Analysis of the Localization of Schizosaccharomyces pombe Glucan Synthases in the Presence of the Antifungal Agent Caspofungin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Susceptibilities of WT, GFP-Tagged GSs, and pmk1∆ Strains to Caspofungin
2.2. Effect of Caspofungin in the Cellular Localization of the GSs
2.3. Analysis of the Different Phenotypes Induced by Caspofungin during Early Times of Treatment
2.4. Lethal Concentrations of Caspofungin Induce Uncoupling of Delayed Septum Synthesis and Advanced Plasma Membrane Ingression
2.5. The Absence of Pmk1 Suppresses the Phenotypes Caused by Short Treatments with Sublethal and Lethal Doses of Caspofungin
3. Concluding Remarks
4. Materials and Methods
4.1. Strains and Culture Conditions
4.2. Antifungal Drugs and Susceptibility Assays
4.3. Microscopy Techniques and Data Analysis
4.4. Quantification of Dead Cells and Septated Cells
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- LIFE. Leading International Fungal Education: The Burden of Fungal Disease. 2017. Available online: http://www.life-worldwide.org/media-centre/article/the-burden-of-fungal-disease-new-evidence-to-show-the-scale-of-the-problem (accessed on 2 December 2022).
- WHO. World Health Organization (WHO) Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. 2022. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 2 December 2022).
- Limper, A.H.; Adenis, A.; Le, T.; Harrison, T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis. 2017, 17, e334–e343. [Google Scholar] [CrossRef]
- Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017, 16, 603–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osherov, N.; Kontoyiannis, D.P. The anti-Aspergillus drug pipeline: Is the glass half full or empty? Med. Mycol. 2017, 55, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R.; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef] [PubMed]
- Cortés, J.C.G.; Ramos, M.; Osumi, M.; Pérez, P.; Ribas, J. The Cell Biology of Fission Yeast Septation. Microbiol. Mol. Biol. Rev. 2016, 80, 779–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, P.; Cortés, J.C.; Cansado, J.; Ribas, J.C. Fission yeast cell wall biosynthesis and cell integrity signalling. Cell Surf. 2018, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Georgopapadakou, N. The fungal cell wall as a drug target. Trends Microbiol. 1995, 3, 98–104. [Google Scholar] [CrossRef]
- Curto, M.; Butassi, E.; Ribas, J.C.; Svetaz, L.A.; Cortés, J.C. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Phytomedicine 2021, 88, 153556. [Google Scholar] [CrossRef]
- Cortés, J.C.G.; Curto, M.; Carvalho, V.S.; Pérez, P.; Ribas, J.C. The fungal cell wall as a target for the development of new antifungal therapies. Biotechnol. Adv. 2019, 37, 107352. [Google Scholar] [CrossRef]
- Latgé, J.-P. The cell wall: A carbohydrate armour for the fungal cell. Mol. Microbiol. 2007, 66, 279–290. [Google Scholar] [CrossRef]
- Carvalho, V.S.D.; Gómez-Delgado, L.; Curto, M.; Moreno, M.B.; Pérez, P.; Ribas, J.C.; Cortés, J.C.G. Analysis and application of a suite of recombinant endo-β(1,3)-D-glucanases for studying fungal cell walls. Microb. Cell Factories 2021, 20, 126. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.F. Lysis of Yeast Cell Walls Induced by 2-Deoxyglucose at Their Sites of Glucan Synthesis. J. Bacteriol. 1968, 95, 1169–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, M.; Kitamura, J.; Miyata, H. Lysis of growing fissin-yeast cells induced by aculeacin A, a new antifungal antibiotic. Arch. Microbiol. 1980, 127, 11–16. [Google Scholar] [CrossRef]
