Multifaceted Transcriptional Network of Estrogen-Related Receptor Alpha in Health and Disease
Abstract
:1. Introduction
2. Transcriptional Activities of ERRs
3. General Co-Regulators of ERRs
4. Transcriptional Activity of ERRα in Healthy Conditions
4.1. Bone Development
4.2. Brain Functions
4.3. Interactions of ERRα with the Immune System
4.4. Cellular Metabolism: Role of PGC-1α and β
5. Transcriptional Activity of ERRα in Cancer Progression and Cell Migration
5.1. Role of LSD1 as an ERRα Coactivator
5.2. Recently Identified ERRα Coactivators
5.3. Indirect Modulations of ERRs Transcriptional Activity: Effect on Receptor Expression
6. Summary and Perspectives: Specificity of Co-Regulators for ERRα Targets and Cellular Functions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karlić, R.; Chung, H.-R.; Lasserre, J.; Vlahoviček, K.; Vingron, M. Histone Modification Levels Are Predictive for Gene Expression. Proc. Natl. Acad. Sci. USA 2010, 107, 2926–2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, P.S.; Monteoliva, D.; Diambra, L. Cooperative Binding of Transcription Factors Promotes Bimodal Gene Expression Response. PLoS ONE 2012, 7, e44812. [Google Scholar] [CrossRef]
- Voss, T.C.; Hager, G.L. Dynamic Regulation of Transcriptional States by Chromatin and Transcription Factors. Nat. Rev. Genet. 2014, 15, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Filipp, F.V. A Network of Epigenomic and Transcriptional Cooperation Encompassing an Epigenomic Master Regulator in Cancer. NPJ Syst. Biol. Appl. 2018, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Steuernagel, L.; Meckbach, C.; Heinrich, F.; Zeidler, S.; Schmitt, A.O.; Gültas, M. Computational Identification of Tissue-Specific Transcription Factor Cooperation in Ten Cattle Tissues. PLoS ONE 2019, 14, e0216475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolma, A.; Yin, Y.; Nitta, K.R.; Dave, K.; Popov, A.; Taipale, M.; Enge, M.; Kivioja, T.; Morgunova, E.; Taipale, J. DNA-Dependent Formation of Transcription Factor Pairs Alters Their Binding Specificity. Nature 2015, 527, 384–388. [Google Scholar] [CrossRef]
- Huttlin, E.L.; Bruckner, R.J.; Paulo, J.A.; Cannon, J.R.; Ting, L.; Baltier, K.; Colby, G.; Gebreab, F.; Gygi, M.P.; Parzen, H.; et al. Architecture of the Human Interactome Defines Protein Communities and Disease Networks. Nature 2017, 545, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Francois, M.; Donovan, P.; Fontaine, F. Modulating Transcription Factor Activity: Interfering with Protein-Protein Interaction Networks. Semin. Cell Dev. Biol. 2020, 99, 12–19. [Google Scholar] [CrossRef]
- Stallcup, M.R.; Kim, J.H.; Teyssier, C.; Lee, Y.-H.; Ma, H.; Chen, D. The Roles of Protein–Protein Interactions and Protein Methylation in Transcriptional Activation by Nuclear Receptors and Their Coactivators. J. Steroid Biochem. Mol. Biol. 2003, 85, 139–145. [Google Scholar] [CrossRef]
- Gallet, M.; Vanacker, J.-M. ERR Receptors as Potential Targets in Osteoporosis. Trends Endocrinol. Metabol. 2010, 21, 637–641. [Google Scholar] [CrossRef]
- Deblois, G.; Giguère, V. Functional and Physiological Genomics of Estrogen-Related Receptors (ERRs) in Health and Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2011, 1812, 1032–1040. [Google Scholar] [CrossRef] [Green Version]
- Bianco, S.; Sailland, J.; Vanacker, J.-M. ERRs and Cancers: Effects on Metabolism and on Proliferation and Migration Capacities. J. Steroid Biochem. Mol. Biol. 2012, 130, 180–185. [Google Scholar] [CrossRef]
- Huss, J.M.; Garbacz, W.G.; Xie, W. Constitutive Activities of Estrogen-Related Receptors: Transcriptional Regulation of Metabolism by the ERR Pathways in Health and Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2015, 1852, 1912–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horard, B.; Vanacker, J.-M. Estrogen Receptor-Related Receptors: Orphan Receptors Desperately Seeking a Ligand. J. Mol. Endocrinol. 2003, 31, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Mullican, S.E.; DiSpirito, J.R.; Lazar, M.A. The Orphan Nuclear Receptors at Their 25-Year Reunion. J. Mol. Endocrinol. 2013, 51, T115–T140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallen, J.; Schlaeppi, J.