lon Gene Causes a Dramatic Increase in Actinorhodin Production by Streptomyces Coelicolor A3 (2). Curr. Microbiol. 2019, 76, 1045–1054. [Google Scholar] [CrossRef]
- Vieux, E.F.; Wohlever, M.L.; Chen, J.Z.; Sauer, R.T.; Baker, T.A. Distinct Quaternary Structures of the AAA+ Lon Protease Control Substrate Degradation. Proc. Natl. Acad. Sci. USA 2013, 110, E2002–E2008. [Google Scholar] [CrossRef]
- Gur, E.; Vishkautzan, M.; Sauer, R.T. Protein Unfolding and Degradation by the AAA+ Lon Protease. Protein Sci. 2012, 21, 268–278. [Google Scholar] [CrossRef]
- Wlodawer, A.; Sekula, B.; Gustchina, A.; Rotanova, T.V. Structure and the Mode of Activity of Lon Proteases from Diverse Organisms. J. Mol. Biol. 2022, 434, 167504. [Google Scholar] [CrossRef]
- Duman, R.E.; Lowe, J. Crystal Structures of Bacillus Subtilis Lon Protease. J. Mol. Biol. 2010, 401, 653–670. [Google Scholar] [CrossRef]
- Roudiak, S.G.; Seth, A.; Knipfer, N.; Shrader, T.E. The Lon Protease from Mycobacterium Smegmatis: Molecular Cloning, Sequence Analysis, Functional Expression, and Enzymatic Characterization. Biochemistry 1998, 37, 377–386. [Google Scholar] [CrossRef]
- Rudyak, S.G.; Brenowitz, M.; Shrader, T.E. Mg2+-Linked Oligomerization Modulates the Catalytic Activiy of the Lon (La) Protease from Mycobacterium Smegmatis. Biochemistry 2001, 40, 9317–9323. [Google Scholar] [CrossRef] [PubMed]
- Wohlever, M.L.; Baker, T.A.; Sauer, R.T. Roles of the N Domain of the AAA+ Lon Protease in Substrate Recognition, Allosteric Regulation and Chaperone Activity. Mol. Microbiol. 2014, 91, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Kudzhaev, A.M.; Andrianova, A.G.; Dubovtseva, E.S.; Serova, O.V.; Rotanova, T.V. Role of the Inserted α-Helical Domain in E. coli ATP-Dependent Lon Protease Function. Acta Nat. 2017, 9, 75–81. [Google Scholar] [CrossRef]
- Ishii, Y.; Sonezaki, S.; Iwasaki, Y.; Miyata, Y.; Akita, K.; Kato, Y.; Amano, F. Regulatory Role of C-Terminal Residues of SulA in Its Degradation by Lon Protease in Escherichia coli. J. Biochem. 2000, 127, 837–844. [Google Scholar] [CrossRef]
- Shah, I.M.; Wolf, R.E., Jr. Sequence Requirements for Lon-Dependent Degradation of the Escherichia coli Transcription Activator SoxS: Identification of the SoxS Residues Critical to Proteolysis and Specific Inhibition of in Vitro Degradation by a Peptide Comprised of the N-Terminal 21 Amino Acid Residues. J. Mol. Biol. 2006, 357, 718–731. [Google Scholar]
- Liao, J.-H.; Lin, Y.-C.; Hsu, J.; Lee, A.Y.-L.; Chen, T.-A.; Hsu, C.-H.; Chir, J.-L.; Hua, K.-F.; Wu, T.-H.; Hong, L.-J. Binding and Cleavage of E. coli HU by the E. coli Lon Protease. Biophys. J. 2010, 98, 129–137. [Google Scholar] [CrossRef]
- Stout, V.; Torres-Cabassa, A.; Maurizi, M.R.; Gutnick, D.; Gottesman, S. RcsA, an Unstable Positive Regulator of Capsular Polysaccharide Synthesis. J. Bacteriol. 1991, 173, 1738–1747. [Google Scholar] [CrossRef]
- Nishii, W.; Suzuki, T.; Nakada, M.; Kim, Y.-T.; Muramatsu, T.; Takahashi, K. Cleavage Mechanism of ATP-Dependent Lon Protease toward Ribosomal S2 Protein. FEBS Lett. 2005, 579, 6846–6850. [Google Scholar] [CrossRef]
