The Oncogenic Theory of Preeclampsia: Is Amniotic Mesenchymal Stem Cells-Derived PLAC1 Involved?
Abstract
:1. Introduction
1.1. The Oncogenic Theory of Preeclampsia: The Role of PLAC1 Antigen
1.2. Amniotic Mesenchymal Stem Cells
2. Results
2.1. Clinical Characteristics of Patients
2.2. hAMSC Yield, Morphology, and Phenotype
2.3. PLAC1 mRNA Expression Tends to Be Lower in Preeclamptic Patients
2.4. Secreted PLAC1 Antigen Is Detectable in Preeclamptic hAMSCs but Not in Controls
2.5. Analys of PLAC1 Cleavage Sites Identifies Many Proteases That Could Shed PLAC1 Antigen
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Cell Cultures
4.3. Ribonucleic Acid Extraction and Quantification Reverse Transcription Polymerase Chain Reaction
4.4. PLAC1 Secretion
4.5. In Silico Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
hAMSCs | human amnion-derived mesenchymal stem cells |
MMP | metalloproteinase |
PE | preeclampsia |
PLAC1 | PLACenta-specific protein 1 |
PMSCs | placenta-derived mesenchymal stem cells |
RT-PCR | real-time polymerase chain reaction |
References
- Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal Stem Cells in Health and Disease. Nat. Rev. Immunol. 2008, 8, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Matsubara, Y.; Uchikura, Y.; Sugiyama, T. Pathophysiology of Preeclampsia: The Role of Exosomes. Int. J. Mol. Sci. 2021, 22, 2572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhong, Y.; Zou, L.; Liu, X. Significance of Placental Mesenchymal Stem Cell in Placenta Development and Implications for Preeclampsia. Front. Pharmacol. 2022, 13, 896531. [Google Scholar] [CrossRef] [PubMed]
- Beard, J. Embryological Aspects and Etiology of Carcinoma. Lancet 1902, 1, 1758–1763. [Google Scholar] [CrossRef]
- Gurchot, C. The Trophoblast Theory of Cancer (John Beard, 1857–1924) Revisited. Oncology 1975, 31, 310–333. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Y.; Peng, J.R.; Ye, Y.J.; Chen, H.S.; Zhang, L.J.; Pang, X.W.; Li, Y.; Zhang, Y.; Wang, S.; Fant, M.E.; et al. Plac1 Is a Tumor-Specific Antigen Capable of Eliciting Spontaneous Antibody Responses in Human Cancer Patients. Int. J. Cancer 2008, 122, 2038–2043. [Google Scholar] [CrossRef]
- Devor, E. Placenta-Specific Protein 1 (Plac1) Is a Unique Onco-Fetal-Placental Protein and an Underappreciated Therapeutic Target in Cancer. Integr. Cancer Sci. Ther. 2016, 3, 479–483. [Google Scholar] [CrossRef]
- Cocchia, M.; Huber, R.; Pantano, S.; Chen, E.Y.; Ma, P.; Forabosco, A.; Ko, M.S.; Schlessinger, D. Plac1, An Xq26 Gene with Placenta-Specific Expression. Genomics 2000, 68, 305–312. [Google Scholar] [CrossRef]
- Massabbal, E.; Parveen, S.; Weisoly, D.L.; Nelson, D.M.; Smith, S.D.; Fant, M. Plac1 Expression Increases during Trophoblast Differentiation: Evidence for Regulatory Interactions with the Fibroblast Growth Factor-7 (Fgf-7) Axis. Mol. Reprod. Dev. 2005, 71, 299–304. [Google Scholar] [CrossRef]