-M.; Bitsch, F.; Filipuzzi, I.; Schilb, A.; Riou, V.; Graham, A.; Strauss, A.; Geiser, M.; Fournier, B. Evidence for Ligand-Independent Transcriptional Activation of the Human Estrogen-Related Receptor α (ERRα): CRYSTAL STRUCTURE OF ERRα LIGAND BINDING DOMAIN IN COMPLEX WITH PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR COACTIVATOR-1α. J. Biol. Chem. 2004, 279, 49330–49337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huss, J.M.; Imahashi, K.; Dufour, C.R.; Weinheimer, C.J.; Courtois, M.; Kovacs, A.; Giguère, V.; Murphy, E.; Kelly, D.P. The Nuclear Receptor ERRa Is Required for the Bioenergetic and Functional Adaptation to Cardiac Pressure Overload. Cell Metab. 2007, 6, 25–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Dufour, C.R.; Giguère, V. ERRα as a Bridge Between Transcription and Function: Role in Liver Metabolism and Disease. Front. Endocrinol. 2019, 10, 206. [Google Scholar] [CrossRef] [Green Version]
- Deblois, G.; Hall, J.A.; Perry, M.-C.; Laganière, J.; Ghahremani, M.; Park, M.; Hallett, M.; Giguère, V. Genome-Wide Identification of Direct Target Genes Implicates Estrogen-Related Receptor α as a Determinant of Breast Cancer Heterogeneity. Cancer Res. 2009, 69, 6149–6157. [Google Scholar] [CrossRef] [Green Version]
- Gallet, M.; Saidi, S.; Hay, E.; Photsavang, J.; Marty, C.; Sailland, J.; Carnesecchi, J.; Tribollet, V.; Barenton, B.; Forcet, C.; et al. Repression of Osteoblast Maturation by ERRα Accounts for Bone Loss Induced by Estrogen Deficiency. PLoS ONE 2013, 8, e54837. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wong, J.; Vanacker, J.-M. The Estrogen-Related Receptors (ERRs): Potential Targets against Bone Loss. Cell. Mol. Life Sci. 2016, 73, 3781–3787. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, M.A.; Joseph, J.D.; Wade, H.E.; Eaton, M.L.; Kunder, R.S.; Kazmin, D.; Chang, C.; McDonnell, D.P. WNT11 Expression Is Induced by Estrogen-Related Receptor α and β-Catenin and Acts in an Autocrine Manner to Increase Cancer Cell Migration. Cancer Res. 2010, 70, 9298–9308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deblois, G.; Giguère, V. Oestrogen-Related Receptors in Breast Cancer: Control of Cellular Metabolism and Beyond. Nat. Rev. Cancer 2013, 13, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Sailland, J.; Tribollet, V.; Forcet, C.; Billon, C.; Barenton, B.; Carnesecchi, J.; Bachmann, A.; Gauthier, K.C.; Yu, S.; Giguère, V.; et al. Estrogen-Related Receptor α Decreases RHOA Stability to Induce Orientated Cell Migration. Proc. Natl. Acad. Sci. USA 2014, 111, 15108–15113. [Google Scholar] [CrossRef] [Green Version]
- Tribollet, V.; Cerutti, C.; Géloën, A.; Berger, E.; De Mets, R.; Balland, M.; Courchet, J.; Vanacker, J.M.; Forcet, C. ERRα coordinates actin and focal adhesion dynamics. Cancer Gene Ther. 2022, 29, 1429–1438. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, Y.C.; Na, S.-Y.; Jung, D.-J.; Lee, S.-K. Transcriptional Coregulators of the Nuclear Receptor Superfamily: Coactivators and Corepressors. Cell. Mol. Life Sci. 2001, 58, 289–297. [Google Scholar] [CrossRef]
- Mohideen-Abdul, K.; Tazibt, K.; Bourguet, M.; Hazemann, I.; Lebars, I.; Takacs, M.; Cianférani, S.; Klaholz, B.P.; Moras, D.; Billas, I.M.L. Importance of the Sequence-Directed DNA Shape for Specific Binding Site Recognition by the Estrogen-Related Receptor. Front. Endocrinol. 2017, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Takacs, M.; Petoukhov, M.V.; Atkinson, R.A.; Roblin, P.; Ogi, F.X.; Demeler, B.; Potier, N.; Chebaro, Y.; Dejaegere, A.; Svergun, D.I.; et al. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism. PLoS ONE 2013, 8, e67810. [Google Scholar] [CrossRef]
- Cerutti, C.; Zhang, L.; Tribollet, V.; Shi, J.-R.; Brillet, R.; Gillet, B.; Hughes, S.; Forcet, C.; Shi, T.-L.; Vanacker, J.-M. Computational Identification of New Potential Transcriptional Partners of ERRα in Breast Cancer Cells: Specific Partners for Specific Targets. Sci. Rep. 2022, 12, 3826. [Google Scholar] [CrossRef]
- Zhang, L.; Carnesecchi, J.; Cerutti, C.; Tribollet, V.; Périan, S.; Forcet, C.; Wong, J.; Vanacker, J.-M. LSD1-ERRα Complex Requires NRF1 to Positively Regulate Transcription and Cell Invasion. Sci. Rep. 2018, 8, 10041. [Google Scholar] [CrossRef] [Green Version]
