The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review
Abstract
:1. Introduction
2. Theory
2.1. Cathodes
2.2. Anodes
2.3. Electrolytes
3. Biopolymer Materials
3.1. Silk
3.2. Keratin
3.3. Collagen
3.4. Chitosan
3.5. Cellulose
3.6. Agarose
Biopolymer | Natural Source | Characteristics | Applications |
---|---|---|---|
Silk | Silkworms, spiders [60] | Highly crystalline, biocompatible, biodegradable, high mechanical strength [61]. | Separator for lithium ion [92] and lithium sulfur batteries [93]. |
Keratin | Hair, wool (α), reptiles (β) [66] | Stable, self-assembling, strong mechanical properties [65]. | Anode in lithium ion batteries [94], electrolyte in zinc-based batteries [95], scaffold in supercapacitors [96]. |
Collagen | Leather waste [71] | Fibrous, excellent elasticity and strength [69]. | Anode in lithium ion batteries [97], electrolyte in zinc-based batteries [98], separator in supercapacitors [99], electrode in supercapacitors [100]. |
Chitosan | Exoskeletons, fungi cell walls [72] | Biocompatible, biodegradable, functional as a chelating agent [75]. | Additive for cathode and separator in lithium sulfur batteries [101], electrolyte in zinc-based batteries [102]. |
Cellulose | Plants, tunica, algae, bacteria [80] | High mechanical strength, high degrees of polymerization and crystallinity [82]. | Separator in supercapacitors [103] and lithium-ion batteries [104]. |
Agarose | Seaweed [88] | Chemically stable, electrically neutral [89]. | Separator [105] and anode coating material [88] in lithium-ion batteries |
4. Fabrication and Characterization Methods
4.1. Solution Casting
4.2. Electrospinning
4.3. Carbonization Methods for Biopolymers
4.4. Three-Dimensional Printing
4.5. Characterization of Biopolymer-Based Energy Products
5. Applications
5.1. Lithium-Based Batteries
Application | Function | Initial Reversible Capacity | Coulombic Efficiency | Cycling Stability |
---|---|---|---|---|
Silk-derived hierarchical porous nitrogen-doped carbon nanosheets [92] | Anode in Li-ion | 1913 mA·h·g−1 at 0.1 A·g−1 | 49.2% at 0.1 A·g−1 | 9% loss after 10,000 cycles |
Carbonized silk fibroin nanofiber film [93] | Cathode and anode interlayers in Li/S | 1164 mA·h·g−1 at 0.2 coulomb (C) | 97.3% at 1.0 C | 69% retention after 200 cycles |
Silk-derived N/P co-doped porous carbon mixed with sulfur [128] | Cathode in Li/s | 888.5 mA·h·g−1 at 1.0 C | 97.6% at 1.0 C | 0.032% loss per cycle over 500 cycles at 1.0 C |
Keratin-derived carbon added to TiNb2O7 [94] | Anode in Li-ion | 356 mA·h·g−1 at 0.1 C | 55.0% at 0.1 C | 85% retention after 50 cycles at 1 C |
Keratin-derived carbon combined with α-Fe2O3 nanoparticles [129] | Anode in Li-ion | 1690 mA·h·g−1 at 0.2 C | 75% at 0.2 C | Capacity of 1000 mA·h·g−1 at 0.2 C after 200 cycles |
Collagenous bone-based hierarchical porous carbon combined with sulfur [130] | Cathode in Li/S battery | 1265 mA·h·g−1 | – | Capacity of 643 mA·h·g−1 after 50 cycles |
Collagenous hierarchical porous carbon added to sulfur [124] | Cathode in Li/S battery | 1426 mA·h·g−1 | Greater than 98% at 1 C after 100 cycles | 81% retention after 50 cycles at 1 C |
Collagen doped with Pd/PdO nanoparticles [97] | Anode in Li/S battery | 276 mA·h·g−1 | – | 200 mA·h·g−1 after 20 cycles |
Chitosan combined with sulfur and separately chitosan combined with carbon [101] | Cathode and separator, respectively in LiS | 1145 mA·h·g−1 | 98% atvarious cycling rates after 100 cycles | Capacity of 646 mA·h·g−1 after 100 cycles at 1 C |
Mesoporous cellulose nanocrystal membrane [104] | Membrane for Li-ion | 122 mA·h·g−1 at C/2 | Nearly 100% after initial decay | Retention above 90% up to C |
Bacterial cellulose combined with Al2O3 in a membrane [133] | Separator for Li-ion | 161 mA·h·g−1 at 0.2 C | – | 89% retention after 50 cycles at 0.2 C |
Cross linked bacterial cellulose gel [125] | Electrolyte for Li-ion | 141.2 mA·h·g−1 at 0.5 C | 89.46% at 0.5 C | 104.2% retention after 150 cycles at 0.5 C |
Lignocellulose-based gel [134] | Electrolyte for LiS | 1186.3 mA·h·g−1 at 20 mA·g−1 | – | 55.1% capacity retention after 100 cycles at 20 mA·g−1 |
Hard carbon from agarose [88] | Binder for LiMn2O4 cathode | 101 mA·h·g−1 at 0.05 C | ~96.2% at 0.05 C | ~100% retention after 400 cycles at 0.2 C |
Uniform agarose film combined with copper foil [136] | Protective layer for Li anode | 117.1 mA·h·g−1 at 1.75 mA·cm−2 | 96% at 4 mAh cm−2 | 87.1% retention after 500 cycles at 1.75 mA·cm−2 |