- Fant, M.; Farina, A.; Nagaraja, R.; Schlessinger, D. Plac1 (Placenta-Specific 1): A Novel, X-Linked Gene with Roles in Reproductive and Cancer Biology. Prenat. Diagn. 2010, 30, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Fant, M.; Barerra-Saldana, H.; Dubinsky, W.; Poindexter, B.; Bick, R. The Plac1 Protein Localizes to Membranous Compartments in the Apical Region of the Syncytiotrophoblast. Mol. Reprod. Dev. 2007, 74, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; De Groot, C.J.M.; Hofmeyr, G.J. Pre-Eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Redline, R.W.; Patterson, P. Pre-Eclampsia Is Associated with an Excess of Proliferative Immature Intermediate Trophoblast. Hum. Pathol. 1995, 26, 594–600. [Google Scholar] [CrossRef]
- Kaya, B.; Nayki, U.; Nayki, C.; Ulug, P.; Oner, G.; Gultekin, E.; Yildirim, Y. Proliferation of Trophoblasts and Ki67 Expression in Preeclampsia. Arch. Gynecol. Obstet. 2015, 291, 1041–1046. [Google Scholar] [CrossRef]
- Parolini, O.; Alviano, F.; Bagnara, G.P.; Bilic, G.; Buhring, H.J.; Evangelista, M.; Hennerbichler, S.; Liu, B.; Magatti, M.; Mao, N.; et al. Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells 2008, 26, 300–311. [Google Scholar] [CrossRef]
- Bilic, G.; Zeisberger, S.M.; Mallik, A.S.; Zimmermann, R.; Zisch, A.H. Comparative Characterization of Cultured Human Term Amnion Epithelial And Mesenchymal Stromal Cells for Application in Cell Therapy. Cell Transplant. 2008, 17, 955–968. [Google Scholar] [CrossRef]
- Diaz-Prado, S.; Muinos-Lopez, E.; Hermida-Gomez, T.; Rendal-Vazquez, M.E.; Fuentes-Boquete, I.; De Toro, F.J.; Blanco, F.J. Multilineage Differentiation Potential of Cells Isolated from The Human Amniotic Membrane. J. Cell Biochem. 2010, 111, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Matteo, M.; Beccia, E.; Carbone, A.; Castellani, S.; Milillo, L.; Lauritano, D.; Di Gioia, S.; Angiolillo, A.; Conese, M. Effect of Mother’s Age and Pathology on Functional Behavior of Amniotic Mesenchymal Stromal Cells—Hints for Bone Regeneration. Appl. Sci. 2019, 9, 3471. [Google Scholar] [CrossRef]
- Nejadmoghaddam, M.R.; Zarnani, A.H.; Ghahremanzadeh, R.; Ghods, R.; Mahmoudian, J.; Yousefi, M.; Nazari, M.; Ghahremani, M.H.; Abolhasani, M.; Anissian, A.; et al. Placenta-Specific1 (Plac1) Is a Potential Target for Antibody-Drug Conjugate-Based Prostate Cancer Immunotherapy. Sci. Rep. 2017, 7, 13373. [Google Scholar] [CrossRef] [Green Version]
- Sifakis, S.; Androutsopoulos, V.P.; Pontikaki, A.; Velegrakis, A.; Papaioannou, G.I.; Koukoura, O.; Spandidos, D.A.; Papantoniou, N. Placental Expression of Pappa, Pappa-2 And Plac-1 in Pregnacies Is Associated with Fgr. Mol. Med. Rep. 2018, 17, 6435–6440. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, L.; Du, J.; Pan, C.; Zhang, C.; Chen, Y. Placenta-Specific Protein 1 Enhances Liver Metastatic Potential and Is Associated with the Pi3k/Akt/Nf-Kappab Signaling Pathway In Colorectal Cancer. Eur. J. Cancer Prev. 2021, 30, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.A., Jr.; Gnjatic, S.; Ritter, E.; Chua, R.; Cohen, T.; Hsu, M.; Jungbluth, A.A.; Altorki, N.K.; Chen, Y.T.; Old, L.J.; et al. Plac1, a Trophoblast-Specific Cell Surface Protein, Is Expressed in a Range of Human Tumors and Elicits Spontaneous Antibody Responses. Cancer Immun. 2007, 7, 18. [Google Scholar]