- York, B.; O’Malley, B.W. Steroid Receptor Coactivator (SRC) Family: Masters of Systems Biology. J. Biol. Chem. 2010, 285, 38743–38750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, H.; Darimont, B.D.; Ma, H.; Yang, L.; Yamamoto, K.R.; Stallcup, M.R. An Additional Region of Coactivator GRIP1 Required for Interaction with the Hormone-Binding Domains of a Subset of Nuclear Receptors. J. Biol. Chem. 1999, 274, 3496–3502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Laan, S.; Golfetto, E.; Vanacker, J.-M.; Maiorano, D. Cell Cycle-Dependent Expression of Dub3, Nanog and the P160 Family of Nuclear Receptor Coactivators (NCoAs) in Mouse Embryonic Stem Cells. PLoS ONE 2014, 9, e93663. [Google Scholar] [CrossRef] [PubMed]
- Heck, S.; Rom, J.; Thewes, V.; Becker, N.; Blume, B.; Sinn, H.P.; Deuschle, U.; Sohn, C.; Schneeweiss, A.; Lichter, P. Estrogen-Related Receptor α Expression and Function Is Associated with the Transcriptional Coregulator AIB1 in Breast Carcinoma. Cancer Res. 2009, 69, 5186–5193. [Google Scholar] [CrossRef] [Green Version]
- Kamei, Y.; Xu, L.; Heinzel, T.; Torchia, J.; Kurokawa, R.; Gloss, B.; Lin, S.-C.; Heyman, R.A.; Rose, D.W.; Glass, C.K.; et al. A CBP Integrator Complex Mediates Transcriptional Activation and AP-1 Inhibition by Nuclear Receptors. Cell 1996, 85, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Lin, R.J.; Schiltz, R.L.; Chakravarti, D.; Nash, A.; Nagy, L.; Privalsky, M.L.; Nakatani, Y.; Evans, R.M. Nuclear Receptor Coactivator ACTR Is a Novel Histone Acetyltransferase and Forms a Multimeric Activation Complex with P/CAF and CBP/P300. Cell 1997, 90, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.P.; Ku, G.; Zhou, N.; Scully, R.; Livingston, D.M. The Nuclear Hormone Receptor Coactivator SRC-1 Is a Specific Target of P300. Proc. Natl. Acad. Sci. USA 1996, 93, 10626–10631. [Google Scholar] [CrossRef] [Green Version]
- Ogryzko, V.V.; Schiltz, R.L.; Russanova, V.; Howard, B.H.; Nakatani, Y. The Transcriptional Coactivators P300 and CBP Are Histone Acetyltransferases. Cell 1996, 87, 953–959. [Google Scholar] [CrossRef] [Green Version]
- Shikama, N.; Chan, H.M.; Krstic-Demonacos, M.; Smith, L.; Lee, C.-W.; Cairns, W.; Thangue, N.B.L. Functional Interaction between Nucleosome Assembly Proteins and P300/CREB-Binding Protein Family Coactivators. Mol. Cell. Biol. 2000, 20, 8933–8943. [Google Scholar] [CrossRef] [Green Version]
- Attar, N.; Kurdistani, S.K. Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a026534. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.J.; Tremblay, A.M.; Deblois, G.; Sylvain-Drolet, G.; Giguère, V. An Acetylation Switch Modulates the Transcriptional Activity of Estrogen-Related Receptor α. Mol. Endocrinol. 2010, 24, 1349–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindranathan, P.; Lange, C.A.; Raj, G.V. Minireview: Deciphering the Cellular Functions of PELP1. Mol. Endocrinol. 2015, 29, 1222–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajhans, R.; Nair, H.B.; Nair, S.S.; Cortez, V.; Ikuko, K.; Kirma, N.B.; Zhou, D.; Holden, A.E.; Brann, D.W.; Chen, S.; et al. Modulation of in Situ Estrogen Synthesis by Proline-, Glutamic Acid-, and Leucine-Rich Protein-1: Potential Estrogen Receptor Autocrine Signaling Loop in Breast Cancer Cells. Mol. Endocrinol. 2008, 22, 649–664. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Quach, K.M.; Yang, C.; Lee, S.Y.; Pohajdak, B.; Chen, S. PNRC: A Proline-Rich Nuclear Receptor Coregulatory Protein That Modulates Transcriptional Activation of Multiple Nuclear Receptors Including Orphan Receptors SF1 (Steroidogenic Factor 1) and ERRα1 (Estrogen Related Receptor α-1). Mol. Endocrinol. 2000, 14, 986–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hentschke, M.; Borgmeyer, U. Identification of PNRC2 and TLE1 as Activation Function-1 Cofactors of the Orphan Nuclear Receptor ERRγ. Biochem. Biophys. Res. Commun. 2003, 312, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Mottis, A.; Mouchiroud, L.; Auwerx, J. Emerging Roles of the Corepressors NCoR1 and SMRT in Homeostasis. Genes Dev. 2013, 27, 819–835. [Google Scholar] [CrossRef] [Green Version]
- You, S.-H.; Lim, H.-W.; Sun, Z.; Broache, M.; Won, K.-J.; Lazar, M.A. Nuclear Receptor CoRepressors Are Required for the Histone-Deacetylase Activity of HDAC3 in Vivo. Nat. Struct. Mol. Biol. 2013, 20, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Carnesecchi, J.; Forcet, C.; Zhang, L.; Tribollet, V.; Barenton, B.; Boudra, R.; Cerutti, C.; Billas, I.M.L.; Sérandour, A.A.; Carroll, J.S.; et al. ERRα Induces H3K9 Demethylation by LSD1 to Promote Cell Invasion. Proc. Natl. Acad. Sci. USA 2017, 114, 3909–3914. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Williams, E.G.; Mouchiroud, L.; Cantó, C.; Fan, W.; Downes, M.; Héligon, C.; Barish, G.D.; Desvergne, B.; Evans, R.M.; et al. NCoR1 Is a Conserved Physiological Modulator of Muscle Mass and Oxidative Function. Cell 2011, 147, 827–839. [Google Scholar] [CrossRef] [Green Version]