5.2. Zinc-Based Batteries
5.3. Capacitors
6. Conclusions, Challenges, and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chauhan, J.K.; Kumar, M.; Yadav, M.; Tiwari, T.; Srivastava, N. Effect of NaClO4 concentration on electrolytic behaviour of corn starch film for supercapacitor application. Ionics 2017, 23, 2943–2949. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Z.; Hou, W.; Yang, Y. Nanomaterials for implantable batteries to power cardiac devices. Mater. Today Nano 2020, 9, 100070. [Google Scholar] [CrossRef]
- Wang, C.; Shi, Q.; Lee, C. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Nanomaterials 2022, 12, 1366. [Google Scholar] [CrossRef]
- Kim, T.; Song, W.; Son, D.-Y.; Ono, L.K.; Qi, Y. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. Etransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Fu, X.; Zhong, W.H. Biomaterials for high-energy lithium-based batteries: Strategies, challenges, and perspectives. Adv. Energy Mater. 2019, 9, 1901774. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, J.; Cheng, Y.; Yang, H.Y.; Yao, Y.; Yang, S.A. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 2016, 8, 15340–15347. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, P.; Lee, J.M.; Kumar, P.; Vinu, A. Borophene: New Sensation in Flatland. Adv. Mater. 2020, 32, e2000531. [Google Scholar] [CrossRef]
- Tatullo, M.; Zavan, B.; Genovese, F.; Codispoti, B.; Makeeva, I.; Rengo, S.; Fortunato, L.; Spagnuolo, G. Borophene Is a Promising 2D Allotropic Material for Biomedical Devices. Appl. Sci. 2019, 9, 3446. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Lu, Z.; Wu, M.; Ciucci, F.; Zhao, T. Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 2016, 23, 97–104. [Google Scholar] [CrossRef]
- Wang, C.; Yokota, T.; Someya, T. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chem. Rev. 2021, 121, 2109–2146. [Google Scholar] [CrossRef]
- Aaliya, B.; Sunooj, K.V.; Lackner, M. Biopolymer composites: A review. Int. J. Biobased Plast. 2021, 3, 40–84. [Google Scholar] [CrossRef]
- Payne, G.F. Biopolymer-based materials: The nanoscale components and their hierarchical assembly. Curr. Opin. Chem. Biol. 2007, 11, 214–219. [Google Scholar] [CrossRef]
- Mukherjee, T.; Kao, N. PLA Based Biopolymer Reinforced with Natural Fibre: A Review. J. Polym. Environ. 2011, 19, 714–725. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; da Silva, M.A.; dos Santos, L.O.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly (lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef]
- Ashok, K.; Babu, M.; Jula, V.; Mullai, N.K. Impact of used battery disposal in the environment. Linguistics Cult. Rev. 2021, 5, 1276–1286. [Google Scholar] [CrossRef]
- Gironi, F.; Piemonte, V. Bioplastics and Petroleum-based Plastics: Strengths and Weaknesses. Energy Sources Part A Recover. Util. Environ. Eff. 2011, 33, 1949–1959. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef] [Green Version]
- Kuruppalil, Z. Green plastics: An emerging alternative for petroleum-based plastics. Int. J. Eng. Res. Innov. 2011, 3, 59–64. [Google Scholar]
- Jian, M.; Zhang, Y.; Liu, Z. Natural Biopolymers for Flexible Sensing and Energy Devices. Chin. J. Polym. Sci. 2020, 38, 459–490. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.R.; Tharumalingam, E.; Dusseault, M.B.; Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Li, X.; Ding, C.; Li, X.; Yang, H.; Liu, S.; Wang, X.; Zhang, L.; Sun, Q.; Liu, X.; Chen, J. Electronic biopolymers: From molecular engineering to functional devices. Chem. Eng. J. 2020, 397, 125499. [Google Scholar] [CrossRef]
- Lim, W.-G.; Jo, C.; Lee, J.; Hwang, D.S. Simple modification with amine- and hydroxyl- group rich biopolymer on ordered mesoporous carbon/sulfur composite for lithium-sulfur batteries. Korean J. Chem. Eng. 2018, 35, 579–586. [Google Scholar] [CrossRef]
- Liu, J.; Galpaya, D.G.D.; Yan, L.; Sun, M.; Lin, Z.; Yan, C.; Liang, C.; Zhang, S. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy Environ. Sci. 2017, 10, 750–755. [Google Scholar] [CrossRef]
- Finkenstadt, V.; Willett, J. Preparation and Characterization of Electroactive Biopolymers. Macromol. Symp. 2005, 227, 367–372. [Google Scholar] [CrossRef]
