Genetic Localization and Homologous Genes Mining for Barley Grain Size
Abstract
:1. Introduction
2. Characteristics of Barley Grain Size
3. QTL Mapping and Association Studies on Barley Grain Size
3.1. QTL Hotspots on Chromosome 1H
3.2. QTL Hotspots on Chromosome 2H
3.3. QTL Hotspots on Chromosome 3H
3.4. QTL Hotspots on Chromosome 4H
3.5. QTL Hotspots on Chromosome 5H
3.6. QTL Hotspots on Chromosome 6H
3.7. QTL Hotspots on Chromosome 7H
3.8. Interrelationships of QTL Hotspots
4. Homologous Gene Mining of Grain Size
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pankin, A.; Altmüller, J.; Becker, C.; von Korff, M. Targeted Resequencing Reveals Genomic Signatures of Barley Domestication. New Phytol. 2018, 218, 1247–1259. [Google Scholar] [CrossRef] [Green Version]
- Chono, M.; Honda, I.; Zeniya, H.; Yoneyama, K.; Saisho, D.; Takeda, K.; Takatsuto, S.; Hoshino, T.; Watanabe, Y. A Semidwarf Phenotype of Barley Uzu Results from a Nucleotide Substitution in the Gene Encoding a Putative Brassinosteroid Receptor. Plant Physiol. 2003, 133, 1209–1219. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Zhang, J.; Westcott, S.; Zhang, X.-Q.; Bellgard, M.; Lance, R.; Li, C. GA-20 Oxidase as a Candidate for the Semidwarf Gene Sdw1/Denso in Barley. Funct. Integr. Genom. 2009, 9, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Nadolska-Orczyk, A.; Rajchel, I.K.; Orczyk, W.; Gasparis, S. Major Genes Determining Yield-Related Traits in Wheat and Barley. Theor. Appl. Genet. 2017, 130, 1081–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Draicchio, F.; Bull, H.; Herzig, P.; Maurer, A.; Pillen, K.; Thomas, W.T.B.; Flavell, A.J. Genome-Wide Association of Yield Traits in a Nested Association Mapping Population of Barley Reveals New Gene Diversity for Future Breeding. J. Exp. Bot. 2018, 69, 3811–3822. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, G.; Ren, X.; Du, B.; Cheng, Y.; Wang, Y.; Li, C.; Sun, D. Dissecting the Genetic Basis of Grain Size and Weight in Barley (Hordeum vulgare L.) by QTL and Comparative Genetic Analyses. Front. Plant Sci. 2019, 10, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, L.; Chen, J.; Huang, X.; Gong, H.; Luo, J.; Hou, Q.; Zhou, T.; Lu, T.; Zhu, J.; Shangguan, Y.; et al. OsSPL13 Controls Grain Size in Cultivated Rice. Nat. Genet. 2016, 48, 447–456. [Google Scholar] [CrossRef]
- Tang, Z.; Gao, X.; Zhan, X.; Fang, N.; Wang, R.; Zhan, C.; Zhang, J.; Cai, G.; Cheng, J.; Bao, Y.; et al. Natural Variation in OsGASR7 Regulates Grain Length in Rice. Plant Biotechnol. J. 2021, 19, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-J.; Zhang, H.-P.; Liu, K.; Cao, J.-J.; Wang, S.-X.; Jiang, H.; Wu, Z.-Y.; Lu, J.; Zhu, X.F.; Xia, X.-C.; et al. Cloning and Characterization of TaTGW-7A Gene Associated with Grain Weight in Wheat via SLAF-Seq-BSA. Front. Plant Sci. 2016, 7, 1902. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ma, S.; Zhao, Q.; Lv, D.; Wang, B.; Xiao, K.; Zhu, J.; Li, S.; Yang, W.; Liu, X.; et al. ZmGRAS11, Transactivated by Opaque2, Positively Regulates Kernel Size in Maize. J. Integr. Plant Biol. 2021, 63, 2031–2037. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, L.; Corke, F.; Smith, C.; Bevan, M.W. Control of Final Seed and Organ Size by the DA1 Gene Family in Arabidopsis Thaliana. Genes Dev. 2008, 22, 1331–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, W.; Wang, Z.; Cui, R.; Li, J.; Li, Y. Maternal Control of Seed Size by EOD3/CYP78A6 in Arabidopsis Thaliana. Plant J. 2012, 70, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xiong, Q.; Cheng, T.; Li, Q.-T.; Liu, X.-L.; Bi, Y.-D.; Li, W.; Zhang, W.-K.; Ma, B.; Lai, Y.-C.; et al. A PP2C-1 Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight. Mol. Plant 2017, 10, 670–684. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Xu, R.; Li, Y. Molecular Networks of Seed Size Control in Plants. Annu. Rev. Plant Biol. 2019, 70, 435–463. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Zhang, X.-Q.; Westcott, S.; Broughton, S.; Cakir, M.; Yang, J.; Lance, R.; Li, C. Expression Level of a Gibberellin 20-Oxidase Gene Is Associated with Multiple Agronomic and Quality Traits in Barley. Theor. Appl. Genet. 2011, 122, 1451–1460. [Google Scholar] [CrossRef]
- Chen, G.; Li, H.; Wei, Y.; Zheng, Y.-L.; Zhou, M.; Liu, C. Pleiotropic Effects of the Semi-Dwarfing Gene Uzu in Barley. Euphytica 2016, 209, 749–755. [Google Scholar] [CrossRef]
- Ayoub, M.; Symons, S.; Edney, M.; Mather, D. QTLs Affecting Kernel Size and Shape in a Two-Rowed by Six-Rowed Barley Cross. Theor. Appl. Genet. 2002, 105, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, L.; Comadran, J.; Druka, A.; Marshall, D.F.; Thomas, W.T.B.; MacAulay, M.; MacKenzie, K.; Simpson, C.; Fuller, J.; Bonar, N.; et al. INTERMEDIUM-C, a Modifier of Lateral Spikelet Fertility in Barley, Is an Ortholog of the Maize Domestication Gene TEOSINTE BRANCHED 1. Nat. Genet. 2011, 43, 169–172. [Google Scholar] [CrossRef]