- Raivio, T.L. Regulation of Proteolysis in the Gram-Negative Bacterial Envelope. J. Bacteriol. 2018, 200, e00639-17. [Google Scholar] [CrossRef]
- Gur, E.; Sauer, R.T. Recognition of Misfolded Proteins by Lon, a AAA+ Protease. Genes Dev. 2008, 22, 2267–2277. [Google Scholar] [CrossRef]
- Choy, J.S.; Aung, L.L.; Karzai, A.W. Lon Protease Degrades Transfer-Messenger RNA-Tagged Proteins. J. Bacteriol. 2007, 189, 6564–6571. [Google Scholar] [CrossRef]
- Puri, N.; Karzai, A.W. HspQ Functions as a Unique Specificity-Enhancing Factor for the AAA+ Lon Protease. Mol. Cell 2017, 66, 672–683. [Google Scholar] [CrossRef] [Green Version]
- Karlowicz, A.; Wegrzyn, K.; Gross, M.; Kaczynska, D.; Ropelewska, M.; Siemiątkowska, M.G.; Bujnicki, J.M.; Konieczny, I. Defining the Crucial Domain and Amino Acid Residues in Bacterial Lon Protease for DNA Binding and Processing of DNA-Interacting Substrates. J. Biol. Chem. 2017, 292, 7507–7518. [Google Scholar] [CrossRef]
- Lee, I.; Suzuki, C.K. Functional Mechanics of the ATP-Dependent Lon Protease-Lessons from Endogenous Protein and Synthetic Peptide Substrates. Biochim. Et Biophys. Acta BBA-Proteins Proteom. 2008, 1784, 727–735. [Google Scholar] [CrossRef]
- Ondrovicova, G.; Liu, T.; Singh, K.; Tian, B.; Li, H.; Gakh, O.; Perečko, D.; Janata, J.; Granot, Z.; Orly, J. Cleavage Site Selection within a Folded Substrate by the ATP-Dependent Lon Protease. J. Biol. Chem. 2005, 280, 25103–25110. [Google Scholar] [CrossRef]
- Williams, A.B.; Foster, P.L. The Escherichia coli Histone-like Protein HU Has a Role in Stationary Phase Adaptive Mutation. Genetics 2007, 177, 723–735. [Google Scholar] [CrossRef]
- Ratajczak, E.B.; Strozecka, J.; Matuszewska, M.; Ziętkiewicz, S.; Kuczyńska-Wiśnik, D.; Laskowska, E.; Liberek, K. IbpA the Small Heat Shock Protein from Escherichia coli Forms Fibrils in the Absence of Its Cochaperone IbpB. FEBS Lett. 2010, 584, 2253–2257. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Hu, H.-T.; Tsai, C.-H.; Wu, W.-F. The Degradation of RcsA by ClpYQ (HslUV) Protease in Escherichia coli. Microbiol. Res. 2016, 184, 42–50. [Google Scholar] [CrossRef]
- Moll, I.; Grill, S.; Grundling, A.; Blasi, U. Effects of Ribosomal Proteins S1, S2 and the DeaD/CsdA DEAD Box Helicase on Translation of Leaderless and Canonical MRNAs in Escherichia coli. Mol. Microbiol. 2002, 44, 1387–1396. [Google Scholar] [CrossRef]
- Duval, V.; Lister, I.M. MarA, SoxS and Rob of Escherichia coli-Global Regulators of Multidrug Resistance, Virulence and Stress Response. Int. J. Biotechnol. Wellness Ind. 2013, 2, 101. [Google Scholar] [CrossRef]
- Li, Z.; Demple, B. SoxS, an Activator of Superoxide Stress Genes in Escherichia coli. Purification and Interaction with DNA. J. Biol. Chem. 1994, 269, 18371–18377. [Google Scholar] [CrossRef] [PubMed]
