Aft1 Nuclear Localization and Transcriptional Response to Iron Starvation Rely upon TORC2/Ypk1 Signaling and Sphingolipid Biosynthesis
Abstract
:1. Introduction
2. Results
2.1. TORC2 and Ypk1 Are Required for Optimal Aft1 Activity during Iron Starvation
2.2. Neither Oxidative Stress, Mitochondrial Function, Iron Compartmentalization nor Pse1 Nuclear Transporter Are Signals to Drive Aft1 Localization in ypk1 Cells Depleted for Iron
2.3. Lack of YPK1 Prevents Aft1 Nuclear Translocation in the Absence of Iron
2.4. Complex LCBs Levels Control Aft1 Nuclear Localization and Function When Iron Is Limited
3. Discussion
4. Material and Methods
4.1. Yeast Strains and Plasmids
4.2. Growth Conditions and Reagents
4.3. Endogenous Iron Measurements
4.4. ß-Galactosidase Activity
4.5. Protein Extraction and Immunoblot Analyses
4.6. Fluorescence Microscopy
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Outten, C.E.; Albetel, A.-N. Iron sensing and regulation in Saccharomyces cerevisiae: Ironing out the mechanistic details. Curr. Opin. Microbiol. 2013, 16, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends Biochem. Sci. 2016, 41, 274–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eid, R.; Arab, N.T.; Greenwood, M.T. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2017, 1864, 399–430. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Alonso, L.; Romero, A.M.; Martínez-Pastor, M.T.; Puig, S. Iron Regulatory Mechanisms in Saccharomyces cerevisiae. Front. Microbiol. 2020, 11, 2222. [Google Scholar] [CrossRef]
- Carmona-Gutierrez, D.; Bauer, M.A.; Zimmermann, A.; Aguilera, A.; Austriaco, N.; Ayscough, K.; Balzan, R.; Bar-Nun, S.; Barrientos, A.; Belenky, P.; et al. Guidelines and recommen-dations on yeast cell death nomenclature. Microb. Cell 2018, 5, 4–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percy, L.; Mansour, D.; Fraser, I. Iron deficiency and iron deficiency anaemia in women. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 40, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Askwith, C.; Eide, D.; Van Ho, A.; Bernard, P.S.; Li, L.; Davis-Kaplan, S.; Sipe, D.M.; Kaplan, J. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 1994, 76, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Stearman, R.; Yuan, D.S.; Yamaguchi-Iwai, Y.; Klausner, R.D.; Dancis, A. A Permease-Oxidase Complex Involved in High-Affinity Iron Uptake in Yeast. Science 1996, 271, 1552–1557. [Google Scholar] [CrossRef]
- Dancis, A. Genetic analysis of iron uptake in the yeast Saccharomyces cerevisiae. J. Pediatr. 1998, 132 Pt 2, S24–S29. [Google Scholar] [CrossRef]
- Shakoury-Elizeh, M.; Tiedeman, J.; Rashford, J.; Ferea, T.; Demeter, J.; Garcia, E.; Rolfes, R.; Brown, A.J.; Botstein, D.; Philpott, C.C. Transcriptional Remodeling in Response to Iron Deprivation in Saccharomyces cerevisiae. Mol. Biol. Cell 2004, 15, 1233–1243. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi-Iwai, Y.; Stearman, R.; Dancis, A.; Klausner, R.D. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J. 1996, 15, 3377–3384. [Google Scholar] [CrossRef] [PubMed]