- Taketa, S.; Amano, S.; Tsujino, Y.; Sato, T.; Saisho, D.; Kakeda, K.; Nomura, M.; Suzuki, T.; Matsumoto, T.; Sato, K.; et al. Barley Grain with Adhering Hulls Is Controlled by an ERF Family Transcription Factor Gene Regulating a Lipid Biosynthesis Pathway. Proc. Natl. Acad. Sci. USA 2008, 105, 4062–4067. [Google Scholar] [CrossRef] [Green Version]
- Mascher, M.; Gundlach, H.; Himmelbach, A.; Beier, S.; Twardziok, S.O.; Wicker, T.; Radchuk, V.; Dockter, C.; Hedley, P.E.; Russell, J.; et al. A Chromosome Conformation Capture Ordered Sequence of the Barley Genome. Nature 2017, 544, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Monat, C.; Padmarasu, S.; Lux, T.; Wicker, T.; Gundlach, H.; Himmelbach, A.; Ens, J.; Li, C.; Muehlbauer, G.J.; Schulman, A.H.; et al. TRITEX: Chromosome-Scale Sequence Assembly of Triticeae Genomes with Open-Source Tools. Genome Biol. 2019, 20, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayakodi, M.; Padmarasu, S.; Haberer, G.; Bonthala, V.S.; Gundlach, H.; Monat, C.; Lux, T.; Kamal, N.; Lang, D.; Himmelbach, A.; et al. The Barley Pan-Genome Reveals the Hidden Legacy of Mutation Breeding. Nature 2020, 588, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Mascher, M.; Wicker, T.; Jenkins, J.; Plott, C.; Lux, T.; Koh, C.S.; Ens, J.; Gundlach, H.; Boston, L.B.; Tulpová, Z.; et al. Long-Read Sequence Assembly: A Technical Evaluation in Barley. Plant Cell 2021, 33, 1888–1906. [Google Scholar] [CrossRef] [PubMed]
- Hensel, G.; Valkov, V.; Middlefell-Williams, J.; Kumlehn, J. Efficient Generation of Transgenic Barley: The Way Forward to Modulate Plant-Microbe Interactions. J. Plant Physiol. 2008, 165, 71–82. [Google Scholar] [CrossRef]
- Shawky Ibrahim, A.; Mohamed El-Shihy, O.; Hussein Fahmy, A. Highly Efficient Agrobacterium Tumefaciens-Meditaed Transformation of Elite Egyptian Barley Cultivars. Am. J. Sustain. Agric. 2010, 4, 403–413. [Google Scholar]
- Soller, M.; Beckmann, J.S. Marker-Based Mapping of Quantitative Trait Loci Using Replicated Progenies. Theor. Appl. Genet. 1990, 80, 205–208. [Google Scholar] [CrossRef]
- Gupta, P.K.; Rustgi, S.; Kulwal, P.L. Linkage Disequilibrium and Association Studies in Higher Plants: Present Status and Future Prospects. Plant Mol. Biol. 2005, 57, 461–485. [Google Scholar] [CrossRef]
- Xin, F.; Zhu, T.; Wei, S.; Han, Y.; Zhao, Y.; Zhang, D.; Ma, L.; Ding, Q. QTL Mapping of Kernel Traits and Validation of a Major QTL for Kernel Length-Width Ratio Using SNP and Bulked Segregant Analysis in Wheat. Sci. Rep. 2020, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Tan, X.; Yang, Y.; Liu, P.; Zhang, X.; Zhang, Y.; Wang, L.; Hu, Y.; Ma, L.; Li, Z.; et al. Analysis of the Genetic Architecture of Maize Kernel Size Traits by Combined Linkage and Association Mapping. Plant Biotechnol. J. 2020, 18, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Chen, Y.; Lu, Y.; Liu, Z.; Si, D.; Xu, T.; Sun, L.; Wang, Z.; Yuan, C.; Sun, H.; et al. A Natural Variation of an SVP MADS-Box Transcription Factor in Triticum Petropavlovskyi Leads to Its Ectopic Expression and Contributes to Elongated Glume. Mol. Plant 2021, 14, 1408–1411. [Google Scholar] [CrossRef]
- Du, B.; Wang, Q.; Sun, G.; Ren, X.; Cheng, Y.; Wang, Y.; Gao, S.; Li, C.; Sun, D. Mapping Dynamic QTL Dissects the Genetic Architecture of Grain Size and Grain Filling Rate at Different Grain-Filling Stages in Barley. Sci. Rep. 2019, 9, 18823. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Luo, W.; Gao, S.; Ma, J.; Zhou, M.; Wei, Y.; Zheng, Y.; Liu, Y.; Liu, C. Identification of Loci and Candidate Genes Controlling Kernel Weight in Barley Based on a Population for Which Whole Genome Assemblies Are Available for Both Parents. Crop J. 2021, 9, 854–861. [Google Scholar] [CrossRef]
- Henry, R.J. The Carbohydrates of Barley Grains—A Review. J. Inst. Brew. 1988, 94, 71–78. [Google Scholar] [CrossRef]
- Coventry, S.J.; Barr, A.R.; Eglinton, J.K.; McDonald, G.K. The Determinants and Genome Locations Influencing Grain Weight and Size in Barley (Hordeum vulgare L.). Aust. J. Agric. Res. 2003, 54, 1103. [Google Scholar] [CrossRef]
- Zheng, M.; Yue, H.; Guo, X. Comparative Analysis of Quality Standards of Brewing Barley in China and Australia. Glob. Alcinfo 2019, 23–33. [Google Scholar]
- Walker, C.K.; Ford, R.; Muñoz-Amatriaín, M.; Panozzo, J.F. The Detection of QTLs in Barley Associated with Endosperm Hardness, Grain Density, Grain Size and Malting Quality Using Rapid Phenotyping Tools. Theor. Appl. Genet. 2013, 126, 2533–2551. [Google Scholar] [CrossRef]