- Vedyaykin, A.; Rumyantseva, N.; Khodorkovskii, M.; Vishnyakov, I. SulA Is Able to Block Cell Division in Escherichia coli by a Mechanism Different from Sequestration. Biochem. Biophys. Res. Commun. 2020, 525, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Pham, P.; Shen, X.; Taylor, J.-S.; O’Donnell, M.; Woodgate, R.; Goodman, M.F. Roles of E. coli DNA Polymerases IV and V in Lesion-Targeted and Untargeted SOS Mutagenesis. Nature 2000, 404, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Kongsuwan, K.; Josh, P.; Picault, M.J.; Wijffels, G.; Dalrymple, B. The Plasmid RK2 Replication Initiator Protein (TrfA) Binds to the Sliding Clamp Subunit of DNA Polymerase III: Implication for the Toxicity of a Peptide Derived from the Amino-Terminal Portion of 33-Kilodalton TrfA. J. Bacteriol. 2006, 188, 5501–5509. [Google Scholar] [CrossRef]
- Nakamura, A.; Wada, C.; Miki, K. Structural Basis for Regulation of Bifunctional Roles in Replication Initiator Protein. Proc. Natl. Acad. Sci. USA 2007, 104, 18484–18489. [Google Scholar] [CrossRef]
- Afif, H.; Allali, N.; Couturier, M.; Van Melderen, L. The Ratio between CcdA and CcdB Modulates the Transcriptional Repression of the Ccd Poison-Antidote System. Mol. Microbiol. 2001, 41, 73–82. [Google Scholar] [CrossRef]
- Ermoli, F.; Bonta, V.; Vitali, G.; Calvio, C. SwrA as Global Modulator of the Two-Component System DegSU in Bacillus Subtilis. Res. Microbiol. 2021, 172, 103877. [Google Scholar] [CrossRef]
- Jackson, M.W.; Silva Herzog, E.; Plano, G.V. The ATP Dependent ClpXP and Lon Proteases Regulate Expression of the Yersinia Pestis Type III Secretion System via Regulated Proteolysis of YmoA, a Small Histone like Protein. Mol. Microbiol. 2004, 54, 1364–1378. [Google Scholar] [CrossRef]
- Parkhill, J.; Wren, B.W.; Thomson, N.R.; Titball, R.W.; Holden, M.T.G.; Prentice, M.B.; Sebaihia, M.; James, K.D.; Churcher, C.; Mungall, K.L. Genome Sequence of Yersinia Pestis, the Causative Agent of Plague. Nature 2001, 413, 523–527. [Google Scholar] [CrossRef]
- Staggs, T.M.; Perry, R.D. Fur Regulation in Yersinia Species. Mol. Microbiol. 1995, 17, 601. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The Changing Face of the Family Enterobacteriaceae (Order: “Enterobacterales”): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin. Microbiol. Rev. 2021, 34, e00174-20. [Google Scholar] [CrossRef]
- Figaj, D.; Ambroziak, P.; Przepiora, T.; Skorko-Glonek, J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int. J. Mol. Sci. 2019, 20, 672. [Google Scholar] [CrossRef] [Green Version]
- Takaya, A.; Suzuki, M.; Matsui, H.; Tomoyasu, T.; Sashinami, H.; Nakane, A.; Yamamoto, T. Lon, a Stress-Induced ATP-Dependent Protease, Is Critically Important for Systemic Salmonella Enterica Serovar Typhimurium Infection of Mice. Infect. Immun. 2003, 71, 690–696. [Google Scholar] [CrossRef]
- Muselius, B.; Sukumaran, A.; Yeung, J.; Geddes-McAlister, J. Iron Limitation in Klebsiella Pneumoniae Defines New Roles for Lon Protease in Homeostasis and Degradation by Quantitative Proteomics. Front. Microbiol. 2020, 11, 546. [Google Scholar] [CrossRef]
- Breidenstein, E.B.M.; Janot, L.; Strehmel, J.; Fernandez, L.; Taylor, P.K.; Kukavica-Ibrulj, I.; Gellatly, S.L.; Levesque, R.C.; Overhage, J.; Hancock, R.E.W. The Lon Protease Is Essential for Full Virulence in Pseudomonas Aeruginosa. PLoS ONE 2012, 7, e49123. [Google Scholar] [CrossRef]
