Pre-Treatment of Transplant Donors with Hydrogen Sulfide to Protect against Warm and Cold Ischemia-Reperfusion Injury in Kidney and Other Transplantable Solid Organs
Abstract
:1. Introduction
2. Cellular Mechanisms Underlying Ischemia-Reperfusion Injury in SOT
3. H2S and Its Endogenous Production
4. H2S Pre-Treatment against Cold IRI
4.1. H2S Pre-Treatment against Cold IRI in Lung Transplantation
4.2. H2S Pre-Treatment against Cold IRI in Kidney Transplantation
5. H2S Pre-Treatment against Warm IRI
5.1. H2S Pre-Treatment against Warm Renal IRI
5.2. H2S Pre-Treatment against Warm Myocardial IRI
5.3. H2S Pre-Treatment against Warm Hepatic IRI
5.4. H2S Pre-Treatment against Warm Intestinal IRI
5.5. H2S Pre-Treatment against Warm Pulmonary IRI
6. Sodium Thiosulfate: A Clinically Viable H2S Donor Drug against IRI
7. Ethics and Regulations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dugbartey, G.J.; Juriasingani, S.; Zhang, M.Y.; Sener, A. H2S Donor Molecules against Cold Ischemia-Reperfusion Injury in Preclinical Models of Solid Organ Transplantation. Pharmacol. Res. 2021, 172, 105842. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Brown, R.J.; Nicholson, M.L. Advances in Kidney Preservation Techniques and Their Application in Clinical Practice. Transplantation 2021, 105, e202–e214. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, R.W.; Friend, P.J. Organ Reperfusion and Preservation. Front. Biosci. 2008, 13, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, M.; Rosso, G.; Bertoni, E. Update on Ischemia-Reperfusion Injury in Kidney Transplantation: Pathogenesis and Treatment. World J. Transplant. 2015, 5, 52–67. [Google Scholar] [CrossRef]
- Zhao, H.; Alam, A.; Soo, A.P.; George, A.J.T.; Ma, D. Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond. EBioMedicine 2018, 28, 31–42. [Google Scholar] [CrossRef]
- Sibulesky, L.; Li, M.; Hansen, R.N.; Dick, A.A.S.; Montenovo, M.I.; Rayhill, S.C.; Bakthavatsalam, R.; Reyes, J.D. Impact of Cold Ischemia Time on Outcomes of Liver Transplantation: A Single Center Experience. Ann. Transplant. 2016, 21, 145–151. [Google Scholar] [CrossRef]
- Ward, A.; Klassen, D.K.; Franz, K.M.; Giwa, S.; Lewis, J.K. Social, Economic, and Policy Implications of Organ Preservation Advances. Curr. Opin. Organ Transplant. 2018, 23, 336–346. [Google Scholar] [CrossRef]
- Sanada, S.; Komuro, I.; Kitakaze, M. Pathophysiology of Myocardial Reperfusion Injury: Preconditioning, Postconditioning, and Translational Aspects of Protective Measures. Am. J. Physiol. -Heart Circ. Physiol. 2011, 301, H1723–H1741. [Google Scholar] [CrossRef]
- Sponga, S.; Benedetti, G.; de Manna, N.D.; Ferrara, V.; Vendramin, I.; Lechiancole, A.; Maiani, M.; Nalon, S.; Nalli, C.; Di Nora, C.; et al. Heart Transplant Outcomes in Patients with Mechanical Circulatory Support: Cold Storage versus Normothermic Perfusion Organ Preservation. Interact. Cardiovasc. Thorac. Surg. 2021, 32, 476–482. [Google Scholar] [CrossRef]
- van Beekum, C.J.; Vilz, T.O.; Glowka, T.R.; von Websky, M.W.; Kalff, J.C.; Manekeller, S. Normothermic Machine Perfusion (NMP) of the Liver—Current Status and Future Perspectives. Ann. Transplant. 2021, 26, e931664. [Google Scholar] [CrossRef]
- Patel, S.V.B.; Sener, A.; Bhattacharjee, R.N.; Luke, P.P.W. Machine Preservation of Donor Kidneys in Transplantation. Transl. Androl. Urol. 2019, 8, 118–125. [Google Scholar] [CrossRef]
- Niemann, C.U.; Feiner, J.; Swain, S.; Bunting, S.; Friedman, M.; Crutchfield, M.; Broglio, K.; Hirose, R.; Roberts, J.P.; Malinoski, D. Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function. N. Engl. J. Med. 2015, 373, 405–414. [Google Scholar] [CrossRef]
- Université de Sherbrooke. Calcineurin Inhibitor in NEuRoloGically Deceased Donors to Decrease Kidney DelaYed Graft Function (CINERGY)-Pilot Trial. 2021. Available online: clinicaltrials.gov (accessed on 4 December 2022).