- Insausti, C.L.; Blanquer, M.; Garcia-Hernandez, A.M.; Castellanos, G.; Moraleda, J.M. Amniotic Membrane-Derived Stem Cells: Immunomodulatory Properties and Potential Clinical Application. Stem Cells Cloning 2014, 7, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Magatti, M.; Vertua, E.; Cargnoni, A.; Silini, A.; Parolini, O. The Immunomodulatory Properties of Amniotic Cells: The Two Sides of the Coin. Cell Transplant. 2018, 27, 31–44. [Google Scholar] [CrossRef]
- Barlow, S.; Brooke, G.; Chatterjee, K.; Price, G.; Pelekanos, R.; Rossetti, T.; Doody, M.; Venter, D.; Pain, S.; Gilshenan, K.; et al. Comparison of Human Placenta- and Bone Marrow-Derived Multipotent Mesenchymal Stem Cells. Stem Cells Dev. 2008, 17, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Batsali, A.K.; Pontikoglou, C.; Koutroulakis, D.; Pavlaki, K.I.; Damianaki, A.; Mavroudi, I.; Alpantaki, K.; Kouvidi, E.; Kontakis, G.; Papadaki, H.A. Differential Expression of Cell Cycle and Wnt Pathway-Related Genes Accounts for Differences in the Growth and Differentiation Potential of Wharton’s Jelly and Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cell Res. Ther. 2017, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Talwadekar, M.D.; Kale, V.P.; Limaye, L.S. Placenta-Derived Mesenchymal Stem Cells Possess Better Immunoregulatory Properties Compared to Their Cord-Derived Counterparts—A Paired Sample Study. Sci. Rep. 2015, 5, 15784. [Google Scholar] [CrossRef]
- Boss, A.L.; Chamley, L.W.; James, J.L. Placental Formation in Early Pregnancy: How Is the Centre of the Placenta Made? Hum. Reprod. Update 2018, 24, 750–760. [Google Scholar] [CrossRef]
- Wu, D.; Liu, Y.; Liu, X.; Liu, W.; Shi, H.; Zhang, Y.; Zou, L.; Zhao, Y. Heme Oxygenase-1 Gene Modified Human Placental Mesenchymal Stem Cells Promote Placental Angiogenesis and Spiral Artery Remodeling by Improving the Balance of Angiogenic Factors In Vitro. Placenta 2020, 99, 70–77. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, H.; Wu, D.; Xu, G.; Ma, R.; Liu, X.; Mao, Y.; Zhang, Y.; Zou, L.; Zhao, Y. The Protective Benefit of Heme Oxygenase-1 Gene-Modified Human Placenta-Derived Mesenchymal Stem Cells in a N-Nitro-L-Arginine Methyl Ester-Induced Preeclampsia-like Rat Model: Possible Implications for Placental Angiogenesis. Stem Cells Dev. 2021, 30, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Magatti, M.; Stefani, F.R.; Papait, A.; Cargnoni, A.; Masserdotti, A.; Silini, A.R.; Parolini, O. Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells 2019, 8, 1401. [Google Scholar] [CrossRef] [PubMed]
- Concu, M.; Banzola, I.; Farina, A.; Sekizawa, A.; Rizzo, N.; Marini, M.; Caramelli, E.; Carinci, P. Rapid Clearance of Mrna for Plac1 Gene in Maternal Blood after Delivery. Fetal Diagn. Ther. 2005, 20, 27–30. [Google Scholar] [CrossRef]
- Roland, C.S.; Hu, J.; Ren, C.E.; Chen, H.; Li, J.; Varvoutis, M.S.; Leaphart, L.W.; Byck, D.B.; Zhu, X.; Jiang, S.W. Morphological Changes of Placental Syncytium and Their Implications for the Pathogenesis of Preeclampsia. Cell. Mol. Life Sci. 2016, 73, 365–376. [Google Scholar] [CrossRef]