- Ueta, R.; Fujiwara, N.; Iwai, K.; Yamaguchi-Iwai, Y. Mechanism Underlying the Iron-dependent Nuclear Export of the Iron-responsive Transcription Factor Aft1p in Saccharomyces cerevisiae. Mol. Biol. Cell 2007, 18, 2980–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueta, R.; Fukunaka, A.; Yamaguchi-Iwai, Y. Pse1p Mediates the Nuclear Import of the Iron-responsive Transcription Factor Aft1p in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 50120–50127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Hall, M.N. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017, 36, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Leskoske, K.L.; Roelants, F.M.; Marshall, M.N.M.; Hill, J.M.; Thorner, J. The Stress-Sensing TORC2 Complex Activates Yeast AGC-Family Protein Kinase Ypk1 at Multiple Novel Sites. Genetics 2017, 207, 179–195. [Google Scholar] [CrossRef]
- Chen, P.; Lee, K.S.; Levin, D.E. A pair of putative protein kinase genes (YPK1 and YPK2) is required for cell growth in Saccharomyces cerevisiae. Mol. Gen. Genet. 1993, 236, 443–447. [Google Scholar] [CrossRef]
- Levin, D.E.; Fields, F.; Kunisawa, R.; Bishop, J.; Thorner, J. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 1990, 62, 213–224. [Google Scholar] [CrossRef]
- Casamayor, A.; Torrance, P.D.; Kobayashi, T.; Thorner, J.; Alessi, D. Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr. Biol. 1999, 9, 186–197, S1–S4. [Google Scholar] [CrossRef] [Green Version]
- Roelants, F.M.; Breslow, D.K.; Muir, A.; Weissman, J.S.; Thorner, J. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2011, 108, 19222–19227. [Google Scholar] [CrossRef] [Green Version]
- Berchtold, D.; Piccolis, M.; Chiaruttini, N.; Riezman, I.; Riezman, H.; Roux, A.; Walther, T.C.; Loewith, R. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 2012, 14, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Muir, A.; Ramachandran, S.; Roelants, F.M.; Timmons, G.; Thorner, J. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. Elife 2014, 3, e03779. [Google Scholar] [CrossRef] [PubMed]
- Fresques, T.; Niles, B.; Aronova, S.; Mogri, H.; Rakhshandehroo, T.; Powers, T. Regulation of Ceramide Synthase by Casein Kinase 2-dependent Phosphorylation in Saccharomyces cerevisiae. J. Biol. Chem. 2015, 290, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Megyeri, M.; Riezman, H.; Schuldiner, M.; Futerman, A.H. Making Sense of the Yeast Sphingolipid Pathway. J. Mol. Biol. 2016, 428 Pt A, 4765–4775. [Google Scholar] [CrossRef]
- Swinnen, E.; Wilms, T.; Idkowiak-Baldys, J.; Smets, B.; De Snijder, P.; Accardo, S.; Ghillebert, R.; Thevissen, K.; Cammue, B.; De Vos, D.; et al. The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae. Mol. Biol. Cell 2014, 25, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Niles, B.J.; Joslin, A.C.; Fresques, T.; Powers, T. TOR Complex 2-Ypk1 Signaling Maintains Sphingolipid Homeostasis by Sensing and Regulating ROS Accumulation. Cell Rep. 2014, 6, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-J.; Huang, X.; Kropat, J.; Henras, A.; Merchant, S.S.; Dickson, R.C.; Chanfreau, G.F. Sphingolipid Signaling Mediates Iron Toxicity. Cell Metab. 2012, 16, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Lester, R.L.; Withers, B.R.; Schultz, M.A.; Dickson, R.C. Iron, glucose and intrinsic factors alter sphingolipid composition as yeast cells enter stationary phase. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2013, 1831, 726–736. [Google Scholar] [CrossRef] [Green Version]