- Juriasingani, S.; Ruthirakanthan, A.; Richard-Mohamed, M.; Akbari, M.; Aquil, S.; Patel, S.; Al-Ogaili, R.; Whiteman, M.; Luke, P.; Sener, A. Subnormothermic Perfusion with H2S Donor AP39 Improves DCD Porcine Renal Graft Outcomes in an Ex Vivo Model of Kidney Preservation and Reperfusion. Biomolecules 2021, 11, 446. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Dugbartey, G.J.; Juriasingani, S.; Akbari, M.; Liu, W.; Haig, A.; McLeod, P.; Arp, J.; Sener, A. Sodium Thiosulfate-Supplemented UW Solution Protects Renal Grafts against Prolonged Cold Ischemia-Reperfusion Injury in a Murine Model of Syngeneic Kidney Transplantation. Biomed. Pharmacother. 2022, 145, 112435. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, Q.; Wang, X.; Chen, X.; Chen, Y.; Du, J.; Chen, L. The Role of Mitochondria in Liver Ischemia-Reperfusion Injury: From Aspects of Mitochondrial Oxidative Stress, Mitochondrial Fission, Mitochondrial Membrane Permeable Transport Pore Formation, Mitophagy, and Mitochondria-Related Protective Measures. Oxid. Med. Cell Longev. 2021, 2021, 6670579. [Google Scholar] [CrossRef]
- Granger, D.N.; Kvietys, P.R. Reperfusion Injury and Reactive Oxygen Species: The Evolution of a Concept. Redox Biol. 2015, 6, 524–551. [Google Scholar] [CrossRef]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell Biology of Ischemia/Reperfusion Injury. Int. Rev. Cell Mol. Biol. 2012, 298, 229–317. [Google Scholar] [CrossRef]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Ischemia/Reperfusion. Compr. Physiol. 2016, 7, 113–170. [Google Scholar] [CrossRef]
- Rouslin, W. Mitochondrial Complexes I, II, III, IV, and V in Myocardial Ischemia and Autolysis. Am. J. Physiol. -Heart Circ. Physiol. 1983, 244, H743–H748. [Google Scholar] [CrossRef]
- Jassem, W.; Roake, J. The Molecular and Cellular Basis of Reperfusion Injury Following Organ Transplantation. Transplant. Rev. 1998, 12, 14–33. [Google Scholar] [CrossRef]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [PubMed]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic Accumulation of Succinate Controls Reperfusion Injury through Mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Arduini, A.; Mezzetti, A.; Porreca, E.; Lapenna, D.; DeJulia, J.; Marzio, L.; Polidoro, G.; Cuccurullo, F. Effect of Ischemia and Reperfusion on Antioxidant Enzymes and Mitochondrial Inner Membrane Proteins in Perfused Rat Heart. Biochim. Et Biophys. Acta (BBA)—Mol. Cell Res. 1988, 970, 113–121. [Google Scholar] [CrossRef]
- Neri, M.; Riezzo, I.; Pascale, N.; Pomara, C.; Turillazzi, E. Ischemia/Reperfusion Injury Following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediat. Inflamm. 2017, 2017, 7018393. [Google Scholar] [CrossRef] [PubMed]
- Tonnus, W.; Linkermann, A. The in Vivo Evidence for Regulated Necrosis. Immunol. Rev. 2017, 277, 128–149. [Google Scholar] [CrossRef]
- Belavgeni, A.; Meyer, C.; Stumpf, J.; Hugo, C.; Linkermann, A. Ferroptosis and Necroptosis in the Kidney. Cell Chem. Biol. 2020, 27, 448–462. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, K.; Luo, J.; Dong, Z. Autophagy Is a Renoprotective Mechanism During in Vitro Hypoxia and in Vivo Ischemia-Reperfusion Injury. Am. J. Pathol. 2010, 176, 1181–1192. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Eckle, T. Ischemia and Reperfusion—From Mechanism to Translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef]
- Dorweiler, B.; Pruefer, D.; Andrasi, T.B.; Maksan, S.M.; Schmiedt, W.; Neufang, A.; Vahl, C.F. Ischemia-Reperfusion Injury: Pathophysiology and Clinical Implications. Eur. J. Trauma Emerg. Surg. 2007, 33, 600–612. [Google Scholar] [CrossRef]
- Arumugam, T.V.; Shiels, I.A.; Woodruff, T.M.; Granger, D.N.; Taylor, S.M. The role of the complement system in ischemia-reperfusion injury. Shock 2004, 21, 401–409. [Google Scholar] [CrossRef]