- Mayhew, T.M.; Manwani, R.; Ohadike, C.; Wijesekara, J.; Baker, P.N. The Placenta in Pre-Eclampsia and Intrauterine Growth Restriction: Studies on Exchange Surface Areas, Diffusion Distances and Villous Membrane Diffusive Conductances. Placenta 2007, 28, 233–238. [Google Scholar] [CrossRef]
- Chen, J.; Khalil, R.A. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. Prog. Mol. Biol. Transl. Sci. 2017, 148, 87–165. [Google Scholar] [PubMed]
- Isaka, K.; Usuda, S.; Ito, H.; Sagawa, Y.; Nakamura, H.; Nishi, H.; Suzuki, Y.; Li, Y.F.; Takayama, M. Expression and Activity of Matrix Metalloproteinase 2 and 9 in Human Trophoblasts. Placenta 2003, 24, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Palei, A.C.; Granger, J.P.; Tanus-Santos, J.E. Matrix Metalloproteinases as Drug Targets in Preeclampsia. Curr. Drug Targets 2013, 14, 325–334. [Google Scholar]
- Than, N.G.; Abdul Rahman, O.; Magenheim, R.; Nagy, B.; Fule, T.; Hargitai, B.; Sammar, M.; Hupuczi, P.; Tarca, A.L.; Szabo, G.; et al. Placental Protein 13 (Galectin-13) Has Decreased Placental Expression but Increased Shedding and Maternal Serum Concentrations in Patients Presenting with Preterm Pre-Eclampsia and Hellp Syndrome. Virchows Arch. 2008, 453, 387–400. [Google Scholar] [CrossRef]
- Sibai, B.M.; Stella, C.L. Diagnosis and Management of Atypical Preeclampsia-Eclampsia. Am. J. Obstet. Gynecol. 2009, 200. [Google Scholar] [CrossRef]
- Paracchini, V.; Carbone, A.; Colombo, F.; Castellani, S.; Mazzucchelli, S.; Gioia, S.D.; Degiorgio, D.; Seia, M.; Porretti, L.; Colombo, C.; et al. Amniotic Mesenchymal Stem Cells: A New Source for Hepatocyte-Like Cells and Induction of Cftr Expression by Coculture with Cystic Fibrosis Airway Epithelial Cells. J. Biomed. Biotechnol. 2012, 2012, 575471. [Google Scholar] [CrossRef] [PubMed]
- De Leo, V.; Di Gioia, S.; Milano, F.; Fini, P.; Comparelli, R.; Mancini, E.; Agostiano, A.; Conese, M.; Catucci, L. Eudragit S100 Entrapped Liposome for Curcumin Delivery: Anti-Oxidative Effect in Caco-2 Cells. Coatings 2020, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Laselva, O.; Allegretta, C.; Di Gioia, S.; Avolio, C.; Conese, M. Anti-Inflammatory and Anti-Oxidant Effect of Dimethyl Fumarate in Cystic Fibrosis Bronchial Epithelial Cells. Cells 2021, 10, 2132. [Google Scholar] [CrossRef]
- Laselva, O.; Criscione, M.L.; Allegretta, C.; Di Gioia, S.; Liso, A.; Conese, M. Insulin-Like Growth Factor Binding Protein (Igfbp-6) as a Novel Regulator of Inflammatory Response in Cystic Fibrosis Airway Cells. Front. Mol. Biosci. 2022, 9, 905468. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Tan, H.; Perry, A.J.; Akutsu, T.; Webb, G.I.; Whisstock, J.C.; Pike, R.N. Prosper: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. PLoS ONE 2012, 7, E50300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Preeclamptic (n = 7) | Controls (n = 4) | p | |
---|---|---|---|
Maternal age (years) | 32.0 (5.2); 32 (26.0–36.0) | 34.0 (5.2); 34 (29.2–38.7) | 0.55 |
Gestational age at delivery (weeks) | 37.3 (2.7); 37.0 (36.0–40.0) | 38.2 (0.5); 38.0 (38.0–38.7) | 0.50 |