- Kalladan, R.; Worch, S.; Rolletschek, H.; Harshavardhan, V.T.; Kuntze, L.; Seiler, C.; Sreenivasulu, N.; Röder, M.S. Identification of Quantitative Trait Loci Contributing to Yield and Seed Quality Parameters under Terminal Drought in Barley Advanced Backcross Lines. Mol. Breed. 2013, 32, 71–90. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Yue, W.; Zhao, C.; Yang, J.; Zhou, M. Identification of QTL for Barley Grain Size. PeerJ 2021, 9, e11287. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, R.; Tondelli, A.; Russell, J.; Comadran, J.; Schnaithmann, F.; Pillen, K.; Kilian, B.; Cattivelli, L.; Thomas, W.T.B.; et al. Genome-Wide Association Analysis of Grain Yield-Associated Traits in a Pan-European Barley Cultivar Collection. Plant Genome 2018, 11, 170073. [Google Scholar] [CrossRef]
- Pasam, R.K.; Sharma, R.; Malosetti, M.; van Eeuwijk, F.A.; Haseneyer, G.; Kilian, B.; Graner, A. Genome-Wide Association Studies for Agronomical Traits in a World Wide Spring Barley Collection. BMC Plant Biol. 2012, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Gordon, T.; Wang, R.; Bowman, B.; Klassen, N.; Wheeler, J.; Bonman, J.M.; Bockelman, H.; Chen, J. Agronomic and Genetic Assessment of Terminal Drought Tolerance in Two-row Spring Barley. Crop Sci. 2020, 60, 1415–1427. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, X.; Zhang, X.; Tong, T.; Zhang, Z.; Wu, G.; Hou, L.; Zheng, J.; Niu, C.; Li, J.; et al. A High-Density Genetic Linkage Map of SLAFs and QTL Analysis of Grain Size and Weight in Barley (Hordeum vulgare L.). Front. Plant Sci. 2020, 11, 620922. [Google Scholar] [CrossRef] [PubMed]
- Watt, C.; Zhou, G.; McFawn, L.A.; Chalmers, K.J.; Li, C. Fine Mapping of QGL5H, a Major Grain Length Locus in Barley (Hordeum vulgare L.). Theor. Appl. Genet. 2019, 132, 883–893. [Google Scholar] [CrossRef]
- Wang, J.; Sun, G.; Ren, X.; Li, C.; Liu, L.; Wang, Q.; Du, B.; Sun, D. QTL Underlying Some Agronomic Traits in Barley Detected by SNP Markers. BMC Genet. 2016, 17, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Liu, S.; Liu, Y.; Liu, Y.; You, J.; Deng, M.; Ma, J.; Chen, G.; Wei, Y.; Liu, C.; et al. Mapping and Validation of Major Quantitative Trait Loci for Kernel Length in Wild Barley (Hordeum vulgare ssp. Spontaneum). BMC Genet. 2016, 17, 130. [Google Scholar] [CrossRef] [Green Version]
- Watt, C.; Zhou, G.; McFawn, L.A.; Li, C. Fine Mapping QGL2H, a Major Locus Controlling Grain Length in Barley (Hordeum vulgare L.). Theor. Appl. Genet. 2020, 133, 2095–2103. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Chen, K.; Dong, N.Q.; Shi, C.L.; Ye, W.W.; Gao, J.P.; Shan, J.X.; Lin, H.X. GRAIN SIZE AND NUMBER1 Negatively Regulates the OSMKKK10-OSMKK4-OSMPK6 Cascade to Coordinate the Trade-off between Grain Number per Panicle and Grain Size in Rice. Plant Cell 2018, 30, 871–888. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.F.; Xue, H.W. Coexpression Analysis Identifies Rice Starch Regulator1, a Rice AP2/EREBP Family Transcription Factor, as a Novel Rice Starch Biosynthesis Regulator. Plant Physiol. 2010, 154, 927–938. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, Z.; Chen, W.; Deng, C.; Liu, Y.; Yuan, M.; Gao, P.; Shi, H.; Tu, B.; Li, T.; et al. OsBSK2, a Putative Brassinosteroid-Signalling Kinase, Positively Controls Grain Size in Rice. J. Exp. Bot. 2022, 73, 5529–5542. [Google Scholar] [CrossRef]
- van Esse, G.W.; Walla, A.; Finke, A.; Koornneef, M.; Pecinka, A.; von Korff, M. Six-Rowed Spike3 (VRS3) Is a Histone Demethylase That Controls Lateral Spikelet Development in Barley. Plant Physiol. 2017, 174, 2397–2408. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, R.; Kawahigashi, H.; Oshima, M.; Ando, T.; Handa, H. The Differential Expression of HvCO9, a Member of the CONSTANS-like Gene Family, Contributes to the Control of Flowering under Short-Day Conditions in Barley. J. Exp. Bot. 2012, 63, 773–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aya, K.; Hobo, T.; Sato-Izawa, K.; Ueguchi-Tanaka, M.; Kitano, H.; Matsuoka, M. A Novel AP2-Type Transcription Factor, SMALL ORGAN SIZE1, Controls Organ Size Downstream of an Auxin Signaling Pathway. Plant Cell Physiol. 2014, 55, 897–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Wu, C.; Wang, C.; Roh, J.; Zhang, L.; Chen, J.; Zhang, S.; Zhang, H.; Yang, C.; Hu, J.; et al. SLG Controls Grain Size and Leaf Angle by Modulating Brassinosteroid Homeostasis in Rice. J. Exp. Bot. 2016, 67, 4241–4253. [Google Scholar] [CrossRef] [Green Version]
- Casao, M.C.; Karsai, I.; Igartua, E.; Gracia, M.P.; Veisz, O.; Casas, A.M. Adaptation of Barley to Mild Winters: A Role for PPDH2. BMC Plant Biol. 2011, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Zitzewitz, J.; Cuesta-Marcos, A.; Condon, F.; Castro, A.J.; Chao, S.; Corey, A.; Filichkin, T.; Fisk, S.P.; Gutierrez, L.; Haggard, K.; et al. The Genetics of Winterhardiness in Barley: Perspectives from Genome-Wide Association Mapping. Plant Genome 2011, 4, 76–91. [Google Scholar] [CrossRef] [Green Version]