- Dugbartey, G.J. Carbon monoxide as an emerging pharmacological tool to improve lung and liver transplantation protocols. Biochem. Pharmacol. 2021, 193, 114752. [Google Scholar] [CrossRef]
- Chen, X.; Jhee, K.-H.; Kruger, W.D. Production of the Neuromodulator H2S by Cystathionine Beta-Synthase via the Condensation of Cysteine and Homocysteine. J. Biol. Chem. 2004, 279, 52082–52086. [Google Scholar] [CrossRef]
- Majtan, T.; Krijt, J.; Sokolová, J.; Křížková, M.; Ralat, M.A.; Kent, J.; Gregory, J.F.; Kožich, V.; Kraus, J.P. Biogenesis of Hydrogen Sulfide and Thioethers by Cystathionine Beta-Synthase. Antioxid. Redox Signal. 2018, 28, 311–323. [Google Scholar] [CrossRef]
- Chiku, T.; Padovani, D.; Zhu, W.; Singh, S.; Vitvitsky, V.; Banerjee, R. H2S Biogenesis by Human Cystathionine Gamma-Lyase Leads to the Novel Sulfur Metabolites Lanthionine and Homolanthionine and Is Responsive to the Grade of Hyperhomocysteinemia. J. Biol. Chem. 2009, 284, 11601–11612. [Google Scholar] [CrossRef]
- Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A Novel Pathway for the Production of Hydrogen Sulfide from D-Cysteine in Mammalian Cells. Nat. Commun. 2013, 4, 1366. [Google Scholar] [CrossRef]
- Shibuya, N.; Tanaka, M.; Yoshida, M.; Ogasawara, Y.; Togawa, T.; Ishii, K.; Kimura, H. 3-Mercaptopyruvate Sulfurtransferase Produces Hydrogen Sulfide and Bound Sulfane Sulfur in the Brain. Antioxid. Redox Signal. 2009, 11, 703–714. [Google Scholar] [CrossRef]
- Szabo, C.; Papapetropoulos, A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol. Rev. 2017, 69, 497–564. [Google Scholar] [CrossRef]
- Jiang, J.; Chan, A.; Ali, S.; Saha, A.; Haushalter, K.J.; Lam, W.-L.M.; Glasheen, M.; Parker, J.; Brenner, M.; Mahon, S.B.; et al. Hydrogen Sulfide--Mechanisms of Toxicity and Development of an Antidote. Sci. Rep. 2016, 6, 20831. [Google Scholar] [CrossRef]
- Blackstone, E.; Morrison, M.; Roth, M.B. H2S Induces a Suspended Animation-like State in Mice. Science 2005, 308, 518. [Google Scholar] [CrossRef]
- Dugbartey, G.J.; Talaei, F.; Houwertjes, M.C.; Goris, M.; Epema, A.H.; Bouma, H.R.; Henning, R.H. Dopamine Treatment Attenuates Acute Kidney Injury in a Rat Model of Deep Hypothermia and Rewarming—The Role of Renal H2S-Producing Enzymes. Eur. J. Pharmacol. 2015, 769, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Marutani, E.; Yamada, M.; Ida, T.; Tokuda, K.; Ikeda, K.; Kai, S.; Shirozu, K.; Hayashida, K.; Kosugi, S.; Hanaoka, K.; et al. Thiosulfate Mediates Cytoprotective Effects of Hydrogen Sulfide Against Neuronal Ischemia. J. Am. Heart Assoc. 2015, 4, e002125. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Calvert, J.W.; Duranski, M.R.; Ramachandran, A.; Lefer, D.J. Hydrogen Sulfide Attenuates Hepatic Ischemia-Reperfusion Injury: Role of Antioxidant and Antiapoptotic Signaling. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H801–H806. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.R.; Drucker, N.A.; Khaneki, S.; Ferkowicz, M.J.; Markel, T.A. Hydrogen Sulfide Improves Intestinal Recovery Following Ischemia by Endothelial Nitric Oxide-Dependent Mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G450–G456. [Google Scholar] [CrossRef]
- Elrod, J.W.; Calvert, J.W.; Morrison, J.; Doeller, J.E.; Kraus, D.W.; Tao, L.; Jiao, X.; Scalia, R.; Kiss, L.; Szabo, C.; et al. Hydrogen Sulfide Attenuates Myocardial Ischemia-Reperfusion Injury by Preservation of Mitochondrial Function. Proc. Natl. Acad. Sci. USA 2007, 104, 15560–15565. [Google Scholar] [CrossRef]