- Breidenstein, E.B.M.; de la Fuente-Nunez, C.; Hancock, R.E.W. Pseudomonas Aeruginosa: All Roads Lead to Resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef]
- Fabrega, A.; Vila, J. Salmonella Enterica Serovar Typhimurium Skills to Succeed in the Host: Virulence and Regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef]
- Coburn, B.; Grassl, G.A.; Finlay, B.B. Salmonella, the Host and Disease: A Brief Review. Immunol. Cell Biol. 2007, 85, 112–118. [Google Scholar] [CrossRef]
- Jiang, L.; Li, X.; Lv, R.; Feng, L. LoiA Directly Represses Lon Gene Expression to Activate the Expression of Salmonella Pathogenicity Island-1 Genes. Res. Microbiol. 2019, 170, 131–137. [Google Scholar] [CrossRef]
- Takaya, A.; Kubota, Y.; Isogai, E.; Yamamoto, T. Degradation of the HilC and HilD Regulator Proteins by ATP Dependent Lon Protease Leads to Downregulation of Salmonella Pathogenicity Island 1 Gene Expression. Mol. Microbiol. 2005, 55, 839–852. [Google Scholar] [CrossRef]
- Atkinson, S.; Williams, P. Yersinia Virulence Factors-a Sophisticated Arsenal for Combating Host Defences. F1000Research 2016, 5, 1370. [Google Scholar] [CrossRef] [PubMed]
- Trosky, J.E.; Liverman, A.D.B.; Orth, K. Yersinia Outer Proteins: Yops. Cell. Microbiol. 2008, 10, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Wren, B.W. The Yersiniae-a Model Genus to Study the Rapid Evolution of Bacterial Pathogens. Nat. Rev. Microbiol. 2003, 1, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Marchesini, M.I.; Poetsch, A.; Guidolin, L.S.; Comerci, D.J. Brucella abortus Encodes an Active Rhomboid Protease: Proteome Response after Rhomboid Gene Deletion. Microorganisms 2022, 10, 114. [Google Scholar] [CrossRef]
- Celli, J. The Intracellular Life Cycle of Brucella spp. Microbiol. Spectr. 2019, 7, 2–7. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y.-S.; Park, S.-H.; Kim, Y.-R.; Chu, H.; Hwang, K.-J.; Park, M.-Y. Lon Mutant of Brucella abortus Induces Tumor Necrosis Factor-Alpha in Murine J774. A1 Macrophage. Osong Public Health Res. Perspect. 2013, 4, 301–307. [Google Scholar] [CrossRef]
- De Figueiredo, P.; Ficht, T.A.; Rice-Ficht, A.; Rossetti, C.A.; Adams, L.G. Pathogenesis and Immunobiology of Brucellosis: Review of Brucella-Host Interactions. Am. J. Pathol. 2015, 185, 1505–1517. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, H.; Peng, X.; Gao, Q.; Jiang, H.; Xu, G.; Qin, Y.; Niu, J.; Sun, S.; Li, P. RNA-Seq Reveals the Critical Role of Lon Protease in Stress Response and Brucella virulence. Microb. Pathog. 2019, 130, 112–119. [Google Scholar] [CrossRef]
- Robertson, G.T.; Kovach, M.E.; Allen, C.A.; Ficht, T.A.; Roop, R.M. The Brucella abortus Lon Functions as a Generalized Stress Response Protease and Is Required for Wild Type Virulence in BALB/c Mice. Mol. Microbiol. 2000, 35, 577–588. [Google Scholar] [CrossRef]
- Delhaye, A.; Laloux, G.; Collet, J.-F. The Lipoprotein NlpE Is a Cpx Sensor That Serves as a Sentinel for Protein Sorting and Folding Defects in the Escherichia coli Envelope. J. Bacteriol. 2019, 201, e00611-18. [Google Scholar] [CrossRef]
