Metabolic Profile Reflects Stages of Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Metabolic Profile in Fast Progressors vs. Nonfast Progressors
2.3. Subgroup with Liver Histology
2.4. Metabolic Profile in Cirrhotic vs. Noncirrhotic Patients
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Metabolic Profile
4.3. Statistical Analysis
4.4. Ethics
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.-C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Ekstedt, M.; Hagstrom, H.; Nasr, P.; Fredrikson, M.; Stal, P.; Kechagias, S.; Hultcrantz, R. Fibrosis Stage Is the Strongest Predictor for Dis-ease-Specific Mortality in NAFLD After Up to 33Years of Follow-Up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef]
- Berzigotti, A.; Tsochatzis, E.; Boursier, J.; Castera, L.; Cazzagon, N.; Friedrich-Rust, M.; Petta, S.; Thiele, M. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. Non-Alcoholic Fatty Liver Disease (NAFLD): Assessment and Management NG49. 2016. Available online: https://www.nice.org.uk/guidance/ng49 (accessed on 10 January 2023).
- Zhang, X.; Wong, G.L.-H.; Wong, V.W.-S. Application of transient elastography in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2020, 26, 128–141. [Google Scholar] [CrossRef]
- Lurie, Y.; Webb, M.; Cytter-Kuint, R.; Shteingart, S.; Lederkremer, G.Z. Non-invasive diagnosis of liver fibrosis and cirrhosis. World J. Gastroenterol. 2015, 21, 11567–11583. [Google Scholar] [CrossRef]
- Younes, R.; Caviglia, G.P.; Govaere, O.; Rosso, C.; Armandi, A.; Sanavia, T.; Pennisi, G.; Liguori, A.; Francione, P.; Gallego-Durán, R.; et al. Long-term outcomes and predictive ability of non-invasive scoring systems in patients with non-alcoholic fatty liver disease. J. Hepatol. 2021, 75, 786–794. [Google Scholar] [CrossRef]
- Loosen, S.H.; Kostev, K.; Keitel, V.; Tacke, F.; Roderburg, C.; Luedde, T. An elevated FIB-4 score predicts liver cancer development: A longitudinal analysis from 29,999 patients with NAFLD. J. Hepatol. 2021, 76, 247–248. [Google Scholar] [CrossRef]
- Gaggini, M.; Carli, F.; Bugianesi, E.; Gastaldelli, A.; Rosso, C.; Buzzigoli, E.; Marietti, M.; Della Latta, V.; Ciociaro, D.; Abate, M.L.; et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology 2018, 67, 145–158. [Google Scholar] [CrossRef]
- Grzych, G.; Vonghia, L.; Bout, M.-A.; Weyler, J.; Verrijken, A.; Dirinck, E.; Curt, M.J.C.; Van Gaal, L.; Paumelle, R.; Francque, S.; et al. Plasma BCAA Changes in Patients with NAFLD Are Sex Dependent. J. Clin. Endocrinol. Metab. 2020, 105, 2311–2321. [Google Scholar] [CrossRef]