- Nishime, K.; Miyagi-Shiohira, C.; Kuwae, K.; Tamaki, Y.; Yonaha, T.; Sakai-Yonaha, M.; Saitoh, I.; Watanabe, M.; Noguchi, H. Preservation of Pancreas in the University of Wisconsin Solution Supplemented with AP39 Reduces Reactive Oxygen Species Production and Improves Islet Graft Function. Am. J. Transplant. 2021, 21, 2698–2708. [Google Scholar] [CrossRef]
- George, T.J.; Arnaoutakis, G.J.; Beaty, C.A.; Jandu, S.K.; Santhanam, L.; Berkowitz, D.E.; Shah, A.S. Hydrogen Sulfide Decreases Reactive Oxygen in a Model of Lung Transplantation. J. Surg. Res. 2012, 178, 494–501. [Google Scholar] [CrossRef]
- Lobb, I.; Mok, A.; Lan, Z.; Liu, W.; Garcia, B.; Sener, A. Supplemental Hydrogen Sulphide Protects Transplant Kidney Function and Prolongs Recipient Survival after Prolonged Cold Ischaemia-Reperfusion Injury by Mitigating Renal Graft Apoptosis and Inflammation. BJU Int. 2012, 110, E1187–E1195. [Google Scholar] [CrossRef]
- Han, S.J.; Kim, J.I.; Park, J.-W.; Park, K.M. Hydrogen Sulfide Accelerates the Recovery of Kidney Tubules after Renal Ischemia/Reperfusion Injury. Nephrol. Dial. Transplant. 2015, 30, 1497–1506. [Google Scholar] [CrossRef]
- Ahmad, A.; Olah, G.; Szczesny, B.; Wood, M.E.; Whiteman, M.; Szabo, C. AP39, A Mitochondrially Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute Renal Injury in Vivo. Shock 2016, 45, 88–97. [Google Scholar] [CrossRef]
- Lobb, I.; Jiang, J.; Lian, D.; Liu, W.; Haig, A.; Saha, M.N.; Torregrossa, R.; Wood, M.E.; Whiteman, M.; Sener, A. Hydrogen Sulfide Protects Renal Grafts Against Prolonged Cold Ischemia-Reperfusion Injury via Specific Mitochondrial Actions. Am. J. Transplant. 2017, 17, 341–352. [Google Scholar] [CrossRef]
- George, T.J.; Arnaoutakis, G.J.; Beaty, C.A.; Jandu, S.K.; Santhanam, L.; Berkowitz, D.E.; Shah, A.S. Inhaled Hydrogen Sulfide Improves Graft Function in an Experimental Model of Lung Transplantation. J. Surg. Res. 2012, 178, 593–600. [Google Scholar] [CrossRef]
- Goubern, M.; Andriamihaja, M.; Nübel, T.; Blachier, F.; Bouillaud, F. Sulfide, the First Inorganic Substrate for Human Cells. FASEB J. 2007, 21, 1699–1706. [Google Scholar] [CrossRef]
- Kroemer, G.; Reed, J.C. Mitochondrial Control of Cell Death. Nat. Med. 2000, 6, 513–519. [Google Scholar] [CrossRef]
- Meng, C.; Cui, X.; Qi, S.; Zhang, J.; Kang, J.; Zhou, H. Lung Inflation with Hydrogen Sulfide during the Warm Ischemia Phase Ameliorates Injury in Rat Donor Lungs via Metabolic Inhibition after Cardiac Death. Surgery 2017, 161, 1287–1298. [Google Scholar] [CrossRef]
- Hayden, M.S.; West, A.P.; Ghosh, S. NF-KappaB and the Immune Response. Oncogene 2006, 25, 6758–6780. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 System: A Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol. Rev. 2018, 98, 1169–1203. [Google Scholar] [CrossRef]
- Bos, E.M.; Wang, R.; Snijder, P.M.; Boersema, M.; Damman, J.; Fu, M.; Moser, J.; Hillebrands, J.-L.; Ploeg, R.J.; Yang, G.; et al. Cystathionine γ-Lyase Protects against Renal Ischemia/Reperfusion by Modulating Oxidative Stress. J. Am. Soc. Nephrol. 2013, 24, 759–770. [Google Scholar] [CrossRef]
- Hesketh, E.E.; Czopek, A.; Clay, M.; Borthwick, G.; Ferenbach, D.; Kluth, D.; Hughes, J. Renal Ischaemia Reperfusion Injury: A Mouse Model of Injury and Regeneration. J. Vis. Exp. 2014, 88, 51816. [Google Scholar] [CrossRef]
- Bos, E.M.; Leuvenink, H.G.D.; Snijder, P.M.; Kloosterhuis, N.J.; Hillebrands, J.-L.; Leemans, J.C.; Florquin, S.; van Goor, H. Hydrogen Sulfide-Induced Hypometabolism Prevents Renal Ischemia/Reperfusion Injury. J. Am. Soc. Nephrol. 2009, 20, 1901–1905. [Google Scholar] [CrossRef]