- Faure, S.; Higgins, J.; Turner, A.; Laurie, D.A. The FLOWERING LOCUS T-like Gene Family in Barley (Hordeum vulgare). Genetics 2007, 176, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Huang, J.; Guo, H.; Lan, L.; Wang, H.; Xu, Y.; Yang, X.; Li, W.; Tong, H.; Xiao, Y.; et al. The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice. Plant Physiol. 2017, 175, 774–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, P.; Jin, J.; Ye, S.; Mu, C.; Gao, J.; Feng, H.; Shen, W.H.; Yu, Y.; Dong, A. H3K36 Methylation Is Critical for Brassinosteroid-Regulated Plant Growth and Development in Rice. Plant J. 2012, 70, 340–347. [Google Scholar] [CrossRef]
- Karsai, I.; Eszaros, K.M.; Szucs, P.; Hayes, P.M.; Lang, L.; Bedo, Z. Effects of Loci Determining Photoperiod Sensitivity (Ppd-H1) and Vernalization Response (Sh2) on Agronomic Traits in the “Dicktoo” x “Morex” Barley Mapping Population. Plant Breed. 1999, 118, 399–403. [Google Scholar] [CrossRef]
- Turner, A.; Beales, J.; Faure, S.; Dunford, R.P.; Laurie, D.A. The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley. Science 2005, 310, 1031–1034. [Google Scholar] [CrossRef]
- Komatsuda, T.; Pourkheirandish, M.; He, C.; Azhaguvel, P.; Kanamori, H.; Perovic, D.; Stein, N.; Graner, A.; Wicker, T.; Tagiri, A.; et al. Six-Rowed Barley Originated from a Mutation in a Homeodomain-Leucine Zipper I-Class Homeobox Gene. Proc. Natl. Acad. Sci. USA 2007, 104, 1424–1429. [Google Scholar] [CrossRef] [Green Version]
- Koppolu, R.; Anwar, N.; Sakuma, S.; Tagiri, A.; Lundqvist, U.; Pourkheirandish, M.; Rutten, T.; Seiler, C.; Himmelbach, A.; Ariyadasa, R.; et al. Six-Rowed Spike4 (Vrs4) Controls Spikelet Determinacy and Row-Type in Barley. Proc. Natl. Acad. Sci. USA 2013, 110, 13198–13203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Nie, X.; Tan, J.L.H.; Berger, F. Integration of Epigenetic and Genetic Controls of Seed Size by Cytokinin in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 110, 15479–15484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, P.; Panigrahi, K.C. GIGANTEA—An Emerging Story. Front. Plant Sci. 2015, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczyńska, A.; Surma, M.; Adamski, T.; Mikołajczak, K.; Krystkowiak, K.; Ogrodowicz, P. Effects of the Semi-Dwarfing Sdw1/Denso Gene in Barley. J. Appl. Genet. 2013, 54, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Morinaka, Y.; Sakamoto, T.; Inukai, Y.; Agetsuma, M.; Kitano, H.; Ashikari, M.; Matsuoka, M. Morphological Alteration Caused by Brassinosteroid Insensitivity Increases the Biomass and Grain Production of Rice. Plant Physiol. 2006, 141, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Utsunomiya, Y.; Samejima, C.; Takayanagi, Y.; Izawa, Y.; Yoshida, T.; Sawada, Y.; Fujisawa, Y.; Kato, H.; Iwasaki, Y. Suppression of the Rice Heterotrimeric G Protein β-Subunit Gene, RGB1, Causes Dwarfism and Browning of Internodes and Lamina Joint Regions. Plant J. 2011, 67, 907–916. [Google Scholar] [CrossRef]
- Chen, X.; Feng, F.; Qi, W.; Xu, L.; Yao, D.; Wang, Q.; Song, R. Dek35 Encodes a PPR Protein That Affects Cis-Splicing of Mitochondrial Nad4 Intron 1 and Seed Development in Maize. Mol. Plant 2017, 10, 427–441. [Google Scholar] [CrossRef] [Green Version]
- Riefler, M.; Novak, O.; Strnad, M.; Schmülling, T. Arabidopsis Cytokinin Receptors Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size, Germination, Root Development, and Cytokinin Metabolism. Plant Cell 2006, 18, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Marcos, J.F.; Dal Prà, M.; Giulini, A.; Costa, L.M.; Gavazzi, G.; Cordelier, S.; Sellam, O.; Tatout, C.; Paul, W.; Perez, P.; et al. Empty Pericarp4 Encodes a Mitochondrion-Targeted Pentatricopeptide Repeat Protein Necessary for Seed Development and Plant Growth in Maize. Plant Cell 2007, 19, 196–210. [Google Scholar] [CrossRef] [Green Version]
- Taheripourfard, Z.S.; Izadi-darbandi, A.; Ghazvini, H.; Ebrahimi, M.; Mortazavian, S.M.M. Characterization of Specific DNA Markers at VRN-H1 and VRN-H2 Loci for Growth Habit of Barley Genotypes. J. Genet. 2018, 97, 87–95. [Google Scholar] [CrossRef]
- Garcia, D.; Saingery, V.; Chambrier, P.; Mayer, U.; Jürgens, G.; Berger, F.F.; Juürgens, G.; Berger, F.F. Arabidopsis Haiku Mutants Reveal New Controls of Seed Size by Endosperm. Plant Physiol. 2003, 131, 1661–1670. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, J.; Huang, J.; Lan, H.; Wang, C.; Yin, C.; Wu, Y.; Tang, H.; Qian, Q.; Li, J.; et al. Rare Allele of OsPPKL1 Associated with Grain Length Causes Extra-Large Grain and a Significant Yield Increase in Rice. Proc. Natl. Acad. Sci. USA 2012, 109, 21534–21539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Wang, L.; Mao, H.; Shao, L.; Li, X.; Xiao, J.; Ouyang, Y.; Zhang, Q. A G-Protein Pathway Determines Grain Size in Rice. Nat. Commun. 2018, 9, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendt, T.; Holme, I.; Dockter, C.; Preuß, A.; Thomas, W.; Druka, A.; Waugh, R.; Hansson, M.; Braumann, I. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner. PLoS ONE 2016, 11, e0168924. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, B.; Yuan, D.; Duan, M.; Qian, Q.; Tang, L.; Wang, B.; Liu, X.; Zhang, J.; Wang, J.; et al. Rice Zinc Finger Protein DST Enhances Grain Production through Controlling Gn1a/OsCKX2 Expression. Proc. Natl. Acad. Sci. USA 2013, 110, 3167–3172. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.J.; Zhao, X.Y.; Shao, X.X.; Wang, F.; Zhou, C.; Liu, Y.G.; Zhang, Y.; Zhang, X.S. Abscisic Acid Regulates Early Seed Development in Arabidopsis by ABI5-Mediated Transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell 2014, 26, 1053–1068. [Google Scholar] [CrossRef] [Green Version]