- Masarone, M.; Troisi, J.; Aglitti, A.; Torre, P.; Colucci, A.; Dallio, M.; Federico, A.; Balsano, C.; Persico, M. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis. Metabolomics 2021, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Stepanova, M.; Ong, J.P.; Jacobson, I.M.; Bugianesi, E.; Duseja, A.; Eguchi, Y.; Wong, V.W.; Negro, F.; Yilmaz, Y.; et al. Nonalcoholic Steatohepatitis Is the Fastest Growing Cause of Hepatocellular Carcinoma in Liver Transplant Candidates. Clin. Gastroenterol. Hepatol. 2018, 17, 748–755.e3. [Google Scholar] [CrossRef]
- Kaswala, D.H.; Lai, M.; Afdhal, N.H. Fibrosis Assessment in Nonalcoholic Fatty Liver Disease (NAFLD) in 2016. Dig. Dis. Sci. 2016, 61, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, M.; Gastaldelli, A.; Hyötyläinen, T.; Arretxe, E.; Alonso, C.; Gaggini, M.; Brosnan, J.; Anstee, Q.M.; Millet, O.; Ortiz, P.; et al. Metabolomics and lipidomics in NAFLD: Biomarkers and non-invasive diagnostic tests. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 835–856. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Allen, A.M.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Loomba, R. Fibrosis Progression in Nonalcoholic Fatty Liver vs Nonalcoholic Steatohepatitis: A Systematic Review and Meta-analysis of Paired-Biopsy Studies. Clin. Gastroenterol. Hepatol. 2014, 13, 643–654.e9. [Google Scholar] [CrossRef]
- Sparks, J.D.; Sparks, C.E.; Adeli, K. Selective Hepatic Insulin Resistance, VLDL Overproduction, and Hypertriglyceridemia. Arter. Thromb. Vasc. Biol. 2012, 32, 2104–2112. [Google Scholar] [CrossRef]
- Patel, S.; Siddiqui, M.B.; Chandrakumaran, A.; Rodriguez, V.A.; Faridnia, M.; Roman, J.H.; Zhang, E.; Patrone, M.V.; Kakiyama, G.; Walker, C.; et al. Progression to Cirrhosis Leads to Improvement in Atherogenic Milieu. Dig. Dis. Sci. 2020, 66, 263–272. [Google Scholar] [CrossRef]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- McCullough, A.; Previs, S.F.; Dasarathy, J.; Lee, K.; Osme, A.; Kim, C.; Ilchenko, S.; Lorkowski, S.W.; Smith, J.D.; Dasarathy, S.; et al. HDL flux is higher in patients with nonalcoholic fatty liver disease. Am. J. Physiol. Metab. 2019, 317, E852–E862. [Google Scholar] [CrossRef]
- Hu, C.-A.A.; Khalil, S.; Zhaorigetu, S.; Liu, Z.; Tyler, M.; Wan, G.; Valle, D. Human Δ1-pyrroline-5-carboxylate synthase: Function and regulation. Amino Acids 2008, 35, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Gordon, M.K.; Hahn, R.A. Collagens. Cell Tissue Res. 2010, 339, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Lu, X.; Azad, B.B.; Pomper, M.; Smith, M.; He, J.; Pi, L.; Ren, B.; Ying, Z.; Sichani, B.S.; et al. cis-4-[18F]fluoro-L-proline Molecular Imaging Experimental Liver Fibrosis. Front. Mol. Biosci. 2020, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, C.; Schierwagen, R.; Schaefer, L.; Klein, S.; Trepat, X.; Trebicka, J. Extracellular Matrix Remodeling in Chronic Liver Disease. Curr. Tissue Microenviron. Rep. 2021, 2, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Kagan, H.M.; Li, W. Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 2003, 88, 660–672. [Google Scholar] [CrossRef]