- De la Cruz, M.A.; Perez-Morales, D.; Palacios, I.J.; Fernandez-Mora, M.; Calva, E.; Bustamante, V.H. The Two-Component System CpxR/A Represses the Expression of Salmonella Virulence Genes by Affecting the Stability of the Transcriptional Regulator HilD. Front. Microbiol. 2015, 6, 807. [Google Scholar] [CrossRef]
- Matange, N. Highly Contingent Phenotypes of Lon Protease Deficiency in Escherichia coli upon Antibiotic Challenge. J. Bacteriol. 2020, 202, e00561-19. [Google Scholar] [CrossRef]
- Chowdhury, N.; Kwan, B.W.; Wood, T.K. Persistence Increases in the Absence of the Alarmone Guanosine Tetraphosphate by Reducing Cell Growth. Sci. Rep. 2016, 6, 20519. [Google Scholar] [CrossRef]
- Harms, A.; Fino, C.; Sorensen, M.A.; Semsey, S.; Gerdes, K. Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells. mBio 2017, 8, e01964-17. [Google Scholar] [CrossRef]
- Griffith, K.L.; Shah, I.M.; Wolf, R.E., Jr. Proteolytic Degradation of Escherichia coli Transcription Activators SoxS and MarA as the Mechanism for Reversing the Induction of the Superoxide (SoxRS) and Multiple Antibiotic Resistance (Mar) Regulons. Mol. Microbiol. 2004, 51, 1801–1816. [Google Scholar] [CrossRef]
- Bhaskarla, C.; Das, M.; Verma, T.; Kumar, A.; Mahadevan, S.; Nandi, D. Roles of Lon Protease and Its Substrate MarA during Sodium Salicylate-Mediated Growth Reduction and Antibiotic Resistance in Escherichia coli. Microbiology 2016, 162, 764–776. [Google Scholar] [CrossRef]
- Nicoloff, H.; Andersson, D.I. Lon Protease Inactivation, or Translocation of the Lon Gene, Potentiate Bacterial Evolution to Antibiotic Resistance. Mol. Microbiol. 2013, 90, 1233–1248. [Google Scholar] [CrossRef]
- Bershtein, S.; Mu, W.; Serohijos, A.W.R.; Zhou, J.; Shakhnovich, E.I. Protein Quality Control Acts on Folding Intermediates to Shape the Effects of Mutations on Organismal Fitness. Mol. Cell 2013, 49, 133–144. [Google Scholar] [CrossRef]
- Pandey, S.; Tripathi, T.; Khawary, M.; Tripathi, D.; Kant, S. Mechanisms of stress adaptation by bacterial communities. In Microbial Syntrophy-Mediated Eco-Enterprising; Elsevier: Amsterdam, The Netherlands, 2022; pp. 247–258. [Google Scholar]
- Gameiro, P.A.; Struhl, K. Nutrient Deprivation Elicits a Transcriptional and Translational Inflammatory Response Coupled to Decreased Protein Synthesis. Cell Rep. 2018, 24, 1415–1424. [Google Scholar] [CrossRef]
- Mazor, K.M.; Dong, L.; Mao, Y.; Swanda, R.V.; Qian, S.-B.; Stipanuk, M.H. Effects of Single Amino Acid Deficiency on MRNA Translation Are Markedly Different for Methionine versus Leucine. Sci. Rep. 2018, 8, 8076. [Google Scholar] [CrossRef]
- Basta, D.W.; Angeles-Albores, D.; Spero, M.A.; Ciemniecki, J.A.; Newman, D.K. Heat-Shock Proteases Promote Survival of Pseudomonas Aeruginosa during Growth Arrest. Proc. Natl. Acad. Sci. USA 2020, 117, 4358–4367. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.C.; Frawley, E.R.; Tapscott, T.; Vazquez-Torres, A. Bacterial Stress Responses during Host Infection. Cell Host Microbe 2016, 20, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richmond, C.S.; Glasner, J.D.; Mau, R.; Jin, H.; Blattner, F.R. Genome-Wide Expression Profiling in Escherichia coli K-12. Nucleic Acids Res. 1999, 27, 3821–3835. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zghidi Abouzid, O.; Oger Desfeux, C.; Hommais, F.; Greliche, N.; Muskhelishvili, G.; Nasser, W.; Reverchon, S. Global Transcriptional Response of Dickeya Dadantii to Environmental Stimuli Relevant to the Plant Infection. Environ. Microbiol. 2016, 18, 3651–3672. [Google Scholar] [CrossRef] [PubMed]