- Lid, S.E.; Gruis, D.; Jung, R.; Lorentzen, J.A.; Ananiev, E.; Chamberlin, M.; Niu, X.; Meeley, R.; Nichols, S.; Olsen, O.-A. The Defective Kernel 1 (Dek1) Gene Required for Aleurone Cell Development in the Endosperm of Maize Grains Encodes a Membrane Protein of the Calpain Gene Superfamily. Proc. Natl. Acad. Sci. USA 2002, 99, 5460–5465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, B.; Allen, W.B.; Zheng, P.; Li, C.; Glassman, K.; Ranch, J.; Nubel, D.; Tarczynski, M.C. Expression of ZmLEC1 and ZmWRI1 Increases Seed Oil Production in Maize. Plant Physiol. 2010, 153, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wong, L.; Meng, L.; Lemaux, P.G. Similarity of Expression Patterns of Knotted1 and ZmLEC1 during Somatic and Zygotic Embryogenesis in Maize (Zea mays L.). Planta 2002, 215, 191–194. [Google Scholar] [CrossRef]
- Guo, G.; Lv, D.; Yan, X.; Subburaj, S.; Ge, P.; Li, X.; Hu, Y.; Yan, Y. Proteome Characterization of Developing Grains in Bread Wheat Cultivars (Triticum aestivum L.). BMC Plant Biol. 2012, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.B.; Huang, H.Y.; Hu, Y.W.; Zhu, S.W.; Wang, Z.Y.; Lin, W.H. Brassinosteroid Regulates Seed Size and Shape in Arabidopsis. Plant Physiol. 2013, 162, 1965–1977. [Google Scholar] [CrossRef]
- Hu, Z.; Lu, S.J.; Wang, M.J.; He, H.; Sun, L.; Wang, H.; Liu, X.H.; Jiang, L.; Sun, J.L.; Xin, X.; et al. A Novel QTL QTGW3 Encodes the GSK3/SHAGGY-Like Kinase OsGSK5/OsSK41 That Interacts with OsARF4 to Negatively Regulate Grain Size and Weight in Rice. Mol. Plant 2018, 11, 736–749. [Google Scholar] [CrossRef] [Green Version]
- Becraft, P.W.; Li, K.; Dey, N.; Asuncion-Crabb, Y. The Maize Dek1 Gene Functions in Embryonic Pattern Formation and Cell Fate Specification. Development 2002, 129, 5217–5225. [Google Scholar] [CrossRef]
- Song, J.; Xie, X.; Chen, C.; Shu, J.; Thapa, R.K.; Nguyen, V.; Bian, S.; Kohalmi, S.E.; Marsolais, F.; Zou, J.; et al. LEAFY COTYLEDON1 Expression in the Endosperm Enables Embryo Maturation in Arabidopsis. Nat. Commun. 2021, 12, 3963. [Google Scholar] [CrossRef] [PubMed]
- Barabaschi, D.; Francia, E.; Tondelli, A.; Gianinetti, A.; Stanca, A.M.; Pecchioni, N. Effect of the Nud Gene on Grain Yield in Barley. Czech J. Genet. Plant Breed. 2012, 48, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Wheeler, R.; Bovill, W.D.; McDonald, G.K. QTL Mapping of Grain Yield and Phosphorus Efficiency in Barley in a Mediterranean-like Environment. Theor. Appl. Genet. 2016, 129, 1657–1672. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.; Gahlaut, V.; Mathur, S.; Agarwal, P.; Khandelwal, M.K.; Khurana, J.P.; Tyagi, A.K.; Balyan, H.S.; Gupta, P.K. Identification of Novel SNP in Promoter Sequence of TaGW2-6A Associated with Grain Weight and Other Agronomic Traits in Wheat (Triticum aestivum L.). PLoS ONE 2015, 10, e0129400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanif, M.; Gao, F.; Liu, J.; Wen, W.; Zhang, Y.; Rasheed, A.; Xia, X.; He, Z.; Cao, S. TaTGW6-A1, an Ortholog of Rice TGW6, Is Associated with Grain Weight and Yield in Bread Wheat. Mol. Breed. 2016, 36, 1. [Google Scholar] [CrossRef]
- Dewey, C.N. Whole-Genome Alignment. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1910, pp. 121–147. ISBN 9781493990740. [Google Scholar]
- Yan, N.; Yang, T.; Yu, X.-T.; Shang, L.-G.; Guo, D.-P.; Zhang, Y.; Meng, L.; Qi, Q.-Q.; Li, Y.-L.; Du, Y.-M.; et al. Chromosome-Level Genome Assembly of Zizania Latifolia Provides Insights into Its Seed Shattering and Phytocassane Biosynthesis. Commun. Biol. 2022, 5, 36. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Heang, D.; Sassa, H. Antagonistic Actions of HLH/BHLH Proteins Are Involved in Grain Length and Weight in Rice. PLoS ONE 2012, 7, e31325. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Fu, Y.; Lee, Y.J.; Chern, M.; Li, M.; Cheng, M.; Dong, H.; Yuan, Z.; Gui, L.; Yin, J.; et al. The PGS1 Basic Helix-loop-helix Protein Regulates Fl3 to Impact Seed Growth and Grain Yield in Cereals. Plant Biotechnol. J. 2022, 20, 1311–1326. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, K.; Kurinami, S.; Oki, K.; Abe, Y.; Ando, T.; Kono, I.; Yano, M.; Kitano, H.; Iwasaki, Y. A Novel Kinesin 13 Protein Regulating Rice Seed Length. Plant Cell Physiol. 