- Azizi, F.; Seifi, B.; Kadkhodaee, M.; Ahghari, P. Administration of Hydrogen Sulfide Protects Ischemia Reperfusion-Induced Acute Kidney Injury by Reducing the Oxidative Stress. Ir. J. Med. Sci. 2016, 185, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, S.F.; Rathore, H.A.; Sattar, M.A.; Johns, E.J.; Gan, C.-Y.; Chia, T.Y.; Ahmad, A. Hydrogen Sulphide Treatment Prevents Renal Ischemia-Reperfusion Injury by Inhibiting the Expression of ICAM-1 and NF-KB Concentration in Normotensive and Hypertensive Rats. Biomolecules 2021, 11, 1549. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Qiu, Y.; Wu, Y.; Sun, H.; Gao, S. Protective Effects of GYY4137 on Renal Ischaemia/Reperfusion Injury through Nrf2-Mediated Antioxidant Defence. Kidney Blood Press Res. 2021, 46, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.-J. Acute Kidney Injury. Nat. Rev. Dis. Prim. 2021, 7, 52. [Google Scholar] [CrossRef]
- Morcos, R.; Kucharik, M.; Bansal, P.; Al Taii, H.; Manam, R.; Casale, J.; Khalili, H.; Maini, B. Contrast-Induced Acute Kidney Injury: Review and Practical Update. Clin. Med. Insights Cardiol. 2019, 13, 1179546819878680. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Grygier, M.; Lesiak, M.; Grajek, S. The Impact of Ischemia-Reperfusion Injury on the Effectiveness of Primary Angioplasty in ST-Segment Elevation Myocardial Infarction. Postep. Kardiol. Interwencyjnej 2013, 9, 275–281. [Google Scholar] [CrossRef]
- Sivarajah, A.; Collino, M.; Yasin, M.; Benetti, E.; Gallicchio, M.; Mazzon, E.; Cuzzocrea, S.; Fantozzi, R.; Thiemermann, C. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock 2009, 31, 267–274. [Google Scholar] [CrossRef]
- Pan, T.-T.; Chen, Y.Q.; Bian, J.-S. All in the Timing: A Comparison between the Cardioprotection Induced by H2S Preconditioning and Post-Infarction Treatment. Eur. J. Pharmacol. 2009, 616, 160–165. [Google Scholar] [CrossRef]
- Leon, B.M.; Maddox, T.M. Diabetes and Cardiovascular Disease: Epidemiology, Biological Mechanisms, Treatment Recommendations and Future Research. World J. Diabetes 2015, 6, 1246–1258. [Google Scholar] [CrossRef]
- Peake, B.F.; Nicholson, C.K.; Lambert, J.P.; Hood, R.L.; Amin, H.; Amin, S.; Calvert, J.W. Hydrogen Sulfide Preconditions the Db/Db Diabetic Mouse Heart against Ischemia-Reperfusion Injury by Activating Nrf2 Signaling in an Erk-Dependent Manner. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1215–H1224. [Google Scholar] [CrossRef]
- Cannistrà, M.; Ruggiero, M.; Zullo, A.; Gallelli, G.; Serafini, S.; Maria, M.; Naso, A.; Grande, R.; Serra, R.; Nardo, B. Hepatic Ischemia Reperfusion Injury: A Systematic Review of Literature and the Role of Current Drugs and Biomarkers. Int. J. Surg. 2016, 33, S57–S70. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, H.; Zhang, H.; Xu, F.; Zou, Z.; Liu, M.; Wang, Q.; Miao, M.; Shi, X. Hydrogen Sulfide Preconditioning Protects Rat Liver against Ischemia/Reperfusion Injury by Activating Akt-GSK-3β Signaling and Inhibiting Mitochondrial Permeability Transition. PLoS ONE 2013, 8, e74422. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, F.; Chen, K.; Shen, M.; Dai, W.; Xu, L.; Zhang, Y.; Wang, C.; Li, J.; Yang, J.; et al. Hydrogen Sulfide Ameliorates Ischemia/Reperfusion-Induced Hepatitis by Inhibiting Apoptosis and Autophagy Pathways. Mediat. Inflamm. 2014, 2014, 935251. [Google Scholar] [CrossRef]
- Pierro, A.; Eaton, S. Intestinal Ischemia Reperfusion Injury and Multisystem Organ Failure. Semin. Pediatr. Surg. 2004, 13, 11–17. [Google Scholar] [CrossRef]
- Liu, H.; Bai, X.-B.; Shi, S.; Cao, Y.-X. Hydrogen Sulfide Protects from Intestinal Ischaemia–Reperfusion Injury in Rats. J. Pharm. Pharmacol. 2009, 61, 207–212. [Google Scholar] [CrossRef]
- Liu, Y.; Kalogeris, T.; Wang, M.; Zuidema, M.Y.; Wang, Q.; Dai, H.; Davis, M.J.; Hill, M.A.; Korthuis, R.J. Hydrogen Sulfide Preconditioning or Neutrophil Depletion Attenuates Ischemia-Reperfusion-Induced Mitochondrial Dysfunction in Rat Small Intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G44–G54. [Google Scholar] [CrossRef]
