A Comprehensive Genetic Analysis of Slovenian Families with Multiple Cases of Orofacial Clefts Reveals Novel Variants in the Genes IRF6, GRHL3, and TBX22
Abstract
:1. Introduction
2. Results
2.1. Sequence Analysis of IRF6, GRHL3, and TBX22 to Identify Families with Syndromic Forms of Orofacial Clefts
2.1.1. One Novel and Three Previously Described Variants in IRF6 Confirm VWS1 Diagnosis in Five Families
IRF6:c.134G>A (p.Arg45Gln)
IRF6:c.622C>T (p.Gln208*)
IRF6:c.687delG (p.Lys229Asnfs*13)
IRF6:c.1234C>T (p.Arg412*)
2.1.2. A Novel Variant in GRHL3 Suggests VWS2 Diagnosis in One Family
GRHL3:c.1285G>T (p.Gly429Cys)
2.1.3. A Novel TBX22 Deletion Reveals a Family with CPX
2.2. Sequence Analysis of Additional 72 Genes in the Families with Apparent Non-Syndromic Orofacial Clefts
3. Discussion
4. Materials and Methods
4.1. Subject Recruitment
4.2. DNA Extraction and Genetic Testing
4.2.1. Two-Step Sequence Analysis
4.2.2. Whole Exome Sequencing and Data Analysis
4.2.3. Variant Validation and Co-Segregation Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gundlach, K.K.H.; Maus, C. Epidemiological Studies on the Frequency of Clefts in Europe and World-Wide. J. Cranio-Maxillofac. Surg. 2006, 34, 1–2. [Google Scholar] [CrossRef]
- Koželj, V. Računalniški informacijski sistem za spremljanje orofacialnih shiz v Sloveniji kot vir za epidemiološko analizo obdobij 1873–1993 in 1993–2012. Zobozdrav. Vestn. 2015, 70, 135–142. [Google Scholar]
- Fraser, F.C. Thoughts on the Etiology of Clefts of the Palate and Lip. Acta Genet. Stat. Med. 1955, 5, 358–369. [Google Scholar] [CrossRef]
- Kondo, S.; Schutte, B.C.; Richardson, R.J.; Bjork, B.C.; Knight, A.S.; Watanabe, Y.; Howard, E.; Ferreira de Lima, R.L.L.; Daack-Hirsch, S.; Sander, A.; et al. Mutations in IRF6 Cause Van Der Woude and Popliteal Pterygium Syndromes. Nat. Genet. 2002, 32, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Schutte, B.C.; Murray, J.C. The Many Faces and Factors of Orofacial Clefts. Hum. Mol. Genet. 1999, 8, 1853–1859. [Google Scholar] [CrossRef]
- Rittler, M.; Cosentino, V.; López-Camelo, J.S.; Murray, J.C.; Wehby, G.; Castilla, E.E. Associated Anomalies among Infants with Oral Clefts at Birth and during a 1-Year Follow-Up. Am. J. Med. Genet. A 2011, 155, 1588–1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesh, R. Syndromes and Anomalies Associated with Cleft. Indian J. Plast. Surg. 2009, 42, 51. [Google Scholar] [CrossRef]
- Gorlin, R.J.; Cohen, M.M., Jr.; Hennekam, R.C. Syndromes of the Head and Neck; Oxford University Press: Oxford, UK, 2001; ISBN 0-19-974772-5. [Google Scholar]
- de Lima, R.L.L.F.; Hoper, S.A.; Ghassibe, M.; Cooper, M.E.; Rorick, N.K.; Kondo, S.; Katz, L.; Marazita, M.L.; Compton, J.; Bale, S.; et al. Prevalence and Nonrandom Distribution of Exonic Mutations in Interferon Regulatory Factor 6 in 307 Families with Van Der Woude Syndrome and 37 Families with Popliteal Pterygium Syndrome. Genet. Med. 2009, 11, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyrard-Janvid, M.; Leslie, E.J.; Kousa, Y.A.; Smith, T.L.; Dunnwald, M.; Magnusson, M.; Lentz, B.A.; Unneberg, P.; Fransson, I.; Koillinen, H.K.; et al. Dominant Mutations in GRHL3 Cause Van Der Woude Syndrome and Disrupt Oral Periderm Development. Am. J. Hum. Genet. 2014, 94, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Burdick, A.B.; Bixler, D.; Puckett, C.L. Genetic Analysis in Families with van Der Woude Syndrome. J. Craniofac. Genet. Dev. Biol. 1985, 5, 181–208. [Google Scholar]