2010, 51, 1315–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, H.; Liu, L.; Jin, Y.; Du, L.; Yin, Y.; Qian, Q.; Zhu, L.; Chu, C. Dwarf and Low-Tillering Acts as a Direct Downstream Target of a GSK3/SHAGGY-like Kinase to Mediate Brassinosteroid Responses in Rice. Plant Cell 2012, 24, 2562–2577. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Jiang, J.; Zhang, S.; Shu, H.; Wang, Y.; Lai, J.; Du, J.; Yang, C. OsAGSW1, an ABC1-like Kinase Gene, Is Involved in the Regulation of Grain Size and Weight in Rice. J. Exp. Bot. 2015, 66, 5691–5701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.J.; Xue, H.W. OsLEC1/OsHAP3E Participates in the Determination of Meristem Identity in Both Vegetative and Reproductive Developments of Rice. J. Integr. Plant Biol. 2013, 55, 232–249. [Google Scholar] [CrossRef]
- Li, C.; Qiao, Z.; Qi, W.; Wang, Q.; Yuan, Y.; Yang, X.; Tang, Y.; Mei, B.; Lv, Y.; Zhao, H.; et al. Genome-Wide Characterization of Cis-Acting DNA Targets Reveals the Transcriptional Regulatory Framework of Opaque2 in Maize. Plant Cell 2015, 27, 532–545. [Google Scholar] [CrossRef] [Green Version]
- Gómez, E.; Royo, J.; Guo, Y.; Thompson, R.; Hueros, G. Establishment of Cereal Endosperm Expression Domains: Identification and Properties of a Maize Transfer Cell-Specific Transcription Factor, ZmMRP-1. Plant Cell 2002, 14, 599–610. [Google Scholar] [CrossRef]
- Fu, C.; Yang, X.O.; Chen, X.; Chen, W.; Ma, Y.; Hu, J.; Li, S. OsEF3, a Homologous Gene of Arabidopsis ELF3, Has Pleiotropic Effects in Rice. Plant Biol. 2009, 11, 751–757. [Google Scholar] [CrossRef]
- Bai, X.; Huang, Y.; Hu, Y.; Liu, H.; Zhang, B.; Smaczniak, C.; Hu, G.; Han, Z.; Xing, Y. Duplication of an Upstream Silencer of FZP Increases Grain Yield in Rice. Nat. Plants 2017, 3, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Begcy, K.; Liu, K.; Folsom, J.J.; Wang, Z.; Zhang, C.; Walia, H. Heat Stress Yields a Unique MADS Box Transcription Factor in Determining Seed Size and Thermal Sensitivity. Plant Physiol. 2016, 171, 606–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Hou, J.; Hao, C.; Wang, L.; Ge, H.; Dong, Y.; Zhang, X. The Wheat (T. aestivum) Sucrose Synthase 2 Gene (TaSus2) Active in Endosperm Development Is Associated with Yield Traits. Funct. Integr. Genom. 2011, 11, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Mieda, K.; Ando, T.; Kono, I.; Yano, M.; Kitano, H.; Iwasaki, Y. The SMALL AND ROUND SEED1 (SRS1/DEP2) Gene Is Involved in the Regulation of Seed Size in Rice. Genes Genet. Syst. 2010, 85, 327–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, S.; Liu, Q.; Wu, K.; Zhang, J.; Wang, S.; Wang, Y.; Chen, X.; Zhang, Y.; Gao, C.; et al. The OsSPL16-GW7 Regulatory Module Determines Grain Shape and Simultaneously Improves Rice Yield and Grain Quality. Nat. Genet. 2015, 47, 949–954. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, G.; Hu, J.; Jiang, L.; Yu, H.; Xu, J.; Fang, Y.; Zeng, L.; Xu, E.; Xu, J.; et al. Copy Number Variation at the GL7 Locus Contributes to Grain Size Diversity in Rice. Nat. Genet. 2015, 47, 944–948. [Google Scholar] [CrossRef]
- Nagasawa, N.; Hibara, K.-I.; Heppard, E.P.; Vander Velden, K.A.; Luck, S.; Beatty, M.; Nagato, Y.; Sakai, H. GIANT EMBRYO Encodes CYP78A13, Required for Proper Size Balance between Embryo and Endosperm in Rice. Plant J. 2013, 75, 592–605. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, H.; Guo, S.; Wang, B.; Li, Z.; Chong, K.; Xu, Y. OsmiR396d Affects Gibberellin and Brassinosteroid Signaling to Regulate Plant Architecture in Rice. Plant Physiol. 2018, 176, 946–959. [Google Scholar] [CrossRef] [Green Version]
- Kurepa, J.; Wang, S.; Li, Y.; Zaitlin, D.; Pierce, A.J.; Smalle, J.A. Loss of 26S Proteasome Function Leads to Increased Cell Size and Decreased Cell Number in Arabidopsis Shoot Organs. Plant Physiol. 2009, 150, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.S.; Jian, J.H. Why Are Seedlings of Large-Seeded Plants Considered to Withstand Drought Stresses Efficiently? Cloning Transgenes 2016, 5, 283–291. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zeng, J.; Ren, Y.; Chen, D.; Li, W.; Gao, F.; Cao, Y.; Luo, T.; Yuan, G.; Wu, X.; et al. OsGIF1 Positively Regulates the Sizes of Stems, Leaves, and Grains in Rice. Front. Plant Sci. 2017, 8, 1730. [Google Scholar] [CrossRef]
- Zhu, X.-F.; Zhang, H.-P.; Hu, M.-J.; Wu, Z.-Y.; Jiang, H.; Cao, J.-J.; Xia, X.-C.; Ma, C.-X.; Chang, C. Cloning and Characterization of Tabas1-B1 Gene Associated with Flag Leaf Chlorophyll Content and Thousand-Grain Weight and Development of a Gene-Specific Marker in Wheat. Mol. Breed. 2016, 36, 142. [Google Scholar] [CrossRef]