- L’Horset, F.; Dauvois, S.; Heery, D.M.; Cavaillès, V.; Parker, M.G. RIP-140 Interacts with Multiple Nuclear Receptors by Means of Two Distinct Sites. Mol. Cell. Biol. 1996, 16, 6029–6036. [Google Scholar] [CrossRef] [Green Version]
- Treuter, E.; Albrektsen, T.; Johansson, L.; Leers, J.; Gustafsson, J.A. A Regulatory Role for RIP140 in Nuclear Receptor Activation. Mol. Endocrinol. 1998, 12, 864–881. [Google Scholar] [CrossRef] [PubMed]
- Castet, A.; Herledan, A.; Bonnet, S.; Jalaguier, S.; Vanacker, J.-M.; Cavaillès, V. Receptor-Interacting Protein 140 Differentially Regulates Estrogen Receptor-Related Receptor Transactivation Depending on Target Genes. Mol. Endocrinol. 2006, 20, 1035–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delhon, I.; Gutzwiller, S.; Morvan, F.; Rangwala, S.; Wyder, L.; Evans, G.; Studer, A.; Kneissel, M.; Fournier, B. Absence of Estrogen Receptor-Related-α Increases Osteoblastic Differentiation and Cancellous Bone Mineral Density. Endocrinology 2009, 150, 4463–4472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teyssier, C.; Gallet, M.; Rabier, B.; Monfoulet, L.; Dine, J.; Macari, C.; Espallergues, J.; Horard, B.; Giguère, V.; Cohen-Solal, M.; et al. Absence of ERRα in Female Mice Confers Resistance to Bone Loss Induced by Age or Estrogen-Deficiency. PLoS ONE 2009, 4, e7942. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Choi, Y.K.; Do, J.Y.; Choi, Y.K.; Ha, C.M.; Lee, S.J.; Jeon, J.H.; Lee, W.K.; Choi, H.S.; Park, K.G.; et al. Estrogen-Related Receptor γ Plays a Key Role in Vascular Calcification Through the Upregulation of BMP2 Expression. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2384–2390. [Google Scholar] [CrossRef] [Green Version]
- Cardelli, M.; Aubin, J.E. ERRγ is not required for skeletal development but is a RUNX2-dependent negative regulator of postnatal bone formation in male mice. PLoS ONE 2014, 9, e109592. [Google Scholar] [CrossRef]
- Saul, M.C.; Seward, C.H.; Troy, J.M.; Zhang, H.; Sloofman, L.G.; Lu, X.; Weisner, P.A.; Caetano-Anolles, D.; Sun, H.; Zhao, S.D.; et al. Transcriptional Regulatory Dynamics Drive Coordinated Metabolic and Neural Response to Social Challenge in Mice. Genome Res. 2017, 27, 959–972. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Cui, H. Emerging Roles of Estrogen-Related Receptors in the Brain: Potential Interactions with Estrogen Signaling. Int. J. Mol. Sci. 2018, 19, 1091. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Min, Z.; Xiang, X.-J.; Liu, L.; Ma, Y.-L.; Zhu, B.-L.; Song, L.; Tang, J.; Deng, X.-J.; Yan, Z.; et al. Estrogen-Related Receptor Alpha Is Involved in Alzheimer’s Disease-like Pathology. Exp. Neurol. 2018, 305, 89–96. [Google Scholar] [CrossRef]
- Michalek, R.D.; Gerriets, V.A.; Nichols, A.G.; Inoue, M.; Kazmin, D.; Chang, C.-Y.; Dwyer, M.A.; Nelson, E.R.; Pollizzi, K.N.; Ilkayeva, O.; et al. Estrogen-Related Receptor-α Is a Metabolic Regulator of Effector T-Cell Activation and Differentiation. Proc. Natl. Acad. Sci. USA 2011, 108, 18348–18353. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Yang, C.-S.; Lee, H.-M.; Kim, J.K.; Kim, Y.-S.; Kim, Y.-R.; Kim, J.-S.; Kim, T.S.; Yuk, J.-M.; Dufour, C.R.; et al. ESRRA (Estrogen-Related Receptor α) Is a Key Coordinator of Transcriptional and Post-Translational Activation of Autophagy to Promote Innate Host Defense. Autophagy 2018, 14, 152–168. [Google Scholar] [CrossRef]
- Liebmann, M.; Hucke, S.; Koch, K.; Eschborn, M.; Ghelman, J.; Chasan, A.I.; Glander, S.; Schädlich, M.; Kuhlencord, M.; Daber, N.M.; et al. Nur77 Serves as a Molecular Brake of the Metabolic Switch during T Cell Activation to Restrict Autoimmunity. Proc. Natl. Acad. Sci. USA 2018, 115, E8017–E8026. [Google Scholar] [CrossRef] [Green Version]