- Cassone, A.; Mason, R.E.; Kerridge, D. Lysis of growing yeast-form cells of Candida albicans by echinocandin: A cytological study. Sabouraudia 1981, 19, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Hiratani, T.; Baba, M.; Osumi, M. Effect of Aculeacin A, a Wall-Active Antibiotic, on Synthesis of the Yeast Cell Wall. Microbiol. Immunol. 1985, 29, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Roncero, C.; Sánchez, Y. Cell separation and the maintenance of cell integrity during cytokinesis in yeast: The assembly of a septum. Yeast 2010, 27, 521–530. [Google Scholar] [CrossRef]
- Cortés, J.C.G.; Konomi, M.; Martins, I.M.; Muñoz, J.; Moreno, M.B.; Osumi, M.; Durán, A.; Ribas, J.C. The (1,3)β-D-glucan synthase subunit Bgs1p is responsible for the fission yeast primary septum formation. Mol. Microbiol. 2007, 65, 201–217. [Google Scholar] [CrossRef]
- Cortés, J.C.G.; Pujol, N.; Sato, M.; Pinar, M.; Ramos, M.; Moreno, B.; Osumi, M.; Ribas, J.C.; Pérez, P. Cooperation between Paxillin-like Protein Pxl1 and Glucan Synthase Bgs1 Is Essential for Actomyosin Ring Stability and Septum Formation in Fission Yeast. PLoS Genet. 2015, 11, e1005358. [Google Scholar] [CrossRef] [Green Version]
- Cortés, J.C.G.; Ramos, M.; Konomi, M.; Barragán, I.; Moreno, M.B.; Alcaide-Gavilán, M.; Moreno, S.; Osumi, M.; Pérez, P.; Ribas, J. Specific detection of fission yeast primary septum reveals septum and cleavage furrow ingression during early anaphase independent of mitosis completion. PLoS Genet. 2018, 14, e1007388. [Google Scholar] [CrossRef] [Green Version]
- LE Goff, X.; Woollard, A.; Simanis, V. Analysis of the cps1 gene provides evidence for a septation checkpoint in Schizosaccharomyces pombe. Mol. Genet. Genom. 1999, 262, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, H.; Balasubramanian, M. A checkpoint that monitors cytokinesis in Schizosaccharomyces pombe. J. Cell Sci. 2000, 113, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Cortés, J.C.G.; Sato, M.; Rincón, S.A.; Moreno, M.B.; Clemente-Ramos, J.; Osumi, M.; Pérez, P.; Ribas, J.C. Two S. pombe septation phases differ in ingression rate, septum structure, and response to F-actin loss. J. Cell Biol. 2019, 218, 4171–4194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortés, J.G.; Ishiguro, J.; Durán, A.; Ribas, J. Localization of the (1,3)β-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination. J. Cell Sci. 2002, 115, 4081–4096. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tang, X.; Wang, H.; Balasubramanian, M. Bgs2p, a 1,3-β-glucan synthase subunit, is essential for maturation of ascospore wall in Schizosaccharomyces pombe. FEBS Lett. 2000, 478, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, V.; Ribas, J.C.; Carnero, E.; Durán, A.; Sánchez, Y. bgs2+, a sporulation-specific glucan synthase homologue is required for proper ascospore wall maturation in fission yeast. Mol. Microbiol. 2000, 38, 308–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, V.; García, B.; Carnero, E.; Durán, A.; Sánchez, Y. Bgs3p, a Putative 1,3-β-Glucan Synthase Subunit, Is Required for Cell Wall Assembly in Schizosaccharomyces pombe. Eukaryot. Cell 2003, 2, 159–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, I.; Cortés, J.G.; Muñoz, J.; Moreno, M.B.; Ramos, M.; Clemente-Ramos, J.; Durán, A.; Ribas, J.C. Differential Activities of Three Families of Specific β(1,3)Glucan Synthase Inhibitors in Wild-type and Resistant Strains of Fission Yeast. J. Biol. Chem. 2011, 286, 3484–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, J.; Cortés, J.G.; Sipiczki, M.; Ramos, M.; Clemente-Ramos, J.; Moreno, M.B.; Martins, I.; Perez, P.; Ribas, J.C. Extracellular cell wall β(1,3)glucan is required to couple septation to actomyosin ring contraction. J. Cell Biol. 2013, 203, 265–282. [Google Scholar] [CrossRef] [Green Version]