- Tanabe, S.; Ashikari, M.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; Yano, M.; Yoshimura, A.; Kitano, H.; Matsuoka, M.; Fujisawa, Y.; et al. A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, Dwarf11, with Reduced Seed Length. Plant Cell 2005, 17, 776–790. [Google Scholar] [CrossRef] [Green Version]
- Qi, P.; Lin, Y.S.; Song, X.J.; Shen, J.B.; Huang, W.; Shan, J.X.; Zhu, M.Z.; Jiang, L.; Gao, J.P.; Lin, H.X. The Novel Quantitative Trait Locus GL3.1 Controls Rice Grain Size and Yield by Regulating Cyclin-T1;3. Cell Res. 2012, 22, 1666–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, L.; Wang, D.R.; Tan, L.; Fu, Y.; Liu, F.; Xiao, L.; Zhu, Z.; Fu, Q.; Sun, X.; Gu, P.; et al. LABA1, a Domestication Gene Associated with Long, Barbed Awns in Wild Rice. Plant Cell 2015, 27, 1875–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.; Wang, M.; Shi, Z.; Miao, X. OsEXPA10 Mediates the Balance between Growth and Resistance to Biotic Stress in Rice. Plant Cell Rep. 2018, 37, 993–1002. [Google Scholar] [CrossRef]
- Jiang, Y.; Bao, L.; Jeong, S.Y.; Kim, S.K.; Xu, C.; Li, X.; Zhang, Q. XIAO Is Involved in the Control of Organ Size by Contributing to the Regulation of Signaling and Homeostasis of Brassinosteroids and Cell Cycling in Rice. Plant J. 2012, 70, 398–408. [Google Scholar] [CrossRef]
- Yi, G.; Neelakandan, A.K.; Gontarek, B.C.; Vollbrecht, E.; Becraft, P.W. The Naked Endosperm Genes Encode Duplicate INDETERMINATE Domain Transcription Factors Required for Maize Endosperm Cell Patterning and Differentiation. Plant Physiol. 2015, 167, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Duan, P.; Yu, H.; Zhou, Z.; Zhang, B.; Wang, R.; Li, J.; Zhang, G.; Zhuang, S.; Lyu, J.; et al. Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice. Mol. Plant 2018, 11, 860–873. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lei, C.; Wang, J.; Ma, J.; Tang, S.; Wang, C.; Zhao, K.; Tian, P.; Zhang, H.; Qi, C.; et al. SPL33, Encoding an EEF1A-like Protein, Negatively Regulates Cell Death and Defense Responses in Rice. J. Exp. Bot. 2017, 68, 899–913. [Google Scholar] [CrossRef]
- Bate, N.J.; Niu, X.; Wang, Y.; Reimann, K.S.; Helentjaris, T.G. An Invertase Inhibitor from Maize Localizes to the Embryo Surrounding Region during Early Kernel Development. Plant Physiol. 2004, 134, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Jofuku, K.D.; Omidyar, P.K.; Gee, Z.; Okamuro, J.K. Control of Seed Mass and Seed Yield by the Floral Homeotic Gene APETALA2. Proc. Natl. Acad. Sci. USA 2005, 102, 3117–3122. [Google Scholar] [CrossRef] [Green Version]
- She, K.C.; Kusano, H.; Koizumi, K.; Yamakawa, H.; Hakata, M.; Imamura, T.; Fukuda, M.; Naito, N.; Tsurumaki, Y.; Yaeshima, M.; et al. A Novel Factor FLOURY ENDOSPERM2 Is Involved in Regulation of Rice Grain Size and Starch Quality. Plant Cell 2010, 22, 3280–3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimault, A.; Gendrot, G.; Chaignon, S.; Gilard, F.; Tcherkez, G.; Thévenin, J.; Dubreucq, B.; Depège-Fargeix, N.; Rogowsky, P.M. Role of B3 Domain Transcription Factors of the AFL Family in Maize Kernel Filling. Plant Sci. 2015, 236, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, X.; Zhou, D.; Ouyang, Y.; Yao, J. Overexpression of the 16-KDa α-Amylase/Trypsin Inhibitor RAG2 Improves Grain Yield and Quality of Rice. Plant Biotechnol. J. 2017, 15, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, X.; Zhao, Z.; Wang, R.; Huang, X.; Zhu, Y.; Yuan, L.; Wang, Y.; Xu, X.; Burlingame, A.L.; et al. OsBRI1 Activates BR Signaling by Preventing Binding between the TPR and Kinase Domains of OsBSK3 via Phosphorylation. Plant Physiol. 2016, 170, 1149–1161. [Google Scholar] [CrossRef]
- Li, H.; Jiang, L.; Youn, J.; Sun, W.; Cheng, Z.; Jin, T.; Ma, X.; Guo, X.; Wang, J.; Zhang, X.; et al. A Comprehensive Genetic Study Reveals a Crucial Role of CYP90D2/D2 in Regulating Plant Architecture in Rice Oryza sativa). New Phytol. 2013, 200, 1076–1088. [Google Scholar] [CrossRef]
- Ashikari, M.; Sakakibara, H.; Lin, S.; Yamamoto, T.; Takashi, T.; Nishimura, A.; Angeles, E.R.; Qian, Q.; Kitano, H.; Matsuoka, M. Plant Science: Cytokinin Oxidase Regulates Rice Grain Production. Science 2005, 309, 741–745. [Google Scholar] [CrossRef]
- Iwamoto, M.; Higo, K.; Takano, M. Circadian Clock- and Phytochrome-Regulated Dof-like Gene, Rdd1, Is Associated with Grain Size in Rice. Plant Cell Environ. 2009, 32, 592–603. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Luo, W.; Li, W.; Chen, N.; Zhang, D.; Chong, K. The F-Box Protein OsFBK12 Targets OsSAMS1 for Degradation and Affects Pleiotropic Phenotypes, Including Leaf Senescence, in Rice. Plant Physiol. 2013, 163, 1673–1685. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Hu, A.; Mu, L.; Zhao, H.; Qin, Y.; Gong, D.; Qiu, F. Identification of a Candidate Gene Underlying QHKW3, a QTL for Hundred-Kernel Weight in Maize. Theor. Appl. Genet. 2022, 135, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Xiu, Z.; Sun, F.; Shen, Y.; Zhang, X.; Jiang, R.; Bonnard, G.; Zhang, J.; Tan, B.C. EMPTY PERICARP16 Is Required for Mitochondrial Nad2 Intron 4 Cis-Splicing, Complex i Assembly and Seed Development in Maize. Plant J. 2016, 85, 507–519. [Google Scholar] [CrossRef]