- Yuk, J.-M.; Kim, T.S.; Kim, S.Y.; Lee, H.-M.; Han, J.; Dufour, C.R.; Kim, J.K.; Jin, H.S.; Yang, C.-S.; Park, K.-S.; et al. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation. Immunity 2015, 43, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huss, J.M.; Kopp, R.P.; Kelly, D.P. Peroxisome Proliferator-Activated Receptor Coactivator-1α (PGC-1α) Coactivates the Cardiac-Enriched Nuclear Receptors Estrogen-Related Receptor-α and -γ Identification of Novel Leucine-Rich Interaction Motif within PGC-1α. J. Biol. Chem. 2002, 277, 40265–40274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, S.N.; Knutti, D.; Brogli, K.; Uhlmann, T.; Kralli, A. The Transcriptional Coactivator PGC-1 Regulates the Expression and Activity of the Orphan Nuclear Receptor Estrogen-Related Receptor α (ERRα). J. Biol. Chem. 2003, 278, 9013–9018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92, 829–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichida, M.; Nemoto, S.; Finkel, T. Identification of a Specific Molecular Repressor of the Peroxisome Proliferator-Activated Receptor γ Coactivator-1 α (PGC-1α)*. J. Biol. Chem. 2002, 277, 50991–50995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriano, F.X.; Liesa, M.; Bach, D.; Chan, D.C.; Palacín, M.; Zorzano, A. Evidence for a Mitochondrial Regulatory Pathway Defined by Peroxisome Proliferator–Activated Receptor-γ Coactivator-1α, Estrogen-Related Receptor-α, and Mitofusin 2. Diabetes 2006, 55, 1783–1791. [Google Scholar] [CrossRef] [Green Version]
- Huss, J.M.; Torra, I.P.; Staels, B.; Giguère, V.; Kelly, D.P. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol. 2004, 24, 9079–9091. [Google Scholar] [CrossRef] [Green Version]
- Angueira, A.R.; Shapira, S.N.; Ishibashi, J.; Sampat, S.; Sostre-Colón, J.; Emmett, M.J.; Titchenell, P.M.; Lazar, M.A.; Lim, H.W.; Seale, P. Early B Cell Factor Activity Controls Developmental and Adaptive Thermogenic Gene Programming in Adipocytes. Cell Rep. 2020, 30, 2869–2878.e4. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, S.N.; Emter, R.; Hock, M.B.; Knutti, D.; Cardenas, J.; Podvinec, M.; Oakeley, E.J.; Kralli, A. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 6472–9477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villena, J.A.; Hock, M.B.; Chang, W.Y.; Barcas, J.E.; Giguère, V.; Kralli, A. Orphan nuclear receptor estrogen-related receptor alpha is essential for adaptive thermogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 1418–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laganière, J.; Tremblay, G.B.; Dufour, C.R.; Giroux, S.; Rousseau, F.; Giguère, V. A Polymorphic Autoregulatory Hormone Response Element in the Human Estrogen-Related Receptor α (ERRα) Promoter Dictates Peroxisome Proliferator-Activated Receptor γ Coactivator-1α Control of ERRα Expression. J. Biol. Chem. 2004, 279, 18504–18510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, D.; Liu, Y.; Liu, X.; Zhu, L.; Cui, Y.; Cui, A.; Qiao, A.; Kong, X.; Liu, Y.; Chen, Q.; et al. PGC-1β-Regulated Mitochondrial Biogenesis and Function in Myotubes Is Mediated by NRF-1 and ERRα. Mitochondrion 2010, 10, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Dufour, C.R.; Wilson, B.J.; Huss, J.M.; Kelly, D.P.; Alaynick, W.A.; Downes, M.; Evans, R.M.; Blanchette, M.; Giguère, V. Genome-Wide Orchestration of Cardiac Functions by the Orphan Nuclear Receptors ERRα and γ. Cell Metab. 2007, 5, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Deblois, G.; Chahrour, G.; Perry, M.-C.; Sylvain-Drolet, G.; Muller, W.J.; Giguère, V. Transcriptional Control of the ERBB2 Amplicon by ERRα and PGC-1β Promotes Mammary Gland Tumorigenesis. Cancer Res. 2010, 70, 10277–10287. [Google Scholar] [CrossRef] [Green Version]
- Deblois, G.; St-Pierre, J.; Giguère, V. The PGC-1/ERR Signaling Axis in Cancer. Oncogene 2013, 32, 3483–3490. [Google Scholar] [CrossRef] [Green Version]
- Eichner, L.J.; Perry, M.C.; Dufour, C.R.; Bertos, N.; Park, M.; St-Pierre, J.; Giguère, V. miR-378(∗) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab. 2010, 12, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Lin, T.; Kamarajugadda, S.; Lu, J. Regulation of glycolysis and the Warburg effect by estrogen-related receptors. Oncogene 2013, 32, 2079–2086. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Schindler, J.; Summermatter, S.; Salatino, S.; Zorzato, F.; Beer, M.; Balwierz, P.J.; van Nimwegen, E.; Feige, J.N.; Auwerx, J.; Handschin, C. The Corepressor NCoR1 Antagonizes PGC-1α and Estrogen-Related Receptor α in the Regulation of Skeletal Muscle Function and Oxidative Metabolism. Mol. Cell. Biol. 2012, 32, 4913–4924. [Google Scholar] [CrossRef] [Green Version]