- Cortés, J.G.; Carnero, E.; Ishiguro, J.; Sanchez, Y.; Durán, A.; Ribas, J.C. The novel fission yeast (1,3)β-D-glucan synthase catalytic subunit Bgs4p is essential during both cytokinesis and polarized growth. J. Cell Sci. 2005, 118, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Cortés, J.C.G.; Sato, M.; Muñoz, J.; Moreno, M.B.; Clemente-Ramos, J.A.; Ramos, M.; Okada, H.; Osumi, M.; Durán, A.; Ribas, J.C. Fission yeast Ags1 confers the essential septum strength needed for safe gradual cell abscission. J. Cell Biol. 2012, 198, 637–656. [Google Scholar] [CrossRef] [Green Version]
- Hochstenbach, F.; Klis, F.M.; Ende, H.V.D.; van Donselaar, E.; Peters, P.J.; Klausner, R.D. Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc. Natl. Acad. Sci. USA 1998, 95, 9161–9166. [Google Scholar] [CrossRef] [Green Version]
- Katayama, S.; Hirata, D.; Arellano, M.; Perez, P.; Toda, T. Fission Yeast α-Glucan Synthase Mok1 Requires the Actin Cytoskeleton to Localize the Sites of Growth and Plays an Essential Role in Cell Morphogenesis Downstream of Protein Kinase C Function. J. Cell Biol. 1999, 144, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Ostrosky-Zeichner, L.; Casadevall, A.; Galgiani, J.N.; Odds, F.C.; Rex, J.H. An insight into the antifungal pipeline: Selected new molecules and beyond. Nat. Rev. Drug Discov. 2010, 9, 719–727. [Google Scholar] [CrossRef]
- Vicente, M.; Basilio, A.; Cabello, A.; Peláez, F. Microbial natural products as a source of antifungals. Clin. Microbiol. Infect. 2003, 9, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Therapeutics, C. Cidara Therapeutics Announces FDA Acceptance for Priority Review of New Drug Application for Rezafungin for the Treatment of Candidemia and Invasive Candidiasis. 2022. Available online: https://www.cidara.com/news/cidara-therapeutics-announces-fda-acceptance-for-priority-review-of-new-drug-application-for-rezafungin-for-the-treatment-of-candidemia-and-invasive-candidiasis/ (accessed on 27 January 2023).
- Pérez, P.; Varona, R.; García-Acha, I.; Durán, A. Effect of papulacandin B and aculeacin A on β-(1,3) glucan-synthase from Geotrichum lactis. FEBS Lett. 1981, 129, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Varona, R.; Durán, A.; Pérez, P. Effect of papulacandin B on β-glucan synthesis in Schizosaccharomyces pombe. FEMS Microbiol. Lett. 1983, 20, 243–247. [Google Scholar] [CrossRef] [Green Version]
- Sawistowska-Schröder, E.; Kerridge, D.; Perry, H. Echinocandin inhibition of 1,3-β-D-glucan synthase from Candida albicans. FEBS Lett. 1984, 173, 134–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, C.M.; Marrinan, J.A.; Li, W.; Kurtz, M.B. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-β-D-glucan synthase. J. Bacteriol. 1994, 176, 5686–5696. [Google Scholar] [CrossRef] [Green Version]
- Taft, C.S.; Stark, T.; Selitrennikoff, C.P. Cilofungin (LY121019) inhibits Candida albicans (1-3)-β-D-glucan synthase activity. Antimicrob. Agents Chemother. 1988, 32, 1901–1903. [Google Scholar] [CrossRef] [Green Version]