- Ferrari, R.S.; Andrade, C.F. Oxidative Stress and Lung Ischemia-Reperfusion Injury. Oxidative Med. Cell. Longev. 2015, 2015, e590987. [Google Scholar] [CrossRef]
- Jiang, T.; Yang, W.; Zhang, H.; Song, Z.; Liu, T.; Lv, X. Hydrogen Sulfide Ameliorates Lung Ischemia-Reperfusion Injury Through SIRT1 Signaling Pathway in Type 2 Diabetic Rats. Front. Physiol. 2020, 11, 596. [Google Scholar] [CrossRef]
- Ravindran, S.; Boovarahan, S.R.; Shanmugam, K.; Vedarathinam, R.C.; Kurian, G.A. Sodium Thiosulfate Preconditioning Ameliorates Ischemia/Reperfusion Injury in Rat Hearts Via Reduction of Oxidative Stress and Apoptosis. Cardiovasc. Drugs Ther. 2017, 31, 511–524. [Google Scholar] [CrossRef]
- Ravindran, S.; Kurian, G.A. Preconditioning the Rat Heart with Sodium Thiosulfate Preserved the Mitochondria in Response to Ischemia-Reperfusion Injury. J. Bioenergy Biomembr. 2019, 51, 189–201. [Google Scholar] [CrossRef]
- Boovarahan, S.R.; Venkatasubramanian, H.; Sharma, N.; Venkatesh, S.; Prem, P.; Kurian, G.A. Inhibition of PI3K/MTOR/KATP Channel Blunts Sodium Thiosulphate Preconditioning Mediated Cardioprotection against Ischemia–Reperfusion Injury. Arch. Pharm. Res. 2021, 44, 605–620. [Google Scholar] [CrossRef]
- Bebarta, V.S.; Brittain, M.; Chan, A.; Garrett, N.; Yoon, D.; Burney, T.; Mukai, D.; Babin, M.; Pilz, R.B.; Mahon, S.B.; et al. Sodium Nitrite and Sodium Thiosulfate Are Effective Against Acute Cyanide Poisoning When Administered by Intramuscular Injection. Ann. Emerg. Med. 2017, 69, 718–725.e4. [Google Scholar] [CrossRef] [PubMed]
- Tsang, R.Y.; Al-Fayea, T.; Au, H.-J. Cisplatin Overdose. Drug-Safety 2009, 32, 1109–1122. [Google Scholar] [CrossRef] [PubMed]
- Strazzula, L.; Nigwekar, S.U.; Steele, D.; Tsiaras, W.; Sise, M.; Bis, S.; Smith, G.P.; Kroshinsky, D. Intralesional Sodium Thiosulfate for the Treatment of Calciphylaxis. JAMA Dermatol. 2013, 149, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Zhuo, L.; Wang, Y.; Jun, M.; Li, G.; Wang, L.; Hong, D. Systematic Review of Sodium Thiosulfate in Treating Calciphylaxis in Chronic Kidney Disease Patients. Nephrology 2018, 23, 669–675. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Dugbartey, G.J.; Juriasingani, S.; Sener, A. Hydrogen Sulfide Metabolite, Sodium Thiosulfate: Clinical Applications and Underlying Molecular Mechanisms. Int. J. Mol. Sci. 2021, 22, 6452. [Google Scholar] [CrossRef]
- Sen, U.; Vacek, T.P.; Hughes, W.M.; Kumar, M.; Moshal, K.S.; Tyagi, N.; Metreveli, N.; Hayden, M.R.; Tyagi, S.C. Cardioprotective Role of Sodium Thiosulfate on Chronic Heart Failure by Modulating Endogenous H2S Generation. PHA 2008, 82, 201–213. [Google Scholar] [CrossRef]
- de Koning, M.-S.L.; van Dorp, P.; Assa, S.; Hartman, M.H.; Voskuil, M.; Anthonio, R.L.; Veen, D.; Pundziute-Do Prado, G.; Leiner, T.; van Goor, H.; et al. Rationale and Design of the Groningen Intervention Study for the Preservation of Cardiac Function with Sodium Thiosulfate after St-Segment Elevation Myocardial Infarction (GIPS-IV) Trial. Am. Heart J. 2022, 243, 167–176. [Google Scholar] [CrossRef]
- GIPS-IV: Sodium Thiosulfate Does Not Reduce Heart Damage After MI. Available online: https://www.acc.org/Latest-in-Cardiology/Articles/2022/04/03/13/22/http%3a%2f%2fwww.acc.org%2fLatest-in-Cardiology%2fArticles%2f2022%2f04%2f03%2f13%2f22%2fMon-11am-GIPS-IV-acc-2022 (accessed on 4 December 2022).
- Health Canada Seacalphyx. Available online: https://health-products.canada.ca/dpd-bdpp/info.do?code=87223&lang=en#fn1 (accessed on 19 November 2022).
- U.S. Food and Drug Administration Sodium Thiosulfate Injection, 250 mg/mL. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203923_sodium_thiosulfate_toc.cfm (accessed on 12 December 2022).