- Song, K.-H.; Li, T.; Chiang, J.Y.L. A Prospero-Related Homeodomain Protein Is a Novel Co-Regulator of Hepatocyte Nuclear Factor 4α That Regulates the Cholesterol 7α-Hydroxylase Gene. J. Biol. Chem. 2006, 281, 10081–10088. [Google Scholar] [CrossRef] [Green Version]
- Charest-Marcotte, A.; Dufour, C.R.; Wilson, B.J.; Tremblay, A.M.; Eichner, L.J.; Arlow, D.H.; Mootha, V.K.; Giguère, V. The Homeobox Protein Prox1 Is a Negative Modulator of ERRα/PGC-1α Bioenergetic Functions. Genes Dev. 2010, 24, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Dufour, C.R.; Levasseur, M.-P.; Pham, N.H.H.; Eichner, L.J.; Wilson, B.J.; Charest-Marcotte, A.; Duguay, D.; Poirier-Héon, J.-F.; Cermakian, N.; Giguère, V. Genomic Convergence among ERRα, PROX1, and BMAL1 in the Control of Metabolic Clock Outputs. PLoS Genet. 2011, 7, e1002143. [Google Scholar] [CrossRef]
- Horard, B.; Rayet, B.; Triqueneaux, G.; Laudet, V.; Delaunay, F.; Vanacker, J.M. Expression of the orphan nuclear receptor ERRalpha is under circadian regulation in estrogen-responsive tissues. J. Mol. Endocrinol. 2004, 33, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Salatino, S.; Kupr, B.; Baresic, M.; Omidi, S.; van Nimwegen, E.; Handschin, C. The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells. Mol. Endocrinol. 2016, 30, 809–825. [Google Scholar] [CrossRef] [Green Version]
- Bianco, S.; Lanvin, O.; Tribollet, V.; Macari, C.; North, S.; Vanacker, J.M. Modulating estrogen receptor-related receptor-alpha activity inhibits cell proliferation. J. Biol. Chem. 2009, 284, 23286–23292. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Yu, S.; Xu, Z.; Wu, D.; Ng, C.-F.; Yao, X.; Yew, D.T.; Vanacker, J.-M.; Chan, F.L. ERRα Augments HIF-1 Signalling by Directly Interacting with HIF-1α in Normoxic and Hypoxic Prostate Cancer Cells. J. Pathol. 2014, 233, 61–73. [Google Scholar] [CrossRef]
- Semenza, G.L. HIF-1 Mediates Metabolic Responses to Intratumoral Hypoxia and Oncogenic Mutations. J. Clin. Investig. 2013, 123, 3664–3671. [Google Scholar] [CrossRef] [Green Version]
- Ao, A.; Wang, H.; Kamarajugadda, S.; Lu, J. Involvement of Estrogen-Related Receptors in Transcriptional Response to Hypoxia and Growth of Solid Tumors. Proc. Natl. Acad. Sci. USA 2008, 105, 7821–7826. [Google Scholar] [CrossRef] [Green Version]
- Bardet, P.L.; Horard, B.; Laudet, V.; Vanacker, J.M. The ERRalpha orphan nuclear receptor controls morphogenetic movements during zebrafish gastrulation. Dev. Biol. 2005, 281, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Boulding, T.; McCuaig, R.D.; Tan, A.; Hardy, K.; Wu, F.; Dunn, J.; Kalimutho, M.; Sutton, C.R.; Forwood, J.K.; Bert, A.G.; et al. LSD1 Activation Promotes Inducible EMT Programs and Modulates the Tumour Microenvironment in Breast Cancer. Sci. Rep. 2018, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Nagasawa, S.; Sedukhina, A.S.; Nakagawa, Y.; Maeda, I.; Kubota, M.; Ohnuma, S.; Tsugawa, K.; Ohta, T.; Roche-Molina, M.; Bernal, J.A.; et al. LSD1 Overexpression Is Associated with Poor Prognosis in Basal-Like Breast Cancer, and Sensitivity to PARP Inhibition. PLoS ONE 2015, 10, e0118002. [Google Scholar] [CrossRef] [PubMed]
- Metzger, E.; Wissmann, M.; Yin, N.; Müller, J.M.; Schneider, R.; Peters, A.H.F.M.; Günther, T.; Buettner, R.; Schüle, R. LSD1 Demethylates Repressive Histone Marks to Promote Androgen-Receptor-Dependent Transcription. Nature 2005, 437, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-J.; Matson, C.; Lan, F.; Iwase, S.; Baba, T.; Shi, Y. Regulation of LSD1 Histone Demethylase Activity by Its Associated Factors. Mol. Cell 2005, 19, 857–864. [Google Scholar] [CrossRef]
- Garcia-Bassets, I.; Kwon, Y.-S.; Telese, F.; Prefontaine, G.G.; Hutt, K.R.; Cheng, C.S.; Ju, B.-G.; Ohgi, K.A.; Wang, J.; Escoubet-Lozach, L.; et al. Histone Methylation-Dependent Mechanisms Impose Ligand Dependency for Gene Activation by Nuclear Receptors. Cell 2007, 128, 505–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Roberts, C.W.M. Targeting EZH2 in Cancer. Nat. Med. 2016, 22, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Duan, R.; Du, W.; Guo, W. EZH2: A Novel Target for Cancer Treatment. J. Hematol. Oncol. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Huang, B.; Mu, P.; Yu, Y.; Zhu, W.; Jiang, T.; Deng, R.; Feng, G.; Wen, J.; Zhu, X.; Deng, Y. Inhibition of EZH2 and Activation of ERRγ Synergistically Suppresses Gastric Cancer by Inhibiting FOXM1 Signaling Pathway. Gastric Cancer 2021, 24, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K.; Adhya, A.K.; Rath, A.K.; Reddy, P.B.; Mishra, S.K. Estrogen-Related Receptors Alpha, Beta and Gamma Expression and Function Is Associated with Transcriptional Repressor EZH2 in Breast Carcinoma. BMC Cancer 2018, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Crevet, L.; Vanacker, J.-M. Regulation of the Expression of the Estrogen Related Receptors (ERRs). Cell. Mol. Life Sci. 2020, 77, 4573–4579. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Lou, G.; Zhao, L.; Xu, Z.; Zhang, Y.; He, F. MiR-137 Targets Estrogen-Related Receptor Alpha and Impairs the Proliferative and Migratory Capacity of Breast Cancer Cells. PLoS ONE 2012, 7, e39102. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Song, C.-C.; Li, Y.-F.; He, J.; Li, Y.; Zheng, X.; Yang, G. MiR-125a Inhibits Porcine Preadipocytes Differentiation by Targeting ERRα. Mol Cell Biochem 2014, 395, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Tribollet, V.; Barenton, B.; Kroiss, A.; Vincent, S.; Zhang, L.; Forcet, C.; Cerutti, C.; Périan, S.; Allioli, N.; Samarut, J.; et al. MiR-135a Inhibits the Invasion of Cancer Cells via Suppression of ERRα. PLoS ONE 2016, 11, e0156445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Liu, B.; Jiang, L.; Liu, J.; Han, S. MicroRNA-497 Downregulation Contributes to Cell Proliferation, Migration, and Invasion of Estrogen Receptor Alpha Negative Breast Cancer by Targeting Estrogen-Related Receptor Alpha. Tumor Biol. 2016, 37, 13205–13214. [Google Scholar] [CrossRef] [PubMed]
- Carnesecchi, J.; Cerutti, C.; Vanacker, J.-M.; Forcet, C. ERRα Protein Is Stabilized by LSD1 in a Demethylation-Independent Manner. PLoS ONE 2017, 12, e0188871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, B.; Zhang, S.; Wei, Y.; Tian, S.; Lu, Z.; Jin, L.; He, Y.; Xie, W.; Li, Y. Structural Insights into the Specificity of Ligand Binding and Coactivator Assembly by Estrogen-Related Receptor β. J. Mol. Biol. 2020, 432, 5460–5472. [Google Scholar] [CrossRef]
- Lanvin, O.; Bianco, S.; Kersual, N.; Chalbos, D.; Vanacker, J.M. Potentiation of ICI182,780 (Fulvestrant)-induced estrogen receptor-alpha degradation by the estrogen receptor-related receptor-alpha inverse agonist XCT790. J. Biol. Chem. 2007, 282, 28328–28334. [Google Scholar] [CrossRef] [Green Version]
- Christoffer, C.; Chen, S.; Bharadwaj, V.; Aderinwale, T.; Kumar, V.; Hormati, M.; Kihara, D. LZerD Webserver for Pairwise and Multiple Protein-Protein Docking. Nucleic Acids Res 2021, 49, W359–W365. [Google Scholar] [CrossRef]
- Drew, K.; Wallingford, J.B.; Marcotte, E.M. Hu.MAP 2.0: Integration of over 15,000 Proteomic Experiments Builds a Global Compendium of Human Multiprotein Assemblies. Mol. Syst. Biol. 2021, 17, e10016. [Google Scholar] [CrossRef]
- Krasnov, A.N.; Mazina, M.Y.; Nikolenko, J.V.; Vorobyeva, N.E. On the Way of Revealing Coactivator Complexes Cross-Talk during Transcriptional Activation. Cell Biosci. 2016, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
Coregulator | ERRα Coregulation Type | Tissue/Cell or Technique | ERRα Target Genes | Methods for ERRα Interaction | Reference |
---|---|---|---|---|---|
SRC-1/NCoA1, SRC-2/GRIP1 | coactivation (NR family) | molecular, in vitro | none | PPI via yeast two-hybrid assay and GST pull-down assays | Hong et al. 1999 [32] |
SRC-1/NCoA1 | coactivation | in vitro, mouse embryonic stem cells | TFF1/pS2; cell cycle: USP17L2/Dub3 | gene expression by RT-qPCR, transient transfection and reporter assays | van der Laan et al. 2014 [33] |
SRC-3/NCoA3/ AIB1 | coactivation | human breast cancer, human cells (HEK293) | aromatase CYP19A1, TFF1/pS2, lactoferrin LTF | PPI via mammalian two-hybrid assay, in vivo coIP, ChIP | Heck et al. 2009 [34] |
SRC-1/NCoA1, PGC-1α | coactivation | crystallographic analysis structure of the human ERRα LBD | none | cocrystallization | Kallen et al. 2004 [16] |
PGC-1α | coactivation | human heart | fatty acid oxidation: ACADM | PPI via yeast two-hybrid assay | Huss et al. 2002 [64] |
PGC-1α | coactivation | mouse heart | lipid metabolism: Acsl1, Cd36, Acox1; TCA cycle: Idh2; oxidative metabolism: Ndufb3, Cox8b, Atp5e, Ckmt2; other metabolic processes: Hsdl2, Lycat, Adss, Nme2 | gene expression in ERRα KO hearts | Huss et al. 2007 [17] |