- Perlin, D.S. Resistance to echinocandin-class antifungal drugs. Drug Resist. Updat. 2007, 10, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.E.; Edlind, T.D. Topological and Mutational Analysis of Saccharomyces cerevisiae Fks1. Eukaryot. Cell 2012, 11, 952–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Ortigosa, C.; Jiang, J.; Chen, M.; Kuang, X.; Healey, K.; Castellano, P.; Boparai, N.; Ludtke, S.; Perlin, D.; Dai, W. Preliminary Structural Elucidation of β-(1,3)-Glucan Synthase from Candida glabrata Using Cryo-Electron Tomography. J. Fungi 2021, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Perlin, D.S. Echinocandin Resistance in Candida. Clin. Infect. Dis. 2015, 61 (Suppl. S6), S612–S617. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Messer, S.A.; Jones, R.N.; Castanheira, M. Antifungal susceptibilities of Candida, Cryptococcus neoformans and Aspergillus fumigatus from the Asia and Western Pacific region: Data from the SENTRY antifungal surveillance program (2010–2012). J. Antibiot. 2015, 68, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Katiyar, S.K.; Edlind, T.D. New Fks Hot Spot for Acquired Echinocandin Resistance in Saccharomyces cerevisiae and Its Contribution to Intrinsic Resistance of Scedosporium Species. Antimicrob. Agents Chemother. 2011, 55, 3774–3781. [Google Scholar] [CrossRef] [Green Version]
- Yagüe, N.; Gómez-Delgado, L.; Curto, M.; Carvalho, V.S.D.; Moreno, M.B.; Pérez, P.; Ribas, J.C.; Cortés, J.C.G. Echinocandin Drugs Induce Differential Effects in Cytokinesis Progression and Cell Integrity. Pharmaceuticals 2021, 14, 1332. [Google Scholar] [CrossRef]
- García, R.; Itto-Nakama, K.; Rodríguez-Peña, J.M.; Chen, X.; Sanz, A.B.; de Lorenzo, A.; Pavón-Vergés, M.; Kubo, K.; Ohnuki, S.; Nombela, C.; et al. Poacic acid, a β-1,3-glucan–binding antifungal agent, inhibits cell-wall remodeling and activates transcriptional responses regulated by the cell-wall integrity and high-osmolarity glycerol pathways in yeast. FASEB J. 2021, 35, e21778. [Google Scholar] [CrossRef]
- Roncero, C.; Celador, R.; Sánchez, N.; García, P.; Sánchez, Y. The Role of the Cell Integrity Pathway in Septum Assembly in Yeast. J. Fungi 2021, 7, 729. [Google Scholar] [CrossRef]
- Ribas, J.C.; Díaz, M.; Durán, A.; Pérez, P. Isolation and characterization of Schizosaccharomyces pombe mutants defective in cell wall (1-3)β-D-glucan. J. Bacteriol. 1991, 173, 3456–3462. [Google Scholar] [CrossRef] [Green Version]
- Ribas, J.; Roncero, C.; Rico, H.; Durán, A. Characterization of a Schizosaccharomyces pombe morphological mutant altered in the galactomannan content. FEMS Microbiol. Lett. 1991, 79, 263–267. [Google Scholar] [CrossRef]
- Verde, F.; Mata, J.; Nurse, P. Fission yeast cell morphogenesis: Identification of new genes and analysis of their role during the cell cycle. J. Cell Biol. 1995, 131, 1529–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiguro, J.; Saitou, A.; Durán, A.; Ribas, J.C. cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. J. Bacteriol. 1997, 179, 7653–7662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wang, H.; McCollum, D.; Balasubramanian, M.K. Drc1p/Cps1p, a 1,3-β-Glucan Synthase Subunit, Is Essential for Division Septum Assembly in Schizosaccharomyces pombe. Genetics 1999, 153, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Ohnuki, S.; Roncero, C.; Konopka, J.B.; Ohya, Y. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data. Mol. Biol. Cell 2014, 25, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayles, J.; Nurse, P. A journey into space. Nat. Rev. Mol. Cell Biol. 2001, 2, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Cansado, J.; Soto, T.; Franco, A.; Vicente-Soler, J.; Madrid, M. The Fission Yeast Cell Integrity Pathway: A Functional Hub for Cell Survival upon Stress and Beyond. J. Fungi 2021, 8, 32. [Google Scholar] [CrossRef]
- Davì, V.; Tanimoto, H.; Ershov, D.; Haupt, A.; De Belly, H.; Le Borgne, R.; Couturier, E.; Boudaoud, A.; Minc, N. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival. Dev. Cell 2018, 45, 170e7–182e7. [Google Scholar] [CrossRef] [Green Version]