- Shinwari, M.W.; Deen, M.J.; Starikov, E.B.; Cuniberti, G. Electrical Conductance in Biological Molecules. Adv. Funct. Mater. 2010, 20, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Variyam, A.R.; Agam, Y.; Paradisi, A.; Bortolotti, C.A.; Amdursky, N. Mixed ionic-electronic conductance across naphthalenediimide-functionalized biopolymer. J. Mater. Chem. C 2022, 10, 12444–12450. [Google Scholar] [CrossRef]
- Lizundia, E.; Kundu, D. Advances in Natural Biopolymer-Based Electrolytes and Separators for Battery Applications. Adv. Funct. Mater. 2021, 31, 2005646. [Google Scholar] [CrossRef]
- Okonkwo, P.; Collins, E.; Okonkwo, E. Application of biopolymer composites in super capacitor. In Biopolymer Composites in Electronics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 487–503. [Google Scholar]
- Marriam, I.; Wang, Y.; Tebyetekerwa, M. Polyindole batteries and supercapacitors. Energy Storage Mater. 2020, 33, 336–359. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; Liu, X.; Wu, L.; Li, Y.; Zhang, X. Improved Electrochemical Performances of Graphene Hybrids Embedded with Silica as the Functional Connection Layer for Supercapacitors. J. Energy Storage 2021, 36, 102315. [Google Scholar] [CrossRef]
- Golikand, A.N.; Bagherzadeh, M.; Shirazi, Z. Evaluation of the Polyaniline Based Nanocomposite Modified with Graphene Nanosheet, Carbon Nanotube, and Pt Nanoparticle as a Material for Supercapacitor. Electrochimica Acta 2017, 247, 116–124. [Google Scholar] [CrossRef]
- Boaretto, N.; Meabe, L.; Martinez-Ibañez, M.; Armand, M.; Zhang, H. Review—Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid. J. Electrochem. Soc. 2020, 167, 070524. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 1–46. [Google Scholar] [CrossRef]
- Hasan, M.M.; Islam, D.; Rashid, T.U. Biopolymer-Based Electrolytes for Dye-Sensitized Solar Cells: A Critical Review. Energy Fuels 2020, 34, 15634–15671. [Google Scholar] [CrossRef]
- Shaari, N.; Kamarudin, S. Chitosan and alginate types of bio-membrane in fuel cell application: An overview. J. Power Sources 2015, 289, 71–80. [Google Scholar] [CrossRef]
- Samaniego, A.J.; Espiritu, R. Prospects on utilization of biopolymer materials for ion exchange membranes in fuel cells. Green Chem. Lett. Rev. 2022, 15, 253–275. [Google Scholar] [CrossRef]
- Guyomard, D. Advanced cathode materials for lithium batteries. Energy Storage Systems for Electronics. In New Trends in Electochemical Technology; Osaka, T., Datta, M., Eds.; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 2000; Volume 1, pp. 253–350. [Google Scholar]
- Julien, C. Local cationic environment in lithium nickel–cobalt oxides used as cathode materials for lithium batteries. Solid State Ionics 2000, 136, 887–896. [Google Scholar] [CrossRef]
- Fergus, J.W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954. [Google Scholar] [CrossRef]
- Ammundsen, B.; Paulsen, J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 2001, 13, 943–956. [Google Scholar] [CrossRef]
- Gao, H.; Cai, J.; Xu, G.-L.; Li, L.; Ren, Y.; Meng, X.; Amine, K.; Chen, Z. Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode. Chem. Mater. 2019, 31, 2723–2730. [Google Scholar] [CrossRef]
- Borah, R.; Hughson, F.; Johnston, J.; Nann, T. On battery materials and methods. Mater. Today Adv. 2020, 6, 100046. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537. [Google Scholar] [CrossRef]
- Xiao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426–427. [Google Scholar] [CrossRef]
- Mauger, A.; Xie, H.; Julien, C.M. Composite anodes for lithium-ion batteries: Status and trends. AIMS Mater. Sci. 2016, 3, 1054–1106. [Google Scholar] [CrossRef]
- Park, M.S.; Ma, S.B.; Lee, D.J.; Im, D.; Doo, S.-G.; Yamamoto, O. A Highly Reversible Lithium Metal Anode. Sci. Rep. 2014, 4, 3815. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Feng, Z.; Liu, H.; Kan, X.; Chen, P. Reality and Future of Rechargeable Lithium Batteries. Open Mater. Sci. J. 2011, 5, 204–214. [Google Scholar] [CrossRef]
- Korth, M. Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: Evaluation of electronic structure theory methods. Phys. Chem. Chem. Phys. 2014, 16, 7919–7926. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 2016, 1, 18–42. [Google Scholar] [CrossRef] [Green Version]
- Lyklema, J. Principles of interactions in non-aqueous electrolyte solutions. Curr. Opin. Colloid Interface Sci. 2013, 18, 116–128. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Xu, D.; Xu, J.-J.; Zhang, X.-B. Oxygen electrocatalysts in metal–air batteries: From aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786. [Google Scholar] [CrossRef] [PubMed]