- Kędzierska, B.; Hayes, F. Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016, 21, 790. [Google Scholar] [CrossRef]
- Gerdes, K.; Maisonneuve, E. Bacterial Persistence and Toxin-Antitoxin Loci. Annu. Rev. Microbiol. 2012, 66, 103–123. [Google Scholar] [CrossRef]
- Bordes, P.; Genevaux, P. Control of Toxin-Antitoxin Systems by Proteases in Mycobacterium Tuberculosis. Front. Mol. Biosci. 2021, 8, 691399. [Google Scholar] [CrossRef]
- Uriarte, M.; Sen Nkwe, N.; Tremblay, R.; Ahmed, O.; Messmer, C.; Mashtalir, N.; Barbour, H.; Masclef, L.; Voide, M.; Viallard, C. Starvation-Induced Proteasome Assemblies in the Nucleus Link Amino Acid Supply to Apoptosis. Nat. Commun. 2021, 12, 6984. [Google Scholar] [CrossRef]
- Mizushima, N.; Noda, T.; Yoshimori, T.; Tanaka, Y.; Ishii, T.; George, M.D.; Klionsky, D.J.; Ohsumi, M.; Ohsumi, Y. A Protein Conjugation System Essential for Autophagy. Nature 1998, 395, 395–398. [Google Scholar] [CrossRef]
- Kuroda, A. A Polyphosphate-Lon Protease Complex in the Adaptation of Escherichia coli to Amino Acid Starvation. Biosci. Biotechnol. Biochem. 2006, 70, 325–331. [Google Scholar] [CrossRef]
- Kuroda, A.; Nomura, K.; Ohtomo, R.; Kato, J.; Ikeda, T.; Takiguchi, N.; Ohtake, H.; Kornberg, A. Role of Inorganic Polyphosphate in Promoting Ribosomal Protein Degradation by the Lon Protease in E. coli. Science 2001, 293, 705–708. [Google Scholar] [CrossRef]
Bacteria | Substrate(s) | Function(s) |
---|---|---|
Escherichia coli Lon | HupB (DNA-binding protein HU-beta) | Histone-like DNA-binding protein that wraps around the DNA to stabilize it and prevent its denaturation under extreme environmental conditions [56]. |
IbpA (Small heat shock protein) | Together with IbpB, it protects the aggregated proteins from irreversible denaturation and extensive proteolysis during heat shock and oxidative stress [57]. | |
RcsA (Transcriptional regulatory protein) | Component of the Rcs signaling system, which controls the transcription of an array of genes. RcsA binds RcsB to the RcsAB box to regulate gene expression [58]. | |
RpsB (30S ribosomal protein S2) | Required for ribosomal protein S1 to bind to the 30S subunit [59]. | |
SoxS (Regulatory protein) | Transcriptional activator of the superoxide response regulon [60]. It also facilitates binding of RNA polymerase to the micF and the nfo promoters [61]. | |
SulA (Cell division inhibitor) | Component of the SOS system and an inhibitor of cell division [62]. | |
UmuD | Involved in UV protection and mutation. Poorly processive, error-prone DNA polymerase involved in translesion repair [63]. | |
TrfA (Plasmid replication initiator protein) | Required for the initiation of plasmid DNA replication, along with host-derived DnaA and other host proteins [64]. | |