- Lacombe, D.; Pedespan, J.M.; Fontan, D.; Chateil, J.F.; Verloes, A. Phenotypic Variability in van Der Woude Syndrome. Genet. Couns. Geneva Switz. 1995, 6, 221–226. [Google Scholar]
- Leslie, E.J.; Koboldt, D.C.; Kang, C.J.; Ma, L.; Hecht, J.T.; Wehby, G.L.; Christensen, K.; Czeizel, A.E.; Deleyiannis, F.W.-B.; Fulton, R.S.; et al. IRF6 Mutation Screening in Non-Syndromic Orofacial Clefting: Analysis of 1521 Families. Clin. Genet. 2016, 90, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucchero, T.M.; Cooper, M.E.; Maher, B.S.; Daack-Hirsch, S.; Nepomuceno, B.; Ribeiro, L.; Caprau, D.; Christensen, K.; Suzuki, Y.; Machida, J.; et al. Interferon Regulatory Factor 6 (IRF6) Gene Variants and the Risk of Isolated Cleft Lip or Palate. N. Engl. J. Med. 2004, 351, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Mangold, E.; Böhmer, A.C.; Ishorst, N.; Hoebel, A.-K.; Gültepe, P.; Schuenke, H.; Klamt, J.; Hofmann, A.; Gölz, L.; Raff, R.; et al. Sequencing the GRHL3 Coding Region Reveals Rare Truncating Mutations and a Common Susceptibility Variant for Nonsyndromic Cleft Palate. Am. J. Hum. Genet. 2016, 98, 755–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braybrook, C.; Doudney, K.; Marçano, A.C.; Arnason, A.; Bjornsson, A.; Patton, M.A.; Goodfellow, P.J.; Moore, G.E.; Stanier, P. The T-Box Transcription Factor Gene TBX22 Is Mutated in X-Linked Cleft Palate and Ankyloglossia. Nat. Genet. 2001, 29, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Lowry, R.B. Sex-Linked Cleft Palate in a British Columbia Indian Family. Pediatrics 1970, 46, 123–128. [Google Scholar] [CrossRef]
- Björnsson, A.; Arnason, A.; Tippet, P. X-Linked Cleft Palate and Ankyloglossia in an Icelandic Family. Cleft Palate J. 1989, 26, 3–8. [Google Scholar]
- Marçano, A.C.B.; Doudney, K.; Braybrook, C.; Squires, R.; Patton, M.A.; Lees, M.M.; Richieri-Costa, A.; Lidral, A.C.; Murray, J.C.; Moore, G.E.; et al. TBX22 Mutations Are a Frequent Cause of Cleft Palate. J. Med. Genet. 2004, 41, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kot, M.; Kruk-Jeromini, J. Analysis of Family Incidence of Cleft Lip and/or Palate. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2007, 13, CR231–CR234. [Google Scholar]
- Grosen, D.; Chevrier, C.; Skytthe, A.; Bille, C.; Molsted, K.; Sivertsen, A.; Murray, J.C.; Christensen, K. A Cohort Study of Recurrence Patterns among More than 54 000 Relatives of Oral Cleft Cases in Denmark: Support for the Multifactorial Threshold Model of Inheritance. J. Med. Genet. 2010, 47, 162–168. [Google Scholar] [CrossRef]
- Little, J.; Bryan, E. Congenital Anomalies in Twins. Semin. Perinatol. 1986, 10, 50–64. [Google Scholar] [PubMed]
- Grosen, D.; Bille, C.; Petersen, I.; Skytthe, A.; von Bornemann Hjelmborg, J.; Pedersen, J.K.; Murray, J.C.; Christensen, K. Risk of Oral Clefts in Twins. Epidemiology 2011, 22, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Rahimov, F.; Jugessur, A.; Murray, J.C. Genetics of Nonsyndromic Orofacial Clefts. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2012, 49, 73–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.-H.; Chang, N.-C.; Chen, K.-T.; Lu, J.-J.; Chang, P.-Y.; Chang, S.-C.; Wu-Chou, Y.-H.; Chou, Y.-T.; Phang, W.; Cheng, P.-J. Nonsynonymous Variants in MYH9 and ABCA4 Are the Most Frequent Risk Loci Associated with Nonsyndromic Orofacial Cleft in Taiwanese Population. BMC Med. Genet. 2016, 17, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibano, M.; Watanabe, A.; Takano, N.; Mishima, H.; Kinoshita, A.; Yoshiura, K.-I.; Shibahara, T. Target Capture/Next-Generation Sequencing for Nonsyndromic Cleft Lip and Palate in the Japanese Population. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2020, 57, 80–87. [Google Scholar] [CrossRef]