- Kawasaki, H.; Hori, T.; Nakajima, M.; Takeshita, K. Plasma levels of pipecolic acid in patients with chronic liver disease. Hepatology 1988, 8, 286–289. [Google Scholar] [CrossRef]
- Mayo, R.; Crespo, J.; Martínez-Arranz, I.; Banales, J.M.; Arias, M.; Mincholé, I.; de la Fuente, R.A.; Jimenez-Agüero, R.; Alonso, C.; de Luis, D.A.; et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts. Hepatol. Commun. 2018, 2, 807–820. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Perakakis, N.; Boutari, C.; Kountouras, J.; Ghaly, W.; Anastasilakis, A.D.; Karagiannis, A.; Mantzoros, C.S. Targeted Analysis of Three Hormonal Systems Identifies Molecules Associated with the Presence and Severity of NAFLD. J. Clin. Endocrinol. Metab. 2019, 105, e390–e400. [Google Scholar] [CrossRef]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef]
Study Population (n = 189) | |
---|---|
Demographics | |
Male Sex, N (%) | 122 (64.6) |
Ethnicities, N (%) White Non-Hispanic | 77 (40.7) |
White Hispanic | 11 (5.8) |
Arab | 11 (5.8) |
South Asian | 34 (18) |
East Asia | 9 (4.8) |
African/Afro-Caribbean | 12 (6.3) |
Other | 35 (18.5) |
Age, median (IQR) | 52 (41–60) |
Comorbidities | |
T2DM, N (%) | 94 (49.7) |
Dyslipidaemia, N (%) | 81 (42.9) |
Hypertension, N (%) | 81 (42.9) |
Hypothyroidism, N (%) | 16 (8.5) |
Biochemistry | |
AST (IU/L), median (IQR) | 40 (31–54.5) |
ALP (IU/L), median (IQR) | 81 (65–104) |
GGT (IU/L), median (IQR) | 56 (35–105) |
PLT (×109/L), median (IQR) | 225 (187–271) |
HbA1c (mmol/L), median (IQR) | 44 (37.25–54) |
Metabolite | Fast Progressors (n = 38) | Nonfast Progressors (n = 112) | p Value |
---|---|---|---|
Glutamic Acid (mmol/L) | 0.2 | 0.15 | 0.045 |
Proline (mmol/L) | 0.24 | 0.19 | 0.035 |
Valine (mmol/L) | 0.31 | 0.28 | 0.024 |
H2A2 (mg/dL) | 3.6 | 3.09 | 0.042 |
H3TG (mg/dL) | 2.51 | 2.14 | p < 0.0001 |
IDAB (mg/dL) | 6.01 | 5.34 | 0.039 |
IDPN (nmol/L) | 109.17 | 97.09 | 0.039 |
IDTG (mg/dL) | 18.38 | 13.59 | 0.024 |
L3FC (mg/dL) | 2.72 | 3.84 | 0.034 |
L4FC (mg/dL) | 3.45 | 3.97 | 0.042 |
TPTG (mg/dL) | 163.30 | 140.48 | 0.022 |
V1CH (mg/dL) | 9.42 | 7.06 | 0.013 |
V1FC (mg/dL) | 4.32 | 3.22 | 0.014 |
V1PL (mg/dL) | 9.96 | 7.89 | 0.04 |
V1TG (mg/dL) | 57.02 | 45.59 | 0.044 |
V2CH (mg/dL) | 3.76 | 2.93 | 0.018 |
V2FC (mg/dL) | 1.77 | 1.43 | 0.014 |