- Arya, A.; Sharma, A.L. Polymer electrolytes for lithium ion batteries: A critical study. Ionics 2017, 23, 497–540. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Q.; Wang, G.; Zhang, H.; Li, J. A novel composite polymer electrolyte containing room-temperature ionic liquids and heteropolyacids for dye-sensitized solar cells. Electrochem. Commun. 2007, 9, 2755–2759. [Google Scholar] [CrossRef]
- Choo, Y.; Halat, D.M.; Villaluenga, I.; Timachova, K.; Balsara, N.P. Diffusion and migration in polymer electrolytes. Prog. Polym. Sci. 2020, 103, 101220. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.C.; Kundu, B.; Talukdar, S.; Bano, S.; Nayak, S.; Kundu, J.; Mandal, B.B.; Bhardwaj, N.; Botlagunta, M.; Dash, B.C.; et al. Nonmulberry silk biopolymers. Biopolymers 2012, 97, 455–467. [Google Scholar] [CrossRef]
- Vepari, C.; Kaplan, D.L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007. [Google Scholar] [CrossRef]
- Tao, H.; Kaplan, D.L.; Omenetto, F.G. Silk Materials—A Road to Sustainable High Technology. Adv. Mater. 2012, 24, 2824–2837. [Google Scholar] [CrossRef]
- Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Sencadas, V.; Garvey, C.; Mudie, S.; Kirkensgaard, J.J.; Gouadec, G.; Hauser, S. Electroactive properties of electrospun silk fibroin for energy harvesting applications. Nano Energy 2019, 66, 104106. [Google Scholar] [CrossRef]
- Feroz, S.; Muhammad, N.; Ratnayake, J.; Dias, G. Keratin-Based materials for biomedical applications. Bioact. Mater. 2020, 5, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.; Brantley, H.; Van Dyke, M. Some properties of keratin biomaterials: Kerateines. Biomaterials 2010, 31, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, W.; McKittrick, J.; Meyers, M.A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef] [Green Version]
- Sinha, P.; Yadav, A.; Tyagi, A.; Paik, P.; Yokoi, H.; Naskar, A.K.; Kuila, T.; Kar, K.K. Keratin-derived functional carbon with superior charge storage and transport for high-performance supercapacitors. Carbon 2020, 168, 419–438. [Google Scholar] [CrossRef]
- Lo, S.; Fauzi, M. Current Update of Collagen Nanomaterials—Fabrication, Characterisation and Its Applications: A Review. Pharmaceutics 2021, 13, 316. [Google Scholar] [CrossRef]
- Bazrafshan, Z.; Stylios, G.K. Spinnability of collagen as a biomimetic material: A review. Int. J. Biol. Macromol. 2019, 129, 693–705. [Google Scholar] [CrossRef]
- Lei, J.; Zhou, J.; Li, J.; Wen, J.; Su, L.; Duan, T.; Zhu, W. Novel collagen waste derived Mn-doped nitrogen-containing carbon for supercapacitors. Electrochimica Acta 2018, 285, 292–300. [Google Scholar] [CrossRef]
- Mekonnen, B.T.; Meiyazhagan, A.; Ragothaman, M.; Kalirajan, C.; Palanisamy, T. Bi-functional iron embedded carbon nanostructures from collagen waste for photocatalysis and Li-ion battery applications: A waste to wealth approach. J. Clean. Prod. 2019, 210, 190–199. [Google Scholar] [CrossRef]
- Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol. 2013, 59, 46–58. [Google Scholar] [CrossRef]
- Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Hou, J.; Aydemir, B.E.; Dumanli, A.G. Understanding the structural diversity of chitins as a versatile biomaterial. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379. [Google Scholar] [CrossRef] [PubMed]
- Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: A review. Carbohydr. Polym. 2004, 55, 77–93. [Google Scholar] [CrossRef]
- Khan, F.; Ahmad, S.R. Polysaccharides and Their Derivatives for Versatile Tissue Engineering Application. Macromol. Biosci. 2013, 13, 395–421. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Dassanayake, R.S.; Acharya, S.; Abidi, N. Biopolymer-Based Materials from Polysaccharides—Properties, Processing, Characterization and Sorption Applications. In Advanced Sorption Process Applications; Intech Open: London, UK, 2018. [Google Scholar]
- Wada, M.; Ike, M.; Tokuyasu, K. Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym. Degrad. Stab. 2010, 95, 543–548. [Google Scholar] [CrossRef]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and its derivatives: Towards biomedical applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Lopez-Rubio, A.; Lagaron, J.M. Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr. Polym. 2011, 85, 228–236. [Google Scholar] [CrossRef]