- Reich, D.E.; Lander, E.S. On the Allelic Spectrum of Human Disease. Trends Genet. 2001, 17, 502–510. [Google Scholar] [CrossRef]
- Ludwig, K.U.; Böhmer, A.C.; Bowes, J.; Nikolic, M.; Ishorst, N.; Wyatt, N.; Hammond, N.L.; Gölz, L.; Thieme, F.; Barth, S.; et al. Imputation of Orofacial Clefting Data Identifies Novel Risk Loci and Sheds Light on the Genetic Background of Cleft Lip ± Cleft Palate and Cleft Palate Only. Hum. Mol. Genet. 2017, 26, 829–842. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the Missing Heritability of Complex Diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Bureau, A.; Parker, M.M.; Ruczinski, I.; Taub, M.A.; Marazita, M.L.; Murray, J.C.; Mangold, E.; Noethen, M.M.; Ludwig, K.U.; Hetmanski, J.B.; et al. Whole Exome Sequencing of Distant Relatives in Multiplex Families Implicates Rare Variants in Candidate Genes for Oral Clefts. Genetics 2014, 197, 1039–1044. [Google Scholar] [CrossRef] [Green Version]
- Pengelly, R.J.; Arias, L.; Martínez, J.; Upstill-Goddard, R.; Seaby, E.G.; Gibson, J.; Ennis, S.; Collins, A.; Briceño, I. Deleterious Coding Variants in Multi-Case Families with Non-Syndromic Cleft Lip and/or Palate Phenotypes. Sci. Rep. 2016, 6, 30457. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Busch, T.; Eliason, S.; Anand, D.; Bullard, S.; Gowans, L.J.J.; Nidey, N.; Petrin, A.; Augustine-Akpan, E.-A.; Saadi, I.; et al. Exome Sequencing Provides Additional Evidence for the Involvement of ARHGAP29 in Mendelian Orofacial Clefting and Extends the Phenotypic Spectrum to Isolated Cleft Palate. Birth Defects Res. 2017, 109, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Hoebel, A.K.; Drichel, D.; van de Vorst, M.; Böhmer, A.C.; Sivalingam, S.; Ishorst, N.; Klamt, J.; Gölz, L.; Alblas, M.; Maaser, A.; et al. Candidate Genes for Nonsyndromic Cleft Palate Detected by Exome Sequencing. J. Dent. Res. 2017, 96, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Basha, M.; Demeer, B.; Revencu, N.; Helaers, R.; Theys, S.; Bou Saba, S.; Boute, O.; Devauchelle, B.; Francois, G.; Bayet, B.; et al. Whole Exome Sequencing Identifies Mutations in 10% of Patients with Familial Non-Syndromic Cleft Lip and/or Palate in Genes Mutated in Well-Known Syndromes. J. Med. Genet. 2018, 55, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Demeer, B.; Revencu, N.; Helaers, R.; Devauchelle, B.; François, G.; Bayet, B.; Vikkula, M. Unmasking Familial CPX by WES and Identification of Novel Clinical Signs. Am. J. Med. Genet. A 2018, 176, 2661–2667. [Google Scholar] [CrossRef]
- Cox, L.L.; Cox, T.C.; Moreno Uribe, L.M.; Zhu, Y.; Richter, C.T.; Nidey, N.; Standley, J.M.; Deng, M.; Blue, E.; Chong, J.X.; et al. Mutations in the Epithelial Cadherin-P120-Catenin Complex Cause Mendelian Non-Syndromic Cleft Lip with or without Cleft Palate. Am. J. Hum. Genet. 2018, 102, 1143–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayano, S.; Kure, S.; Suzuki, Y.; Kanno, K.; Aoki, Y.; Kondo, S.; Schutte, B.C.; Murray, J.C.; Yamada, A.; Matsubara, Y. Novel IRF6 Mutations in Japanese Patients with Van Der Woude Syndrome: Two Missense Mutations (R45Q and P396S) and a 17-Kb Deletion. J. Hum. Genet. 2003, 48, 622–628. [Google Scholar] [CrossRef]