- Montella-Manuel, S.; Pujol-Carrion, N.; Mechoud, M.A.; de la Torre-Ruiz, M.A. Bulk autophagy induction and life extension is achieved when iron is the only limited nutrient in Saccharomyces cerevisiae. Biochem. J. 2021, 478, 811–837. [Google Scholar] [CrossRef]
- Bayeva, M.; Khechaduri, A.; Puig, S.; Chang, H.-C.; Patial, S.; Blackshear, P.J.; Ardehali, H. mTOR Regulates Cellular Iron Homeostasis through Tristetraprolin. Cell Metab. 2012, 16, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Pujol-Carrion, N.; Belli, G.; Herrero, E.; Nogues, A.; de la Torre-Ruiz, M.A. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell Sci. 2006, 119, 4554–4564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaeberlein, M.; Powers, R.W., III; Steffen, K.K.; Westman, E.A.; Hu, D.; Dang, N.; Kerr, E.O.; Kirkland, K.T.; Fields, S.; Kennedy, B.K. Regulation of Yeast Replicative Life Span by TOR and Sch9 in Response to Nutrients. Science 2005, 310, 1193–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roelants, F.M.; Leskoske, K.L.; Marshall, M.N.M.; Locke, M.N.; Thorner, J. The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Milto, I.V.; Suhodolo, I.V.; Prokopieva, V.D.; Klimenteva, T.K. Molecular and Cellular Bases of Iron Metabolism in Humans. Biochemistry 2016, 81, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.B.; Delaunay, A.; Biteau, B.; Spector, D.; Azevedo, D. Oxidative Stress Responses in Yeast. Yeast Stress Responses; Springer: Berlin/Heidleberg, Germany, 2003; pp. 241–303. ISBN 9783540456117. [Google Scholar]
- Wallace, D.F. The Regulation of Iron Absorption and Homeostasis. Clin. Biochem. Rev. 2016, 37, 51–62. [Google Scholar]
- Ueta, R.; Fujiwara, N.; Iwai, K.; Yamaguchi-Iwai, Y. Iron-Induced Dissociation of the Aft1p Transcriptional Regulator from Target Gene Promoters Is an Initial Event in Iron-Dependent Gene Suppression. Mol. Cell Biol. 2012, 32, 4998–5008. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.J.R.; Merlot, A.M.; Huang, M.L.H.; Bae, D.H.; Jansson, P.J.; Sahni, S.; Kalinowski, D.S.; Richardson, D.R. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2015, 1853, 1130–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakoury-Elizeh, M.; Protchenko, O.; Berger, A.; Cox, J.; Gable, K.; Dunn, T.M.; Prinz, W.A.; Bard, M.; Philpott, C. Metabolic response to iron deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 2010, 285, 14823–14833. [Google Scholar] [CrossRef] [Green Version]
- Almeida, T.; Marques, M.; Mojzita, D.; Amorim, M.A.; Silva, R.D.; Almeida, B.; Rodrigues, P.; Ludovico, P.; Hohmann, S.; Moradas-Ferreira, P.; et al. Isc1p Plays a Key Role in Hydrogen Peroxide Resistance and Chronological Lifespan through Modulation of Iron Levels and Apoptosis. Mol. Biol. Cell 2008, 19, 865. [Google Scholar] [CrossRef] [Green Version]
- Jodeiri Farshbaf, M.; Ghaedi, K. Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders? BioMetals 2016, 30, 1–16. [Google Scholar] [CrossRef]
- Li, X.; Gianoulis, T.A.; Yip, K.Y.; Gerstein, M.; Snyder, M. Extensive In Vivo Metabolite-Protein Interactions Revealed by Large-Scale Systematic Analyses. Cell 2010, 143, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, A.J. Metallosensors, the ups and downs of gene regulation. Adv. Microb. Physiol. 2008, 53, 231–267. [Google Scholar] [PubMed]