- Campano, C.; Balea, A.; Blanco, A.; Negro, C. Enhancement of the fermentation process and properties of bacterial cellulose: A review. Cellulose 2016, 23, 57–91. [Google Scholar] [CrossRef]
- Rabemanolontsoa, H.; Saka, S. Comparative study on chemical composition of various biomass species. RSC Adv. 2013, 3, 3946–3956. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, J. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 2014, 21, 3427–3441. [Google Scholar] [CrossRef]
- Pettignano, A.; Charlot, A.; Fleury, E. Carboxyl-functionalized derivatives of carboxymethyl cellulose: Towards advanced biomedical applications. Polym. Rev. 2019, 59, 510–560. [Google Scholar] [CrossRef]
- Liu, H.; Du, H.; Zheng, T.; Liu, K.; Ji, X.; Xu, T.; Zhang, X.; Si, C. Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 2021, 426, 130817. [Google Scholar] [CrossRef]
- Merceron, T.K.; Murphy, S.V. Hydrogels for 3D bioprinting applications. In Essentials of 3D Biofabrication and Translation; Elsevier: Amsterdam, The Netherlands, 2015; pp. 249–270. [Google Scholar]
- Hwang, G.; Kim, J.-M.; Hong, D.; Kim, C.-K.; Choi, N.-S.; Lee, S.-Y.; Park, S. Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries. Green Chem. 2016, 18, 2710–2716. [Google Scholar] [CrossRef]
- Normand, V.; Lootens, D.L.; Amici, E.; Plucknett, K.P.; Aymard, P. New Insight into Agarose Gel Mechanical Properties. Biomacromolecules 2000, 1, 730–738. [Google Scholar] [CrossRef]
- Hur, J.; Im, K.; Kim, S.W.; Kim, J.; Chung, D.-Y.; Kim, T.-H.; Jo, K.H.; Hahn, J.H.; Bao, Z.; Hwang, S.; et al. Polypyrrole/Agarose-Based Electronically Conductive and Reversibly Restorable Hydrogel. ACS Nano 2014, 8, 10066–10076. [Google Scholar] [CrossRef]
- Xu, T.; Liu, K.; Sheng, N.; Zhang, M.; Liu, W.; Liu, H.; Dai, L.; Zhang, X.; Si, C.; Du, H.; et al. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Mater. 2022, 48, 244–262. [Google Scholar] [CrossRef]
- Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano 2015, 9, 2556–2564. [Google Scholar] [CrossRef]
- Wu, K.; Hu, Y.; Cheng, Z.; Pan, P.; Jiang, L.; Mao, J.; Ni, C.; Gu, X.; Wang, Z. Carbonized regenerated silk nanofiber as multifunctional interlayer for high-performance lithium-sulfur batteries. J. Membr. Sci. 2019, 592, 117349. [Google Scholar] [CrossRef]
- Thiyagarajan, G.B.; Shanmugam, V.; Wilhelm, M.; Mathur, S.; Moodakare, S.B.; Kumar, R. TiNb2O7-Keratin derived carbon nanocomposites as novel anode materials for high-capacity lithium-ion batteries. Open Ceram. 2021, 6, 100131. [Google Scholar] [CrossRef]
- Shao, Y.; Zhao, J.; Hu, W.; Xia, Z.; Luo, J.; Zhou, Y.; Zhang, L.; Yang, X.; Ma, N.; Yang, D. Regulating Interfacial Ion Migration via Wool Keratin Mediated Biogel Electrolyte toward Robust Flexible Zn-Ion Batteries. Small 2022, 18, 2107163. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, K.; Nithya, C.; Karvembu, R. High-Performance Sodium Ion Capacitor Based on MoO2@rGO Nanocomposite and Goat Hair Derived Carbon Electrodes. ACS Appl. Energy Mater. 2018, 1, 841–850. [Google Scholar] [CrossRef]
- Odoom-Wubah, T.; Rubio, S.; Tirado, J.L.; Ortiz, G.F.; Akoi, B.J.; Huang, J.; Li, Q. Waste Pd/Fish-Collagen as anode for energy storage. Renew. Sustain. Energy Rev. 2020, 131, 109968. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.; Xie, L.; Xu, R.; Zhang, R.; Gao, M.; Tian, W.; Li, D.; Qiao, L.; Wang, T.; et al. Humidity-sensitive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes. Mater. Today Energy 2021, 21, 100712. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Lee, Y.-F.; Chang, K.-H.; Hu, C.-C. Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem. Commun. 2011, 13, 50–53. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Liao, X.; Shi, B. A collagen-based electrolyte-locked separator enables capacitor to have high safety and ionic conductivity. J. Energy Chem. 2020, 47, 324–332. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, N.; Shao, H.; Wang, W.; Gao, M.; Li, C.; Zhang, H.; Wang, A.; Huang, Y. Chitosan as a functional additive for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 15235–15240. [Google Scholar] [CrossRef]
- Poosapati, A.; Vadnala, S.; Negrete, K.; Lan, Y.; Hutchison, J.; Zupan, M.; Madan, D. Rechargeable Zinc-Electrolytic Manganese Dioxide (EMD) Battery with a Flexible Chitosan-Alkaline Electrolyte. ACS Appl. Energy Mater. 2021, 4, 4248–4258. [Google Scholar] [CrossRef]