- Birkeland, A.C.; Larrabee, Y.; Kent, D.T.; Flores, C.; Su, G.H.; Lee, J.H.; Haddad, J. Novel IRF6 Mutations in Honduran Van Der Woude Syndrome Patients. Mol. Med. Rep. 2011, 4, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, X.; Chen, D.; Zhao, W.; Zhang, X.; Jiao, J.; Guo, L.; Yin, L.; Song, X.; Liang, C.; et al. Association between Genotype and Phenotype of Virulence Gene in Van Der Woude Syndrome Families. Mol. Med. Rep. 2018, 17, 1241–1246. [Google Scholar] [CrossRef] [PubMed]
- Peyrard-Janvid, M.; Pegelow, M.; Koillinen, H.; Larsson, C.; Fransson, I.; Rautio, J.; Hukki, J.; Larson, O.; Karsten, A.L.-A.; Kere, J. Novel and de Novo Mutations of the IRF6 Gene Detected in Patients with Van Der Woude or Popliteal Pterygium Syndrome. Eur. J. Hum. Genet. 2005, 13, 1261–1267. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.-C.; Lim, E.C.-P.; Yap, S.-H.; Lee, S.-T.; Cheng, J.; Por, Y.-C.; Yeow, V. Identification of IRF6 Gene Variants in Three Families with Van Der Woude Syndrome. Int. J. Mol. Med. 2008, 21, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Kakar, N.; Hasnain, S.; Ahmad, J.; Wilcox, E.; Naz, S. Epidemiology of Van Der Woude Syndrome from Mutational Analyses in Affected Patients from Pakistan. Clin. Genet. 2010, 78, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Tang, W.; Tian, W.; Li, S.; Li, X.; Liu, L.; Zheng, X.; Chen, X.; Lin, Y.; Tang, Y. Novel IRF6 Mutations in Chinese Patients with Van Der Woude Syndrome. J. Dent. Res. 2006, 85, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Kwa, M.Q.; Huynh, J.; Reynolds, E.C.; Hamilton, J.A.; Scholz, G.M. Disease-Associated Mutations in IRF6 and RIPK4 Dysregulate Their Signalling Functions. Cell. Signal. 2015, 27, 1509–1516. [Google Scholar] [CrossRef]
- Desmyter, L.; Ghassibe, M.; Revencu, N.; Boute, O.; Lees, M.; François, G.; Verellen-Dumoulin, C.; Sznajer, Y.; Moncla, A.; Benateau, H.; et al. IRF6 Screening of Syndromic and a Priori Non-Syndromic Cleft Lip and Palate Patients: Identification of a New Type of Minor VWS Sign. Mol. Syndromol. 2010, 1, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; et al. Ensembl 2020. Nucleic Acids Res. 2019, 48, D682–D688. [Google Scholar] [CrossRef] [PubMed]
- Eroshkin, A.; Mushegian, A. Conserved Transactivation Domain Shared by Interferon Regulatory Factors and Smad Morphogens. J. Mol. Med. Berl. Ger. 1999, 77, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Leslie, E.J.; Standley, J.; Compton, J.; Bale, S.; Schutte, B.C.; Murray, J.C. Comparative Analysis of IRF6 Variants in Families with Van Der Woude Syndrome and Popliteal Pterygium Syndrome Using Public Whole-Exome Databases. Genet. Med. Off. J. Am. Coll. Med. Genet. 2013, 15, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.N.; Youssoufian, H. The CpG Dinucleotide and Human Genetic Disease. Hum. Genet. 1988, 78, 151–155. [Google Scholar] [CrossRef]
- Slavec, L.; Karas Kuželički, N.; Locatelli, I.; Geršak, K. Genetic Markers for Non-Syndromic Orofacial Clefts in Populations of European Ancestry: A Meta-Analysis. Sci. Rep. 2022, 12, 1214. [Google Scholar] [CrossRef]