- Petkova, M.I.; Pujol-Carrion, N.; de la Torre-Ruiz, M.A. Signal flow between CWI/TOR and CWI/RAS in budding yeast under conditions of oxidative stress and glucose starvation. Commun. Integr. Biol. 2010, 3, 555–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaram, V.; Petkova, M.I.; Pujol-Carrion, N.; Boada, J.; de la Torre-Ruiz, M.A. Tor1, Sch9 and PKA downregulation in quiescence rely on Mtl1 to preserve mitochondrial integrity and cell survival. Mol. Microbiol. 2015, 97, 93–109. [Google Scholar] [CrossRef] [Green Version]
- Pujol-Carrion, N.; Pavón-Vergés, M.; Arroyo, J.; de la Torre-Ruiz, M.A. The MAPK Slt2/Mpk1 plays a role in iron homeostasis through direct regulation of the transcription factor Aft1. BBA—Mol. Cell Res. 2021, 1868, 118974. [Google Scholar] [CrossRef]
- Mitjana, F.V.; Petkova, M.I.; Pujol-carrion, N.; de la Torre-Ruiz, M.A. Pkc1 and actin polymerisation activities play a role in ribosomal gene repression associated with secretion impairment caused by oxidative stress. FEMS Yeast Res. 2011, 11, 656–659. [Google Scholar] [CrossRef] [Green Version]
- Petkova, M.I.; Pujol-Carrion, N.; de la Torre-Ruiz, M.A. Mtl1 O-mannosylation mediated by both Pmt1 and Pmt2 is important for cell survival under oxidative conditions and TOR blockade. Fungal Genet. Biol. 2012, 49, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Niles, B.J.; Mogri, H.; Hill, A.; Vlahakis, A.; Powers, T. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc. Natl. Acad. Sci. USA 2012, 109, 1536–1541. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, M.; Baryshnikova, A.; Bellay, J.; Kim, Y.; Spear, E.D.; Sevier, C.S.; Ding, H.; Koh, J.L.Y.; Toufighi, K.; Mostafavi, S.; et al. The Genetic Landscape of a Cell. Science 2010, 327, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Jordá, T.; Rozès, N.; Puig, S. Sterol Composition Modulates the Response of Saccharomyces cerevisiae to Iron Deficiency. J. Fungi 2021, 7, 901. [Google Scholar] [CrossRef]
- Pujol-Carrion, N.; Gonzalez-Alfonso, A.; Puig, S.; Torre-Ruiz, M.A.; de la Torre-Ruiz, M.A. Both human and soya bean ferritins highly improve the accumulation of bioavailable iron and contribute to extend the chronological life in budding yeast. Microb. Biotechnol. 2021, 15, 1525–1541. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, C.; Michaelis, S.; Mitchell, A. Methods in Yeast Genetics; Cold Spring Harbour Laboratory Press Ltd.: New York, NY, USA, 1994; pp. 107–121. ISBN 0879694513. [Google Scholar]
- Mechoud, M.A.; Pujol-Carrion, N.; Montella-Manuel, S.; de la Torre-Ruiz, M.A. Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway. Appl. Environ. Microbiol. 2020, 86, e00221-20. [Google Scholar] [CrossRef] [PubMed]
- Montella-manuel, S.; Pujol-carrion, N.; De Torre-ruiz, M.A. The Cell Wall Integrity Receptor Mtl1 Contributes to Articulate Au-tophagic Responses When Glucose Availability Is Compromised. J. Fungi 2021, 7, 903. [Google Scholar] [CrossRef] [PubMed]
Strain | Genotype | Source |
---|---|---|
CML128 | MATa leu2-3,112, ura3-52, trp1, his4 | [44] |
GSL034 | CML128 background, tor1::KanMx4 | [45] |