- Franklin, P.M.; Crombie, A.K. Live Related Renal Transplantation: Psychological, Social, and Cultural Issues. Transplantation 2003, 76, 1247–1252. [Google Scholar] [CrossRef]
- Pillay, B.; Lee, S.J.; Katona, L.; De Bono, S.; Warren, N.; Fletcher, J.; Burney, S. The Psychosocial Impact of Haematopoietic SCT on Sibling Donors. Bone Marrow Transplant. 2012, 47, 1361–1365. [Google Scholar] [CrossRef]
- Munzenberger, N.; Fortanier, C.; Macquart-Moulin, G.; Faucher, C.; Novakovitch, G.; Maraninchi, D.; Moatti, J.P.; Blaise, D. Psychosocial Aspects of Haematopoietic Stem Cell Donation for Allogeneic Transplantation: How Family Donors Cope with This Experience. Psychooncology 1999, 8, 55–63. [Google Scholar] [CrossRef]
- Clarke, A.; Mitchell, A.; Abraham, C. Understanding Donation Experiences of Unspecified (Altruistic) Kidney Donors. Br. J. Health Psychol. 2014, 19, 393–408. [Google Scholar] [CrossRef]
- Martino, M.; Fedele, R.; Massara, E.; Recchia, A.G.; Irrera, G.; Morabito, F. Long-Term Safety of Granulocyte Colony-Stimulating Factor in Normal Donors: Is It All Clear? Expert Opin. Biol. Ther. 2012, 12, 609–621. [Google Scholar] [CrossRef]
- Glazier, A.K. The Principles of Gift Law and the Regulation of Organ Donation. Transpl. Int. 2011, 24, 368–372. [Google Scholar] [CrossRef]
- Domínguez-Gil, B.; Delmonico, F.L.; Shaheen, F.A.M.; Matesanz, R.; O’Connor, K.; Minina, M.; Muller, E.; Young, K.; Manyalich, M.; Chapman, J.; et al. The Critical Pathway for Deceased Donation: Reportable Uniformity in the Approach to Deceased Donation. Transpl. Int. 2011, 24, 373–378. [Google Scholar] [CrossRef]
- Kootstra, G.; van Heurn, E. Non-Heartbeating Donation of Kidneys for Transplantation. Nat. Clin. Pract. Nephrol. 2007, 3, 154–163. [Google Scholar] [CrossRef]
- Kootstra, G.; Daemen, J.H.; Oomen, A.P. Categories of Non-Heart-Beating Donors. Transplant. Proc. 1995, 27, 2893–2894. [Google Scholar]
- Limkemann, A.; Lindell, S.L.; Reichstetter, H.; Plant, V.; Parrish, D.; Ramos, C.; Kowalski, C.; Quintini, C.; Mangino, M.J. Donor Gluconate Rescues Livers from Uncontrolled Donation after Cardiac Death. Surgery 2016, 159, 852–861. [Google Scholar] [CrossRef]
- Larivière, S. Launch of the CINERGY Trial: Linking Donation and Transplantation. Available online: https://cdtrp.ca/en/launch-of-the-cinergy-trial/ (accessed on 29 December 2022).
Model | H2S Treatment Modality | Effect of H2S | References |
---|---|---|---|
Warm cerebral IRI in mice | STS administered one minute or one minute and daily for one week after reperfusion | -Improved survival -Improved neurological function | [43] |
Warm hepatic IRI in mice | Na2S administered during ischemia (five minutes before reperfusion) | -Reduced liver injury -Increased ratio of GSH to GSSG -Increased protein expression of Trx-1, HSP-90, and Bcl-2 -Decreased protein expression of cleaved caspase-3 -Reduced lipid peroxidation | [44] |
Warm intestinal IRI in mice | NaHS administered during reperfusion | -Increased mesenteric perfusion -Reduced intestinal mucosal damage -Decreased levels of IL-6, IL-9, IL-10, VEGF, FGF-2, MIP-1α, eotaxin, IP-10, MIP-2, G-CSF, KC in intestinal tissue -Effects of H2S mediated through endothelial nitric oxide synthase | [45] |
Warm myocardial IRI in mice | Na2S administered during reperfusion | -Reduced myocardial injury and infarct size -Reduced level of IL-1β and apoptosis in cardiac tissue -Increased cardiac function -Reduced leukocyte infiltration -Increased efficiency of ETC complexes I and II | [46] |
Cold pancreatic IRI in pigs | AP39 administered during ischemia (preservation solution supplemented with AP39) | -Decreased ROS production -Increased mitochondrial membrane polarization -Increased ATP production -Decreased expression of IL-1β and TNF-α -Improved islet function in recipient mice following xenogeneic transplantation | [47] |
Cold pulmonary IRI in rabbits (ex vivo) | NaHS administered during reperfusion | -Decreased ROS production | [48] |
Cold renal IRI in rats | NaHS administered during ischemia (preservation solution supplemented with NaHS) | -Improved recipient survival and renal function -Reduced renal tissue apoptosis and necrosis -Reduced leukocyte infiltration and expression of IFN-γ and ICAM-1 | [49] |
Warm renal IRI in mice | NaHS administered daily beginning two days after reperfusion | -Reduced renal tubule damage -Improved renal function and recovery of recipient body weight -Increased tubular epithelial cell and decreased interstitial cell proliferation -Reduced renal fibrosis -Decreased ROS production, ratio of GSSG to GSH, and Nox4 expression -Increased MnSOD and catalase expression | [50] |
Warm renal IRI in rats | AP39 administered during ischemia | -Improved renal function -Decreased ROS production -Decreased neutrophil infiltration and IL-12 levels -Decreased apoptosis | [51] |