V2PL (mg/dL) | 4.93 | 3.95 | 0.03 |
V2TG (mg/dL) | 19.43 | 16.08 | 0.031 |
V3CH (mg/dL) | 4.42 | 3.84 | 0.034 |
V3FC (mg/dL) | 2.35 | 1.86 | 0.033 |
V3PL (mg/dL) | 5.58 | 4.69 | 0.04 |
V4FC (mg/dL) | 2.85 | 2.22 | 0.019 |
VLAB (mg/dL) | 11.60 | 9.69 | 0.04 |
VLCH (mg/dL) | 28.86 | 22.58 | 0.016 |
VLFC (mg/dL) | 12.96 | 10.49 | 0.033 |
VLPL (mg/dL) | 28.76 | 24.96 | 0.042 |
VLPN (nmol/L) | 210.90 | 176.11 | 0.04 |
VLTG (mg/dL) | 115.59 | 92.33 | 0.036 |
H1TG (mg/dL) | 4.31 | 3.02 | 0.002 |
H2TG (mg/dL) | 2.23 | 1.82 | p < 0.0001 |
HDTG (mg/dL) | 12.34 | 10.45 | 0.001 |
L5FC (mg/dL) | 3.49 | 4.04 | 0.021 |
H4FC (mg/dL) | 2.68 | 3.47 | 0.006 |
H4CH (mg/dL) | 15.92 | 18.75 | 0.002 |
H4A1 (mg/dL) | 64.81 | 71.96 | 0.005 |
H4A2 (mg/dL) | 16.46 | 18.58 | 0.012 |
H4PL (mg/dL) | 23.28 | 26.42 | 0.011 |
Metabolite | OR (95% CI) | Significance |
---|---|---|
H2TG (mg/dL) | 30.48 (4.37–212.57) | <0.001 |
H4A1 (mg/dL) | 0.706 (0.57–0.88) | 0.001 |
H4PL (mg/dL) | 1.586 (1.09–2.32) | 0.017 |
H4A2 (mg/dL) | 1.989 (1.99–1.18) | 0.009 |
V4FC (mg/dL) | 0.063 (0.06–0.007) | 0.014 |
IDTG (mg/dL) | 0.719 (0.72–0.57) | 0.004 |
VLFC (mg/dL) | 12.94 (1.92–87.15) | 0.009 |
V3CH (mg/dL) | 0.103 (0.01–1.02) | 0.052 |
Proline (mmol/L) | 42.376 (2.34–767.97) | 0.011 |
IDAB (mg/dL) | 3.18 (1.38–7.32) | 0.006 |
VLAB (mg/dL) | 0.284 (0.09–0.92) | 0.036 |
V3PL (mg/dL) | 44.243 (1.66–1179.2) | 0.024 |
VLPL (mg/dL) | 0.532 (0.30–0.95) | 0.032 |
H2A2 (mg/dL) | 0.319 (0.12–0.83) | 0.019 |
Metabolite | Fast Progressors (n = 22) | Nonfast Progressors (n = 63) | p Value |
---|---|---|---|
Two Oxoglutaric Acid (mmol/L) | 0 | 0 | <0.001 |
H4CH (mg/dL) | 15.545 | 18.99 | 0.002 |
H4PL (mg/dL) | 22.28 | 26.14 | 0.004 |
H4FC (mg/dL) | 2.52 | 3.31 | 0.006 |
H4A1 (mg/dL) | 62.62 | 71.85 | 0.009 |
V1CH (mg/dL) | 9.42 | 6 | 0.01 |
H2TG (mg/dL) | 2.225 | 1.82 | 0.01 |
V2FC (mg/dL) | 1.765 | 1.21 | 0.012 |
V2CH (mg/dL) | 3.67 | 2.81 | 0.012 |
VLCH (mg/dL) | 28.25 | 21.46 | 0.012 |
V1FC (mg/dL) | 4.32 | 2.69 | 0.013 |
H4A2 (mg/dL) | 15.9 | 18.46 | 0.014 |
VLFC (mg/dL) | 12.9 | 9.72 | 0.017 |
H3TG (mg/dL) | 2.53 | 2.22 | 0.017 |
HDTG (mg/dL) | 12.52 | 10.46 | 0.02 |
HDFC (mg/dL) | 9.28 | 11.02 | 0.02 |
V4FC (mg/dL) | 3.135 | 2.13 | 0.021 |
VLPL (mg/dL) | 28.34 | 23.94 | 0.021 |
VLPN (mg/dL) | 206.75 | 161.42 | 0.023 |
VLAB (mg/dL) | 11.37 | 8.88 | 0.024 |
TPA2 (mg/dL) | 28.405 | 30.78 | 0.025 |
V3FC (mg/dL) | 2.335 | 1.63 | 0.027 |
V2PL (mg/dL) | 4.765 | 3.65 | 0.028 |
TPTG (mg/dL) | 163.59 | 127.42 | 0.028 |
V2TG (mg/dL) | 19 | 14.99 | 0.029 |
V3CH (mg/dL) | 4.415 | 3.54 | 0.029 |
H3CH (mg/dL) | 8.465 | 9.21 | 0.034 |
VLTG (mg/dL) | 112.85 | 87.7 | 0.034 |
HDA1 (mg/dL) | 123.85 | 133.81 | 0.037 |