- Liew, S.Y.; Walsh, D.A.; Thielemans, W. High total-electrode and mass-specific capacitance cellulose nanocrystal-polypyrrole nanocomposites for supercapacitors. RSC Adv. 2013, 3, 9158–9162. [Google Scholar] [CrossRef]
- Gonçalves, R.F.; Lizundia, E.; Silva, M.M.; Costa, C.M.; Lanceros-Méndez, S. Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer Lithium-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 3749–3761. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kim, C.; Yoo, S.; Kim, J.-H.; Kim, J.-H.; Lim, J.-M.; Park, S.; Lee, S.-Y. Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: Toward metal-ion chelating battery separator membranes. J. Mater. Chem. A 2015, 3, 10687–10692. [Google Scholar] [CrossRef]
- Alday, P.P.; Barros, S.C.; Alves, R.; Esperança, J.M.; Navarro-Segarra, M.; Sabaté, N.; Silva, M.M.; Esquivel, J.P. Biopolymer electrolyte membranes (BioPEMs) for sustainable primary redox batteries. Adv. Sustain. Syst. 2020, 4, 1900110. [Google Scholar] [CrossRef]
- Ndruru, S.T.C.L.; Wahyuningrum, D.; Bundjali, B.; Arcana, I.M. Preparation and Characterization of Biopolymer Electrolyte Membranes Based on LiClO4-Complexed Methyl Cellulose as Lithium-ion Battery Separator. J. Eng. Technol. Sci. 2020, 52, 28–50. [Google Scholar] [CrossRef] [Green Version]
- Selvanathan, V.; Ruslan, M.H.; Aminuzzaman, M.; Muhammad, G.; Amin, N.; Sopian, K. Akhtaruzzaman Resorcinol-Formaldehyde (RF) as a Novel Plasticizer for Starch-Based Solid Biopolymer Electrolyte. Polymers 2020, 12, 2170. [Google Scholar] [CrossRef] [PubMed]
- Banitaba, S.N.; Ebadi, S.V.; Salimi, P.; Bagheri, A.; Gupta, A.; Arifeen, W.U.; Chaudhary, V.; Mishra, Y.K.; Kaushik, A.; Mostafavi, E. Biopolymer-based electrospun fibers in electrochemical devices: Versatile platform for energy, environment, and health monitoring. Mater. Horizons 2022, 9, 2914–2948. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gough, C.R.; Deng, Q.; Gu, Z.; Wang, F.; Hu, X. Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications. Int. J. Mol. Sci. 2020, 21, 4019. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Chen, X.; Tang, T. Recent progress in controlled carbonization of (waste) polymers. Prog. Polym. Sci. 2019, 94, 1–32. [Google Scholar] [CrossRef]
- Wang, H.; Maiyalagan, T.; Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Deng, Y.; Xie, Y.; Zou, K.; Ji, X. Review on recent advances in nitrogen-doped carbons: Preparations and applications in supercapacitors. J. Mater. Chem. A 2016, 4, 1144–1173. [Google Scholar] [CrossRef]
- Stanisz, M.; Klapiszewski, Ł.; Jesionowski, T. Recent advances in the fabrication and application of biopolymer-based micro- and nanostructures: A comprehensive review. Chem. Eng. J. 2020, 397, 125409. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, D.; Liu, B.; Nian, G.; Li, X.; Yin, J.; Qu, S.; Yang, W. 3D Printing of Multifunctional Hydrogels. Adv. Funct. Mater. 2019, 29. [Google Scholar] [CrossRef]
- Reyes, C.; Somogyi, R.; Niu, S.; Cruz, M.A.; Yang, F.; Catenacci, M.J.; Rhodes, C.P.; Wiley, B.J. Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication. ACS Appl. Energy Mater. 2018, 1, 5268–5279. [Google Scholar] [CrossRef]
- Maurel, A.; Russo, R.; Grugeon, S.; Panier, S.; Dupont, L. Environmentally Friendly Lithium-Terephthalate/Polylactic Acid Composite Filament Formulation for Lithium-Ion Battery 3D-Printing via Fused Deposition Modeling. ECS J. Solid State Sci. Technol. 2021, 10, 037004. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, S.; Liu, M.; Cheng, H.-M.; Qiu, L. Integrated Paper-Based Flexible Li-Ion Batteries Made by a Rod Coating Method. ACS Appl. Mater. Interfaces 2019, 11, 46776–46782. [Google Scholar] [CrossRef]
- Ma, C.; Xie, F.; Wei, L.; Zheng, C.; Liu, X.; Wang, L.; Liu, P. All-Starch-Based Hydrogel for Flexible Electronics: Strain-Sensitive Batteries and Self-Powered Sensors. ACS Sustain. Chem. Eng. 2022, 10, 6724–6735. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, T.; Liu, Y.; Nai, J.; Wang, Y.; Zhang, W.; Tao, X. A review of biomass materials for advanced lithium–sulfur batteries. Chem. Sci. 2019, 10, 7484–7495. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Wang, J.; Liu, C.; Wang, H.; Yao, H.; Zheng, G.; Seh, Z.W.; Cai, Q.; Li, W.; Zhou, G.; et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 2016, 7, 11203. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Zhang, J.; Xia, Y.; Huang, H.; Du, J.; Xiao, H.; Zhang, W.; Gan, Y. Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li–S batteries. J. Mater. Chem. A 2014, 2, 2290–2296. [Google Scholar] [CrossRef]