PGC-1α, PGC-1β | coactivation | mouse mammary tumor, human breast cancer cells (SKBr3) | ERBB2, CRKRS, PERLD1, GRB7, NR1D1 | Deblois et al. 2010 [76] | |
PGC-1α, PGC-1β | coactivation | human cancer | mitochondrial biogenesis and energy metabolism | Deblois et al. 2013 (review) [23] | |
PGC-1α, PGC-1β | coactivation | various human tissues and conditions | metabolic genes and cellular energy metabolism | Huss et al. 2015 (review) [13] | |
PGC-1α + PCAF or HDAC8, Sirt1 | repression by acetylation (PCAF) and activation by deacetylation (HDAC8 or Sirt1) | mouse liver, mouse hepatocytes, human COS-1 fibroblasts, HEK293 | Got1, Cycs | Wilson et al. 2010 [41] | |
PGC-1α + NCoR1 via HDAC3 | antagonization of PGC-1α-mediated coactivation of ERRα by NCoR1 | mouse skeletal muscle, C2C12 myoblasts | oxidative metabolism: Sdha, Ndufa5, Ndufb5, Fh1, Cox1, Atp6 | gene expression in muscle specific NCoR1 KO mice | Pérez-Schindler et al. 2012 [80] |
PNRC2 | coactivation | human mammary gland, human breast cancer cells (SKBr3) | aromatase CYP19A1 | PPI via yeast two–hybrid and GST pull-down assays, coIP | Zhou et al. 2000 [44] |
PELP1 + PNRC2 | coactivation | human breast cancer cells (MCF7) | aromatase CYP19A1 | PPI via yeast two-hybrid assay, in vitro reporter gene assays, ChIP | Rajhans et al. 2008 [43] |
SP1 | ERRα competitor, affects ERRα-PGC-1α targets | mouse muscle cells (C2C12), muscle-specific PGC-1α KO or transgenic mice | Pdpr, Lrpprc, Acot13, Mul1 | ChIP-seq, microarray gene expression, DNA-binding motifs by bioinformatics | Salatino et al. 2016 [85] |
LSD1 | coactivation | human cancer cells (MDA-MB-231, HeLa), human embryonic cells (HEK293T) | cell migration genes: ANKRD13B, BSN, GRWD1, LEF1, MMP1, ONECUT2, OXNAD1, RPIA, RSAD1, TMEM198, ZNF768 | RNA-seq gene expression after siRNA, PPI by GST pull-down assays, coIP, PLA, ChIP | Carnesecchi et al. 2017 [48] |
LSD1 + NRF1 | coactivation complex | human cancer cells (MDA-MB-231), human embryonic cells (HEK293T) | cell migration genes: ANKRD13B, BSN, GRWD1, LEF1, MMP1, ONECUT2, OXNAD1, RPIA, RSAD1, TMEM198, ZNF768 | ChIP, RT-qPCR gene expression, DNA-binding motifs by bioinformatics | Zhang et al. 2018 [30] |
SET7 | coactivation | human cancer cells (MDA-MB-231) | CELF1, ESM1, FAM155B, KLHL18, LMNB1, NFATC2, PHACTR1, PHLDB2, PPM1E, RAI14, SAMD12, SAMD4A, SFTA1P, SNCAIP | RNA-seq and RT-qPCR gene expression after siRNA, coIP, PLA, HA-SET7 cells overexpressing SET7, cell wound healing | Cerutti et al. 2022 [29] |
RIP140/NRIP1 | corepression via HDAC1, increase of Sp1-mediated transactivation of ERRα | human cancer cells (HeLa, MCF-7) | pS2/TFF1, TRα, p21, SRY | PPI via GST pull-down assays and luciferase activity from reporter plasmids | Castet et al. 2006 [52] |
EZH2 | coregulation (binds ERRα promoter) | human breast cancer samples, human breast cancer cells (MCF-7, T47D, MDA-MB-231) | ERRα, ERRβ | RT-qPCR gene expression, ChIP | Kumari et al. 2018 [99] |
Prox1 | negative modulation of ERRα-PGC-1α | mouse liver + human liver cells (HepG2) | metabolic genes: Pdk4, Cs, Cycs, Apoc3/Apoa4 | PPI via GST pull-down assays and yeast two-hybrid assay, coIP | Charest-Marcotte et al. 2010 [82] |
NCOR1 | corepression | mouse skeletal muscle, human cells (HEK293) | Pdk4 | gene expression in skeletal muscle specific NCoR1 KO mice, coIP (negative result) | Yamamoto et al. 2011 [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerutti, C.; Shi, J.-R.; Vanacker, J.-M. Multifaceted Transcriptional Network of Estrogen-Related Receptor Alpha in Health and Disease. Int. J. Mol. Sci. 2023, 24, 4265. https://doi.org/10.3390/ijms24054265
Cerutti C, Shi J-R, Vanacker J-M. Multifaceted Transcriptional Network of Estrogen-Related Receptor Alpha in Health and Disease. International Journal of Molecular Sciences. 2023; 24(5):4265. https://doi.org/10.3390/ijms24054265
Chicago/Turabian StyleCerutti, Catherine, Jing-Ru Shi, and Jean-Marc Vanacker. 2023. "Multifaceted Transcriptional Network of Estrogen-Related Receptor Alpha in Health and Disease" International Journal of Molecular Sciences 24, no. 5: 4265. https://doi.org/10.3390/ijms24054265
APA StyleCerutti, C., Shi, J. -R., & Vanacker, J. -M. (2023). Multifaceted Transcriptional Network of Estrogen-Related Receptor Alpha in Health and Disease. International Journal of Molecular Sciences, 24(5), 4265. https://doi.org/10.3390/ijms24054265