V1PL (mg/dL) | 9.275 | 7.02 | 0.038 |
L3FC (mg/dL) | 2.69 | 3.63 | 0.041 |
V4CH (mg/dL) | 6.18 | 4.77 | 0.041 |
IDTG (mg/dL) | 18.005 | 11.73 | 0.042 |
HDA2 (mg/dL) | 29.005 | 31.37 | 0.044 |
IDCH (mg/dL) | 14.98 | 11.66 | 0.045 |
V3PL (mg/dL) | 5.58 | 4.13 | 0.049 |
IDFC (mg/dL) | 4.265 | 3.58 | 0.049 |
Metabolite | Cirrhotics (n = 21) | Noncirrhotics (n = 162) | p Value |
---|---|---|---|
H1A1 (mg/dL) | 33.48 | 16.95 | 0.007 |
H1A2 (mg/dL) | 3.49 | 1.83 | 0.016 |
H1CH (mg/dL) | 20.43 | 13.64 | 0.014 |
H1PL (mg/dL) | 28.42 | 15.86 | 0.017 |
H1FC (mg/dL) | 4.29 | 3.15 | 0.039 |
L2TG (mg/dL) | 2.73 | 2.00 | 0.015 |
3OHB (mg/dL) | 0.09 | 0.06 | 0.012 |
H1TG (mg/dL) | 5.3 | 3.25 | 0.001 |
H2TG (mg/dL) | 2.48 | 1.96 | 0.021 |
HDTG (mg/dL) | 14.57 | 11.15 | 0.02 |
L5FC (mg/dL) | 3.35 | 3.91 | 0.027 |
H4FC (mg/dL) | 2.4 | 3.32 | 0.014 |
H4CH (mg/dL) | 13.35 | 18.03 | 0.006 |
H4A1 (mg/dL) | 59.23 | 70.09 | 0.014 |
H4A2 (mg/dL) | 15.8 | 18.46 | 0.001 |
H4PL (mg/dL) | 19.67 | 26.09 | 0.004 |
HDA2 (mg/dL) | 28.09 | 30.61 | 0.01 |
TPA2 (mg/dL) | 27.62 | 30.09 | 0.012 |
Creatine (mmol/L) | 0.01 | 0.02 | 0.036 |
Lysine (mmol/L) | 0.18 | 0.23 | 0.001 |
Metabolite | OR (95% CI) | p-Value |
---|---|---|
Lysine (mmol/L) | 0.001 (0.000002–0.137) | 0.008 |
HDA2 (mg/dL) | 0.856 (0.77–0.94) | 0.002 |
H1A2 (mg/dL) | 1.654 (1.2–2.27) | 0.002 |
Creatine (mmol/L) | 6.8 (0.008–0.58) | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jambulingam, N.; Forlano, R.; Preston, B.; Mullish, B.H.; Portone, G.; Baheer, Y.; Yee, M.; Goldin, R.D.; Thursz, M.R.; Manousou, P. Metabolic Profile Reflects Stages of Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2023, 24, 3563. https://doi.org/10.3390/ijms24043563
Jambulingam N, Forlano R, Preston B, Mullish BH, Portone G, Baheer Y, Yee M, Goldin RD, Thursz MR, Manousou P. Metabolic Profile Reflects Stages of Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences. 2023; 24(4):3563. https://doi.org/10.3390/ijms24043563
Chicago/Turabian StyleJambulingam, Nila, Roberta Forlano, Benjamin Preston, Benjamin H. Mullish, Greta Portone, Yama Baheer, Michael Yee, Robert D. Goldin, Mark R. Thursz, and Pinelopi Manousou. 2023. "Metabolic Profile Reflects Stages of Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease" International Journal of Molecular Sciences 24, no. 4: 3563. https://doi.org/10.3390/ijms24043563
APA StyleJambulingam, N., Forlano, R., Preston, B., Mullish, B. H., Portone, G., Baheer, Y., Yee, M., Goldin, R. D., Thursz, M. R., & Manousou, P. (2023). Metabolic Profile Reflects Stages of Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 24(4), 3563. https://doi.org/10.3390/ijms24043563