- Zheng, B.; Li, N.; Yang, J.; Xi, J. Waste cotton cloth derived carbon microtube textile: A robust and scalable interlayer for lithium–sulfur batteries. Chem. Commun. 2019, 55, 2289–2292. [Google Scholar] [CrossRef]
- Gao, M.; Li, C.; Liu, N.; Chen, Y.; Wang, W.; Zhang, H.; Yu, Z.; Huang, Y. Inhibition on polysulfides dissolve during the discharge-charge by using fish-scale-based porous carbon for lithium-sulfur battery. Electrochimica Acta 2014, 149, 258–263. [Google Scholar] [CrossRef]
- Xu, D.; Wang, B.; Wang, Q.; Gu, S.; Li, W.; Jin, J.; Chen, C.; Wen, Z. High-Strength Internal Cross-Linking Bacterial Cellulose-Network-Based Gel Polymer Electrolyte for Dendrite-Suppressing and High-Rate Lithium Batteries. ACS Appl. Mater. Interfaces 2018, 10, 17809–17819. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Scudiero, L.; Zhong, W.-H. A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium–sulfur batteries. J. Mater. Chem. A 2019, 7, 1835–1848. [Google Scholar] [CrossRef]
- Guo, Y.; Bae, J.; Zhao, F.; Yu, G. Functional Hydrogels for Next-Generation Batteries and Supercapacitors. Trends Chem. 2019, 1, 335–348. [Google Scholar] [CrossRef]
- Song, Z.; Lu, X.; Hu, Q.; Ren, J.; Zhang, W.; Zheng, Q.; Lin, D. Synergistic confining polysulfides by rational design a N/P co-doped carbon as sulfur host and functional interlayer for high-performance lithium–sulfur batteries. J. Power Sources 2019, 421, 23–31. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, H.; Xu, Y.; Zhao, C. Facile synthesis of α-Fe2O3 nanoparticles on porous human hair-derived carbon as improved anode materials for lithium ion batteries. J. Power Sources 2015, 300, 104–111. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, H.; Huang, Y.; Wang, W.; Xia, Y.; Yu, Z. Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium–sulfur batteries. Energy Environ. Sci. 2011, 4, 736–740. [Google Scholar] [CrossRef]
- Alias, S.S.; Ariff, Z.M.; Mohamad, A.A. Porous membrane based on chitosan–SiO2 for coin cell proton battery. Ceram. Int. 2015, 41, 5484–5491. [Google Scholar] [CrossRef]
- Zhang, S.S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, C.; Fan, L.; Peng, S.; Xu, W.; Xu, J. A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose 2017, 24, 1889–1899. [Google Scholar] [CrossRef]
- Song, A.; Huang, Y.; Zhong, X.; Cao, H.; Liu, B.; Lin, Y.; Wang, M.; Li, X. Novel lignocellulose based gel polymer electrolyte with higher comprehensive performances for rechargeable lithium–sulfur battery. J. Membr. Sci. 2018, 556, 203–213. [Google Scholar] [CrossRef]
- Dalavi, S.; Guduru, P.; Lucht, B.L. Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes. J. Electrochem. Soc. 2012, 159, A642. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Gao, Z.-G.; Wang, W.-W.; Lu, Y.-Q.; Deng, Y.-P.; You, J.-H.; Li, J.-T.; Zhou, Y.; Huang, L.; Zhou, X.-D.; et al. A Natural Biopolymer Film as a Robust Protective Layer to Effectively Stabilize Lithium-Metal Anodes. Small 2018, 14, e1801054. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yang, J.; Zhang, Z.; Wang, C.; Xu, J.; Wang, T. Silk Fibroin Coating Enables Dendrite-free Zinc Anode for Long-Life Aqueous Zinc-Ion Batteries. ChemSusChem 2022, 15, e202200656. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Xu, L.; Yang, C.; Hong, M.; Cui, M.; Clifford, B.C.; He, S.; Jing, S.; Yao, Y.; et al. A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 2022, 5, 3402–3416. [Google Scholar] [CrossRef]
- Yang, X.; Wu, W.; Liu, Y.; Lin, Z.; Sun, X. Chitosan modified filter paper separators with specific ion adsorption to inhibit side reactions and induce uniform Zn deposition for aqueous Zn batteries. Chem. Eng. J. 2022, 450. [Google Scholar] [CrossRef]
- Subhani, K.; Jin, X.; Hameed, N.; Lau, A.-T.; Ramshaw, J.; Glattauer, V.; Salim, N. Porous carbon sponges from collagen-rich biomass waste for high-performance supercapacitors. Mater. Today Sustain. 2022, 18, 100152. [Google Scholar] [CrossRef]