- Edreira, T.; Celador, R.; Manjón, E.; Sánchez, Y. A novel checkpoint pathway controls actomyosin ring constriction trigger in fission yeast. Elife 2020, 9, e59333. [Google Scholar] [CrossRef]
- Pérez, P.; Cansado, J. Cell integrity signaling and response to stress in fission yeast. Curr. Protein Pept. Sci. 2010, 11, 680–692. [Google Scholar] [CrossRef]
- Madrid, M.; Vázquez-Marín, B.; Soto, T.; Franco, A.; Gómez-Gil, E.; Vicente-Soler, J.; Gacto, M.; Pérez, P.; Cansado, J. Differential functional regulation of protein kinase C (PKC) orthologs in fission yeast. J. Biol. Chem. 2017, 292, 11374–11387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Velásquez, S.D.; Seidel, C.; Juvvadi, P.R.; Steinbach, W.J.; Read, N.D. Caspofungin-Mediated Growth Inhibition and Paradoxical Growth in Aspergillus fumigatus Involve Fungicidal Hyphal Tip Lysis Coupled with Regenerative Intrahyphal Growth and Dynamic Changes in β-1,3-Glucan Synthase Localization. Antimicrob. Agents Chemother. 2017, 61, e00710–e00717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfa, C.; Fantes, P.; Hyams, J.; McLeod, M.; Warbrick, E. (Eds.) Experiments with Fission Yeast: A Laboratory Course Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1993; p. 186. [Google Scholar]
Strains | Caspofungin (μg/mL) | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 4 | 10 | 20 | 40 | |
WT | +++++ | ++++± | ++++± | +++± | ± | - | - |
GFP-bgs1+ | +++++ | +++++ | ++++± | +++ | - | - | - |
GFP-bgs3+ | +++++ | +++++ | ++++ | +++ | - | - | - |
GFP-bgs4+ | +++++ | ++++ | +++ | +± | - | - | - |
ags1+-GFP | +++++ | ++++± | +++± | +++ | - | - | - |
pmk1Δ | +++++ | ++++± | ++++ | ++++ | ± | - | - |
Strain | Genotype | Source |
---|---|---|
33 | 972 h | P. Munz a |
1722 | leu1-32 ura4-Δ18 his3-Δ1 bgs1Δ::ura4+ Pbgs1+::GFP-12A-bgs1+:leu1+ h− | J. Ribas |
3321 | leu1-32 ura4-Δ18 his3-Δ1 bgs3Δ::ura4+ Pbgs3+::GFP-12A-bgs3+:leu1+ h+ | J. Ribas |
2364 | leu1-32 ura4-Δ18 his3-Δ1 bgs4Δ::ura4+ Pbgs4+::GFP-12A-bgs4+:leu1+ h− | J. Ribas |
3166 | leu1-32 ura4-Δ18 his3-Δ1 ade6-M210 ags1Δ 3’UTRags1+::ags1+-12A-GFP-12A:leu1+:ura4+ h− | J. Ribas |
6367 | leu1-32 ura4-Δ18 pmk1Δ::ura4+ h+ | T. Toda b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
San-Quirico, E.; Curto, M.Á.; Gómez-Delgado, L.; Moreno, M.B.; Pérez, P.; Ribas, J.C.; Cortés, J.C.G. Analysis of the Localization of Schizosaccharomyces pombe Glucan Synthases in the Presence of the Antifungal Agent Caspofungin. Int. J. Mol. Sci. 2023, 24, 4299. https://doi.org/10.3390/ijms24054299
San-Quirico E, Curto MÁ, Gómez-Delgado L, Moreno MB, Pérez P, Ribas JC, Cortés JCG. Analysis of the Localization of Schizosaccharomyces pombe Glucan Synthases in the Presence of the Antifungal Agent Caspofungin. International Journal of Molecular Sciences. 2023; 24(5):4299. https://doi.org/10.3390/ijms24054299
Chicago/Turabian StyleSan-Quirico, Esther, M. Ángeles Curto, Laura Gómez-Delgado, M. Belén Moreno, Pilar Pérez, Juan Carlos Ribas, and Juan Carlos G. Cortés. 2023. "Analysis of the Localization of Schizosaccharomyces pombe Glucan Synthases in the Presence of the Antifungal Agent Caspofungin" International Journal of Molecular Sciences 24, no. 5: 4299. https://doi.org/10.3390/ijms24054299
APA StyleSan-Quirico, E., Curto, M. Á., Gómez-Delgado, L., Moreno, M. B., Pérez, P., Ribas, J. C., & Cortés, J. C. G. (2023). Analysis of the Localization of Schizosaccharomyces pombe Glucan Synthases in the Presence of the Antifungal Agent Caspofungin. International Journal of Molecular Sciences, 24(5), 4299. https://doi.org/10.3390/ijms24054299