- Eshete, M.A.; Liu, H.; Li, M.; Adeyemo, W.L.; Gowans, L.J.J.; Mossey, P.A.; Busch, T.; Deressa, W.; Donkor, P.; Olaitan, P.B.; et al. Loss-of-Function GRHL3 Variants Detected in African Patients with Isolated Cleft Palate. J. Dent. Res. 2018, 97, 41–48. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Letra, A.; Menezes, R.; Granjeiro, J.M.; Vieira, A.R. Defining Subphenotypes for Oral Clefts Based on Dental Development. J. Dent. Res. 2007, 86, 986–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreou, A.M.; Pauws, E.; Jones, M.C.; Singh, M.K.; Bussen, M.; Doudney, K.; Moore, G.E.; Kispert, A.; Brosens, J.J.; Stanier, P. TBX22 Missense Mutations Found in Patients with X-Linked Cleft Palate Affect DNA Binding, Sumoylation, and Transcriptional Repression. Am. J. Hum. Genet. 2007, 81, 700–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauws, E.; Hoshino, A.; Bentley, L.; Prajapati, S.; Keller, C.; Hammond, P.; Martinez-Barbera, J.-P.; Moore, G.E.; Stanier, P. Tbx22 Null Mice Have a Submucous Cleft Palate Due to Reduced Palatal Bone Formation and Also Display Ankyloglossia and Choanal Atresia Phenotypes. Hum. Mol. Genet. 2009, 18, 4171–4179. [Google Scholar] [CrossRef] [PubMed]
- Ferrier, R.A.; Lowry, R.B.; Lemire, E.G.; Stoeber, G.P.; Howard, J.; Parboosingh, J.S. Father-to-Son Transmission of an X-Linked Gene: A Case of Paternal Sex Chromosome Heterodisomy. Am. J. Med. Genet. A 2009, 149A, 2871–2873. [Google Scholar] [CrossRef] [PubMed]
- del Gaudio, D.; Shinawi, M.; Astbury, C.; Tayeh, M.K.; Deak, K.L.; Raca, G. Diagnostic Testing for Uniparental Disomy: A Points to Consider Statement from the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020, 22, 1133–1141. [Google Scholar] [CrossRef] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Lei, R.; Ding, S.-W.; Zhu, S. Skewer: A Fast and Accurate Adapter Trimmer for next-Generation Sequencing Paired-End Reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Mose, L.E.; Wilkerson, M.D.; Hayes, D.N.; Perou, C.M.; Parker, J.S. ABRA: Improved Coding Indel Detection via Assembly-Based Realignment. Bioinformatics 2014, 30, 2813–2815. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [Green Version]
- Pujar, S.; O’Leary, N.A.; Farrell, C.M.; Loveland, J.E.; Mudge, J.M.; Wallin, C.; Girón, C.G.; Diekhans, M.; Barnes, I.; Bennett, R.; et al. Consensus Coding Sequence (CCDS) Database: A Standardized Set of Human and Mouse Protein-Coding Regions Supported by Expert Curation. Nucleic Acids Res. 2018, 46, D221–D228. [Google Scholar] [CrossRef] [Green Version]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. DbSNP: The NCBI Database of Genetic Variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankish, A.; Diekhans, M.; Jungreis, I.; Lagarde, J.; Loveland, J.E.; Mudge, J.M.; Sisu, C.; Wright, J.C.; Armstrong, J.; Barnes, I.; et al. GENCODE 2021. Nucleic Acids Res. 2021, 49, D916–D923. [Google Scholar] [CrossRef]
- Amaral, T.; Schulze, M.; Sinnberg, T.; Nieser, M.; Martus, P.; Battke, F.; Garbe, C.; Biskup, S.; Forschner, A. Are Pathogenic Germline Variants in Metastatic Melanoma Associated with Resistance to Combined Immunotherapy? Cancers 2020, 12, 1101. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Franklin by Genoox. Available online: https://franklin.genoox.com (accessed on 12 July 2022).