- Gui, Z.; Zhu, H.; Gillette, E.; Han, X.; Rubloff, G.W.; Hu, L.; Lee, S.B. Natural Cellulose Fiber as Substrate for Supercapacitor. ACS Nano 2013, 7, 6037–6046. [Google Scholar] [CrossRef]
- Sinha, P.; Kar, K.K.; Naskar, A.K. A Flexible, Redox-Active, Aqueous Electrolyte-Based Asymmetric Supercapacitor with High Energy Density Based on Keratin-Derived Renewable Carbon. Adv. Mater. Technol. 2022, 7, 2200133. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, H.; Zhou, Y.; Wang, H.; Li, Y.; Liu, X.; Zhou, Y. Keratin-derived heteroatoms-doped hierarchical porous carbon materials for all-solid flexible supercapacitors. J. Alloy. Compd. 2021, 859, 157814. [Google Scholar] [CrossRef]
- Liew, S.Y.; Thielemans, W.; Walsh, D.A. Electrochemical Capacitance of Nanocomposite Polypyrrole/Cellulose Films. J. Phys. Chem. C 2010, 114, 17926–17933. [Google Scholar] [CrossRef]
Material | Function | Initial Reversible Capacity | Coulombic Efficiency | Cycling Stability |
---|---|---|---|---|
Silk II–silk fibroin [137] | Coating for Zn anode | 189 mA·h·g−1 at 0.1 A·g1 | As high as 99.7% | As long as 3300 h at 10 mA·cm−2 and 10 mA·h·cm−2 |
Gelatin–silk protein film [98] | Electrolyte film | 311.7 mA·h·g−1 | Greater than 90% over 100 cycles | Greater than 90% over 100 cycles |
Carrageenan and wool keratin bio gel [95] | Electrolyte film | 271.6 mA·h·g−1 at 0.1 A·g1 | ~98% | 96% capacity retention after 500 cycles |
Chitosan-based gel electrolyte with poly(vinyl alcohol) added [102] | Electrolyte film | 310 mA·h·g−1 at 0.1 A·g1 | 96.5% at 0.5 A·g−1 | ~70% capacity retention after 300 cycles |
A sustainable chitosan-zinc electrolyte for high-rate zinc metal batteries [138] | Electrolyte | 208 mA·h·g−1 | 99.7% | Greater than 400 cycles |
Chitosan modified filter paper [139] | Separator | 323 mA·h·g−1 at 0.1 A·g1 | 99.6% at 1 mA·cm−2 and 1 mA·h·cm−2 | 98.4% retention over 1000 cycles |
Material | Function | Capacitance | Surface Area | Cycling Stability |
---|---|---|---|---|
Graphene-integrated porous carbon derived from collagen [140] | Electrode | 365 F·g−1 at 1 mV·s−1 | 1087 m2·g−1 | 97% capacitance retention after 10,000 cycles at 100 mV·s−1 |
N-doped carbon nanosheets from collagen cross linked with paraformaldehyde [99] | Electrode | 102 F·g−1 at 25 mV·s−1 | 695 m2·g−1 | 80% capacitance retention at 1000 mV·s−1 |
Collagen fiber membrane cross linked with oxidized sodium alginate [100] | Electrolyte locked separator | 143.07 F·g−1 at 5 mV·s−1 | – | 99.99% capacitance retention after 10,000 cycles at 10.0 A·g−1 |
Keratin-derived reduced graphene oxide combine with MoO2 [96] | Electrode | 256 F·g−1 at 0.02 A·g−1 | 2042 m2·g−1 | 86% capacitance retention after 1000 cycles at 0.07 A·g−1 |
Keratin-derived carbon nanosheets [67] | Electrode | 999 F·g−1 at 1 A·g−1 | 1548 m2·g−1 | 98% capacitance retention after 10,000 cycles at 5 A·g−1 |
Keratin-derived redox active carbon [142] | Electrode | 560 F·g−1 at 1 A·g−1 | 1483 m2·g−1 | 95% capacitance retention after 10,000 cycles at 5 A·g−1 |
Carbonized keratin combined with H2SO4 [143] | Electrode | 270 F·g−1 at 1 A·g−1 | 2684 m2·g−1 | 98% capacitance retention after 10,000 cycles at 10 A·g−1 |
Nanocomposite film formed from cellulose nanocrystals and polypyrrole [144] | Electrode | 336 F·g−1 | – | Limited swelling after 5000 cycles |
Cellulose paper integrated with carbon nanotubes and MnO2 [141] | Electrode | 327 F·g−1 at 200 mV·s−1 | – | 62% capacitance after 12,500 cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalwadi, S.; Goel, A.; Kapetanakis, C.; Salas-de la Cruz, D.; Hu, X. The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review. Int. J. Mol. Sci. 2023, 24, 3975. https://doi.org/10.3390/ijms24043975
Dalwadi S, Goel A, Kapetanakis C, Salas-de la Cruz D, Hu X. The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review. International Journal of Molecular Sciences. 2023; 24(4):3975. https://doi.org/10.3390/ijms24043975
Chicago/Turabian StyleDalwadi, Shrey, Arnav Goel, Constantine Kapetanakis, David Salas-de la Cruz, and Xiao Hu. 2023. "The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review" International Journal of Molecular Sciences 24, no. 4: 3975. https://doi.org/10.3390/ijms24043975
APA StyleDalwadi, S., Goel, A., Kapetanakis, C., Salas-de la Cruz, D., & Hu, X. (2023). The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review. International Journal of Molecular Sciences, 24(4), 3975. https://doi.org/10.3390/ijms24043975