RepE (Replication initiation protein) | Replication initiator in the monomeric form, and autogenous repressor in the dimeric form [65]. | |
CcdA (antitoxin) | Antitoxin component of a type II toxin-antitoxin (TA) system which inhibits the post-segregational killing (PSK) of plasmid-free cells [66]. | |
Bacillus subtilis Lon | SwrA | Modulator of the two-component system DegSU; it is important for swarm motility [67]. |
Yersinia pestis Lon | YmoA (Yersinia modulator A) | Small histone-like protein which is required for Yersinia T3SS induction [68]. |
RsuA (Ribosomal small subunit pseudouridine synthase A) | Responsible for synthesis of pseudouridine from uracil-516 in 16S ribosomal RNA [69]. | |
Fur (Ferric uptake regulation protein) | Acts as a repressor, employing Fe2+ as a cofactor to bind the operator of the iron transport operon [70]. | |
Caulobacter crescentus Lon | Cell-Cycle-Regulated DNA Methyltransferase (CcrM) | Regulates the methylation of chromosomal DNA and cellular differentiation [54]. |
Bacteria | Virulence-Associated Genes |
---|---|
Pseudomonas aeruginosa | Type III secretion system genes: pscF (needle complex), popB and popD (translocation apparatus), exsC (regulatory protein) and exoS (effector protein cytotoxin). |
Salmonella enterica serovar Typhimurium | Salmonella pathogenicity island 1 (SPI-1) genes: hilA (transcriptional regulator of SPI-1), invF (necessary for the activation of sigDE, sicAsipBCDA and sopE), sipA (potentiates SipC activity; alters host cell actin cytoskeleton) and sipC (interferes with host cytoskeleton and enables efficient bacterial internalization) |
Yersinia species | Yersinia outer proteins (Yops) and type III secretion system (T3SS). |
Escherichia coli | Locus of Enterocyte Effacement (LEE) pathogenicity island associated virulence genes: ler (LEE-encoded regulator) and grlA (Type III secretion system LEE transcriptional regulator GrlA) and espA (Type III secretion system LEE translocon filament protein EspA) and nleA (Type III secretion system effector NleA) and marA (Multiple antibiotic resistance protein MarA). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirthika, P.; Lloren, K.K.S.; Jawalagatti, V.; Lee, J.H. Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. Int. J. Mol. Sci. 2023, 24, 3422. https://doi.org/10.3390/ijms24043422
Kirthika P, Lloren KKS, Jawalagatti V, Lee JH. Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. International Journal of Molecular Sciences. 2023; 24(4):3422. https://doi.org/10.3390/ijms24043422
Chicago/Turabian StyleKirthika, Perumalraja, Khristine Kaith Sison Lloren, Vijayakumar Jawalagatti, and John Hwa Lee. 2023. "Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival" International Journal of Molecular Sciences 24, no. 4: 3422. https://doi.org/10.3390/ijms24043422
APA StyleKirthika, P., Lloren, K. K. S., Jawalagatti, V., & Lee, J. H. (2023). Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. International Journal of Molecular Sciences, 24(4), 3422. https://doi.org/10.3390/ijms24043422