- Sim, N.-L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT Web Server: Predicting Effects of Amino Acid Substitutions on Proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A Method and Server for Predicting Damaging Missense Mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Reva, B.; Antipin, Y.; Sander, C. Determinants of Protein Function Revealed by Combinatorial Entropy Optimization. Genome Biol. 2007, 8, R232. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation Prediction for the Deep-Sequencing Age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Shihab, H.A.; Gough, J.; Mort, M.; Cooper, D.N.; Day, I.N.; Gaunt, T.R. Ranking Non-Synonymous Single Nucleotide Polymorphisms Based on Disease Concepts. Hum. Genom. 2014, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A General Framework for Estimating the Relative Pathogenicity of Human Genetic Variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Wei, P.; Jian, X.; Gibbs, R.; Boerwinkle, E.; Wang, K.; Liu, X. Comparison and Integration of Deleteriousness Prediction Methods for Nonsynonymous SNVs in Whole Exome Sequencing Studies. Hum. Mol. Genet. 2015, 24, 2125–2137. [Google Scholar] [CrossRef] [Green Version]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Davydov, E.V.; Goode, D.L.; Sirota, M.; Cooper, G.M.; Sidow, A.; Batzoglou, S. Identifying a High Fraction of the Human Genome to Be under Selective Constraint Using GERP++. PLoS Comput. Biol. 2010, 6, e1001025. [Google Scholar] [CrossRef] [Green Version]
- Yeo, G.; Burge, C.B. Maximum Entropy Modeling of Short Sequence Motifs with Applications to RNA Splicing Signals. J. Comput. Biol. 2004, 11, 377–394. [Google Scholar] [CrossRef]
- Jian, X.; Boerwinkle, E.; Liu, X. In Silico Prediction of Splice-Altering Single Nucleotide Variants in the Human Genome. Nucleic Acids Res. 2014, 42, 13534–13544. [Google Scholar] [CrossRef] [Green Version]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.T.; Thorvaldsdóttir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving Access to Variant Interpretations and Supporting Evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [Green Version]
- Firth, H.V.; Richards, S.M.; Bevan, A.P.; Clayton, S.; Corpas, M.; Rajan, D.; Vooren, S.V.; Moreau, Y.; Pettett, R.M.; Carter, N.P. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 2009, 84, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Weksberg, R.; Hughes, S.; Moldovan, L.; Bassett, A.S.; Chow, E.W.; Squire, J.A. A Method for Accurate Detection of Genomic Microdeletions Using Real-Time Quantitative PCR. BMC Genom. 2005, 6, 180. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
Genomic Location (hg19) | Exon | Ref>Alt | Variant Name a | Amino Acid Change b | Variant Type | ACMG Class | Published Reference | |
---|---|---|---|---|---|---|---|---|
IRF6 | ||||||||
F-1 | Chr1:209,974,625 | 3 | C>T | c.134G>A rs121434229 | p.Arg45Gln | missense | likely pathogenic | [37] |
F-2 | Chr1:209,965,659 | 6 | G>A | c.622C>T | p.Gln208* | nonsense | pathogenic | [38] |
F-3 | Chr1:209,964,212 | 7 | AC>A | c.687delG | p.Lys229Asnfs*13 | frameshift | likely pathogenic | novel variant |
F-4, F-5 | Chr1:209,961,935 | 9 | G>A | c.1234C>T rs1553247595 | p.Arg412* | nonsense | pathogenic | [4,9,38,39,40,41,42,43] |
GRHL3 | ||||||||
F-6 | Chr1:24,669,262 | 10 | G>T | c.1285G>T | p.Gly429Cys | splice-site | VUS | novel variant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slavec, L.; Geršak, K.; Eberlinc, A.; Hovnik, T.; Lovrečić, L.; Mlinarič-Raščan, I.; Karas Kuželički, N. A Comprehensive Genetic Analysis of Slovenian Families with Multiple Cases of Orofacial Clefts Reveals Novel Variants in the Genes IRF6, GRHL3, and TBX22. Int. J. Mol. Sci. 2023, 24, 4262. https://doi.org/10.3390/ijms24054262
Slavec L, Geršak K, Eberlinc A, Hovnik T, Lovrečić L, Mlinarič-Raščan I, Karas Kuželički N. A Comprehensive Genetic Analysis of Slovenian Families with Multiple Cases of Orofacial Clefts Reveals Novel Variants in the Genes IRF6, GRHL3, and TBX22. International Journal of Molecular Sciences. 2023; 24(5):4262. https://doi.org/10.3390/ijms24054262
Chicago/Turabian StyleSlavec, Lara, Ksenija Geršak, Andreja Eberlinc, Tinka Hovnik, Luca Lovrečić, Irena Mlinarič-Raščan, and Nataša Karas Kuželički. 2023. "A Comprehensive Genetic Analysis of Slovenian Families with Multiple Cases of Orofacial Clefts Reveals Novel Variants in the Genes IRF6, GRHL3, and TBX22" International Journal of Molecular Sciences 24, no. 5: 4262. https://doi.org/10.3390/ijms24054262
APA StyleSlavec, L., Geršak, K., Eberlinc, A., Hovnik, T., Lovrečić, L., Mlinarič-Raščan, I., & Karas Kuželički, N. (2023). A Comprehensive Genetic Analysis of Slovenian Families with Multiple Cases of Orofacial Clefts Reveals Novel Variants in the Genes IRF6, GRHL3, and TBX22. International Journal of Molecular Sciences, 24(5), 4262. https://doi.org/10.3390/ijms24054262