GSL190 | CML128 background, slt2::KanMx4 | [46] |
GSL205 | CML128 background, sch9::NatMx4 | [46] |
GSL280 | CML128 background, tetO7AFT1C291F-HA::LEU2 | [47] |
GSL308 | CML128 background, tetO7Aft1-HA::LEU2 | [47] |
GSL384 | CML128 background, ypk1::KanMx4 | [29] |
GSL385 | CML128 background, ypk1::KanMx4 tetO7Aft1-HA::LEU2 | [47] |
GSL410 | CML128 background, pkc1::LEU2 | [48] |
GSL420 | CML128 background, ypk1::KanMx4 atg7::NatMx4 | This work |
GSL421 | CML128 background, ypk1::KanMx4 tetO7AFT1C291F-HA::LEU2 | This work |
GSL430 | CML128 background, lac1::KanMx4 | This work |
GSL431 | CML128 background, lag1::KanMx4 | This work |
GSL435 | CML128 background, fet3::KanMx4 | This work |
GSL436 | CML128 background, ccc1::KanMx4 | This work |
GSL437 | CML128 background, mrs3::KanMx4 | This work |
GSL447 | CML128 background, fet5::KanMx4 | This work |
GSL448 | CML128 background, atm1::KanMx4 | This work |
GSL451 | CML128 background, ypk1::KanMx4 YPK1S644AT662A-HA::LEU2 | This work |
GSL454 | CML128 background, Ypk1-HA::LEU2 | This work |
GSL455 | CML128 background, ypk1::KanMx4 Ypk1-HA::LEU2 | This work |
R43 | CML128 background, rho0 | This work |
BY4741 | MATa his3-1, leu2, met15, ura3 | [49] |
GSL404 | BY4741 background, ypk1::KanMx4 | This work |
W303 | MATa ade2-1, trp1-1, leu2-3,2-111, his3-11,75, ura3 | [50] |
GSL417 | W303 background, tor2ts::LEU2 | [31] |
LHY291 | MATa his3, trp1, lys2, ura3, leu2, bar1 | [23] |
PLY979 | LHY291 background, cka2::TRP1 | [23] |
Plasmid | Marker | Promoter | Epitope | Source |
---|---|---|---|---|
pAft1-GFP | URA3 | MET25 | GFP | [51] |
ptetO7Aft1-HA | LEU2 | tetO7 | HA | [51] |
pAft1C291F-HA | LEU2 | tetO7 | HA | [47] |
pFet3-LacZ | URA3 | FET3 | [52] | |
pUG35 | URA3 | MET25 | GFP | [53] |
pPse1-GFP | URA3 | MET25 | GFP | This work |
pC-terminal3-HA | URA3 | MET25 | HA | [50] |
pMM351 | LEU2 | ADH1 | HA | [29] |
pYpk1-HA | LEU2 | ADH1 | HA | This work |
pYpk1S644A/T662A | LEU2 | ADH1 | HA | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montellà-Manuel, S.; Pujol-Carrion, N.; de la Torre-Ruiz, M.A. Aft1 Nuclear Localization and Transcriptional Response to Iron Starvation Rely upon TORC2/Ypk1 Signaling and Sphingolipid Biosynthesis. Int. J. Mol. Sci. 2023, 24, 2438. https://doi.org/10.3390/ijms24032438
Montellà-Manuel S, Pujol-Carrion N, de la Torre-Ruiz MA. Aft1 Nuclear Localization and Transcriptional Response to Iron Starvation Rely upon TORC2/Ypk1 Signaling and Sphingolipid Biosynthesis. International Journal of Molecular Sciences. 2023; 24(3):2438. https://doi.org/10.3390/ijms24032438
Chicago/Turabian StyleMontellà-Manuel, Sandra, Nuria Pujol-Carrion, and Maria Angeles de la Torre-Ruiz. 2023. "Aft1 Nuclear Localization and Transcriptional Response to Iron Starvation Rely upon TORC2/Ypk1 Signaling and Sphingolipid Biosynthesis" International Journal of Molecular Sciences 24, no. 3: 2438. https://doi.org/10.3390/ijms24032438
APA StyleMontellà-Manuel, S., Pujol-Carrion, N., & de la Torre-Ruiz, M. A. (2023). Aft1 Nuclear Localization and Transcriptional Response to Iron Starvation Rely upon TORC2/Ypk1 Signaling and Sphingolipid Biosynthesis. International Journal of Molecular Sciences, 24(3), 2438. https://doi.org/10.3390/ijms24032438