Cold renal IRI in rats | STS administered during ischemia (preservation solution supplemented with STS) | -Improved recipient survival and renal function -Decreased apoptosis and necrosis -Decreased KIM-1, IFN-γ, TNF-α, IL-6, Bax, Caspase-3, and JNK2 expression -Increased PGC-1α, NDUFB8, SDHB, ERK1, and ERK2 expression -Decreased macrophage and neutrophil infiltration | [15] |
Cold renal IRI in rats | AP39 administered during ischemia (preservation solution supplemented with AP39) | -Improved recipient survival and renal function | [52] |
Model | H2S Pre-Treatment Modality | Effect of H2S | References |
---|---|---|---|
Cold pulmonary IRI in rabbits | Inhalation of H2S for 2 h prior to procurement | -Better pulmonary function in recipient -Lower ROS production following reperfusion | [53] |
Cold pulmonary IRI in rats | Inflation of procured lung with H2S for 2 h before SCS | -Reduced apoptosis, inflammation, and oxidative stress -Reduced NF-kB nuclear localization -Increased Nrf2 nuclear localization | [56] |
Warm renal IRI in mice | Inhalation of H2S for 30 min prior to ischemia | -Reduced impairment of kidney function, apoptosis, inflammation, and degree of structural damage -Attributed protective effect to hypometabolism induced by H2S | [61] |
Warm renal IRI in rats | NaHS administered 10 min before ischemia | -Reduced levels of plasma creatinine, blood urea nitrogen, renal malondialdehyde concentration, and increased superoxide dismutase activity | [62] |
Warm renal IRI in rats | NaHS administered daily for 35 days before ischemia | -Decreased NF-kB concentration -Downregulation of ICAM-1 expression | [63] |
Warm renal IRI in mice | GYY4137 administered for 2 consecutive days before ischemia | -Elevated Nrf2 nuclear translocation | [64] |
Warm myocardial IRI in rats | NaHS administration 15 min prior to ischemia | -Reduced infarct size -Reduced apoptosis, caspase 9 activity, NF-kB nuclear translocation, oxidative stress, myeloperoxidase activity, and neutrophil infiltration | [68] |
Warm myocardial IRI in rats | NaHS administered 1 day before ischemia | -Cardioprotection through a PKC-dependent mechanism -Pre-treatment provided a greater protective effect than post-treatment | [69] |
Warm myocardial IRI in db/db mice | Na2S administered 24 h or daily injection for 7 days before ischemia | -Infarct size relative to area at risk was reduced in both treatment regiments compared to vehicle control, but was 51% more effective in 7 day treatment than acute treatment. | [71] |
Warm myocardial IRI in rat heart (ex vivo) | STS administration 15 min before ischemia | -Reduced apoptosis and ROS levels. -Preserved mitochondrial function | [80] |
Warm myocardial IRI in rat heart (ex vivo) | STS administration 15 min before ischemia | -Improved activity of ETC complexes I-IV -Elevated PGC1α expression | [81] |
Warm myocardial IRI in rat heart (ex vivo) | STS administration 15 min before ischemia | -Protective effects abolished in the presence of PI3K/mTOR/KATP inhibitors | [82] |
Warm hepatic IRI in rats | NaHS administration 5 min before ischemia | -Reduced necrosis, mitochondrial-related cell death and apoptosis -Inhibited mPTP opening and activation of Akt-GSK-3β signaling | [73] |
Warm hepatic IRI in mice | NaHS administration 30 min before ischemia | -Reduced expression of TNF-α and IL-6 -Reduced apoptosis through inhibiting JNK1 signaling | [74] |
Warm intestinal IRI in rats | NaHS administered 24 h before ischemia | -Prevented postischemic mitochondrial dysfunction) in a BKCa channel-dependent manner -Reduced leukocyte rolling and adhesion in postischemic intestine | [77] |
Warm pulmonary IRI in rats | GYY4137 administered 1 h before ischemia | -Promoted Nrf2/HO-1 and eNOS-mediated antioxidant signaling pathways. | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McFarlane, L.; Nelson, P.; Dugbartey, G.J.; Sener, A. Pre-Treatment of Transplant Donors with Hydrogen Sulfide to Protect against Warm and Cold Ischemia-Reperfusion Injury in Kidney and Other Transplantable Solid Organs. Int. J. Mol. Sci. 2023, 24, 3518. https://doi.org/10.3390/ijms24043518
McFarlane L, Nelson P, Dugbartey GJ, Sener A. Pre-Treatment of Transplant Donors with Hydrogen Sulfide to Protect against Warm and Cold Ischemia-Reperfusion Injury in Kidney and Other Transplantable Solid Organs. International Journal of Molecular Sciences. 2023; 24(4):3518. https://doi.org/10.3390/ijms24043518
Chicago/Turabian StyleMcFarlane, Liam, Pierce Nelson, George J. Dugbartey, and Alp Sener. 2023. "Pre-Treatment of Transplant Donors with Hydrogen Sulfide to Protect against Warm and Cold Ischemia-Reperfusion Injury in Kidney and Other Transplantable Solid Organs" International Journal of Molecular Sciences 24, no. 4: 3518. https://doi.org/10.3390/ijms24043518
APA StyleMcFarlane, L., Nelson, P., Dugbartey, G. J., & Sener, A. (2023). Pre-Treatment of Transplant Donors with Hydrogen Sulfide to Protect against Warm and Cold Ischemia-Reperfusion Injury in Kidney and Other Transplantable Solid Organs. International Journal of Molecular Sciences, 24(4), 3518. https://doi.org/10.3390/ijms24043518