Systolic BP (mmHg) | 146.0 (6.1); 145.0 (140.0–150.0) | 122.5 (2.9); 122.5 (120.0–125.0) | <0.0001 |
Diastolic BP (mmHg) | 95.0 (4.1); 95.0 (90.0–100.0) | 80.0 (4.1); 80.0 (76.2–85) | 0.0002 |
Birth weight (grams) | 2759.0 (620.3); 2780.0 (2480.0–3450.0) | 3135.0 (188.4); 3115.0 (2973.0–3318.0) | 0.2762 |
Proteinuria (mg/24 h) | 542.3 (211.9); 480.0 (315.0–735.0) | 0 (0); 0 (0–0) | 0.0007 |
Protease | Cleavage Site | Sequence | Aminoterminal Fragment | Carboxyterminal Fragment |
---|---|---|---|---|
Cystein protease | ||||
Cathepsin K | 53 | VHFHELHL | 6.27 kDa | 18.35 kDa |
196 | HFLDISED | 22.69 kDa | 1.93 kDa | |
Metalloprotease | ||||
MMP-2 | 188 | EAQPLQPS | 21.75 kDa | 2.87 kDa |
MMP-3 | 85 | IRAKAVSQ | 10.23 kDa | 14.38 kDa |
108 | TPSKFVIP | 12.86 kDa | 11.76 kDa | |
118 | CAAPQKSP | 13.84 kDa | 10.77 kDa | |
207 | HTDDMIGS | 23.99 kDa | 0.63 kDa | |
MMP-9 | 54 | HFHELHLG | 6.40 kDa | 18.22 kDa |
64 | CPPNHVQP | 7.63 kDa | 16.98 kDa | |
70 | QPHAYQFT | 8.30 kDa | 16.31 kDa | |
72 | HAYQFTYR | 8.59 kDa | 16.02 kDa | |
76 | FTYRVTEC | 9.16 kDa | 15.46 kDa | |
90 | VSQDMVIY | 10.73 kDa | 13.88 kDa | |
108 | TPSKFVIP | 12.86 kDa | 11.76 kDa | |
129 | KPCSMRVA | 15.10 kDa | 9.52 kDa | |
179 | VPCHQAGA | 20.75 kDa | 3.86 kDa | |
188 | EAQPLQPS | 21.75 kDa | 2.87 kDa | |
207 | HTDDMIGS | 23.99 kDa | 0.63 kDa | |
Serin protease | ||||
Elastase 2 | 82 | ECGIRAKA | 9.88 kDa | 14.74 kDa |
92 | QDMVIYST | 10.97 kDa | 13.65 kDa | |
98 | STEIHYSS | 11.67 kDa | 12.94 kDa | |
174 | EEHTQVPC | 20.19 kDa | 4.43 kDa | |
Cathepsin G | 52 | CVHFHELH | 6.13 kDa | 18.48 kDa |
94 | MVIYSTEI | 11.24 kDa | 13.38 kDa | |
100 | EIHYSSKG | 11.97 kDa | 12.64 kDa | |
130 | PCSMRVAS | 15.23 kDa | 9.39 kDa | |
150 | YEVFSLSQ | 17.53 kDa | 7.09 kDa | |
168 | PCVFSEEE | 19.48 kDa | 5.14 kDa | |
194 | PSHFLDIS | 22.46 kDa | 2.16 kDa | |
Glutamyl peptidase-I | 148 | KCYEVFSL | 17.28 kDa | 7.33 kDa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conese, M.; Napolitano, O.; Laselva, O.; Di Gioia, S.; Nappi, L.; Trabace, L.; Matteo, M. The Oncogenic Theory of Preeclampsia: Is Amniotic Mesenchymal Stem Cells-Derived PLAC1 Involved? Int. J. Mol. Sci. 2023, 24, 3612. https://doi.org/10.3390/ijms24043612
Conese M, Napolitano O, Laselva O, Di Gioia S, Nappi L, Trabace L, Matteo M. The Oncogenic Theory of Preeclampsia: Is Amniotic Mesenchymal Stem Cells-Derived PLAC1 Involved? International Journal of Molecular Sciences. 2023; 24(4):3612. https://doi.org/10.3390/ijms24043612
Chicago/Turabian StyleConese, Massimo, Ottavio Napolitano, Onofrio Laselva, Sante Di Gioia, Luigi Nappi, Luigia Trabace, and Maria Matteo. 2023. "The Oncogenic Theory of Preeclampsia: Is Amniotic Mesenchymal Stem Cells-Derived PLAC1 Involved?" International Journal of Molecular Sciences 24, no. 4: 3612. https://doi.org/10.3390/ijms24043612
APA StyleConese, M., Napolitano, O., Laselva, O., Di Gioia, S., Nappi, L., Trabace, L., & Matteo, M. (2023). The Oncogenic Theory of Preeclampsia: Is Amniotic Mesenchymal Stem Cells-Derived PLAC1 Involved? International Journal of Molecular Sciences, 24(4), 3612. https://doi.org/10.3390/ijms24043612