- Liu, L.; Tong, H.; Xiao, Y.; Che, R.; Xu, F.; Hu, B.; Liang, C.; Chu, J.; Li, J.; Chu, C. Activation of Big Grain1 Significantly Improves Grain Size by Regulating Auxin Transport in Rice. Proc. Natl. Acad. Sci. USA 2015, 112, 11102–11107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarty, D.R.; Hattori, T.; Carson, C.B.; Vasil, V.; Lazar, M.; Vasil, I.K. The Viviparous-1 Developmental Gene of Maize Encodes a Novel Transcriptional Activator. Cell 1991, 66, 895–905. [Google Scholar] [CrossRef]
- Hutchison, C.E.; Li, J.; Argueso, C.; Gonzalez, M.; Lee, E.; Lewis, M.W.; Maxwell, B.B.; Perdue, T.D.; Schaller, G.E.; Alonso, J.M.; et al. The Arabidopsis Histidine Phosphotransfer Proteins Are Redundant Positive Regulators of Cytokinin Signaling. Plant Cell 2006, 18, 3073–3087. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Li, H.-Y. Oryza Sativa BRASSINOSTEROID UPREGULATED1 LIKE1 Induces the Expression of a Gene Encoding a Small Leucine-Rich-Repeat Protein to Positively Regulate Lamina Inclination and Grain Size in Rice. Front. Plant Sci. 2017, 8, 1253. [Google Scholar] [CrossRef] [Green Version]
- Yun, P.; Li, Y.; Wu, B.; Zhu, Y.; Wang, K.; Li, P.; Gao, G.; Zhang, Q.; Li, X.; Li, Z.; et al. OsHXK3 Encodes a Hexokinase-like Protein That Positively Regulates Grain Size in Rice. Theor. Appl. Genet. 2022, 135, 3417–3431. [Google Scholar] [CrossRef]
- Liu, Y.J.; Xiu, Z.H.; Meeley, R.; Tan, B.C. Empty Pericarp5 Encodes a Pentatricopeptide Repeat Protein That Is Required for Mitochondrial RNA Editing and Seed Development in Maize. Plant Cell 2013, 25, 868–883. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-G.; Lv, G.; Li, B.; Wang, J.-J.; Zhao, Y.; Kong, F.-M.; Guo, Y.; Li, S.-S. Isolation and Characterization of the TaSnRK2.10 Gene and Its Association with Agronomic Traits in Wheat (Triticum aestivum L.). PLoS ONE 2017, 12, e0174425. [Google Scholar] [CrossRef] [Green Version]
- Li, X.J.; Zhang, Y.F.; Hou, M.; Sun, F.; Shen, Y.; Xiu, Z.H.; Wang, X.; Chen, Z.L.; Sun, S.S.M.; Small, I.; et al. Small Kernel 1 Encodes a Pentatricopeptide Repeat Protein Required for Mitochondrial Nad7 Transcript Editing and Seed Development in Maize (Zea mays) and Rice (Oryza sativa). Plant J. 2014, 79, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, L.; Xu, R.; Cui, R.; Hao, J.; Sun, C.; Li, Y. Transcription Factors SOD7/NGAl2 and DPA4/NGAL3 Act Redundantly to Regulate Seed Size by Directly Repressing KLU Expression in Arabidopsis Thaliana. Plant Cell 2015, 27, 620–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Disch, S.; Anastasiou, E.; Sharma, V.K.; Laux, T.; Fletcher, J.C.; Lenhard, M. The E3 Ubiquitin Ligase BIG BROTHER Controls Arabidopsis Organ Size in a Dosage-Dependent Manner. Curr. Biol. 2006, 16, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Zhang, N.; Wang, W.-Q.; Shen, S.-Y.; Bai, C.; Song, X.-J. The Ubiquitin-Interacting Motif-Type Ubiquitin Receptor HDR3 Interacts with and Stabilizes the Histone Acetyltransferase GW6a to Control the Grain Size in Rice. Plant Cell 2021, 33, 3331–3347. [Google Scholar] [CrossRef]
- Hu, X.; Qian, Q.; Xu, T.; Zhang, Y.; Dong, G.; Gao, T.; Xie, Q.; Xue, Y. The U-Box E3 Ubiquitin Ligase TUD1 Functions with a Heterotrimeric G α Subunit to Regulate Brassinosteroid-Mediated Growth in Rice. PLoS Genet. 2013, 9, e1003391. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, J.; Zhao, Y.; Liu, Q.; Islam, S.; Yang, W.; Ma, W. Wheat Glutamine Synthetase TaGSr-4B Is a Candidate Gene for a QTL of Thousand Grain Weight on Chromosome 4B. Theor. Appl. Genet. 2022, 135, 2369–2384. [Google Scholar] [CrossRef]
- Arite, T.; Umehara, M.; Ishikawa, S.; Hanada, A.; Maekawa, M.; Yamaguchi, S.; Kyozuka, J. D14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers. Plant Cell Physiol. 2009, 50, 1416–1424. [Google Scholar] [CrossRef] [Green Version]
- Heang, D.; Sassa, H. An Atypical BHLH Protein Encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 Is Involved in Controlling Grain Length and Weight of Rice through Interaction with a Typical BHLH Protein APG. Breed. Sci. 2012, 62, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Z.; Ding, S.; Wang, Y.; Li, C.L.; Shen, Y.; Meeley, R.; McCarty, D.R.; Tan, B.C. Small Kernel2 Encodes a Glutaminase in Vitamin B6biosynthesis Essential for Maize Seed Development. Plant Physiol. 2017, 174, 1127–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Xiong, H.; Zhu, X.; Zhang, H.; Li, H.; Miao, J.; Wang, W.; Tang, Z.; Zhang, Z.; Yao, G.; et al. OsLG3 Contributing to Rice Grain Length and Yield Was Mined by Ho-LAMap. BMC Biol. 2017, 15, 28. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.; Kim, Y.; Markkandan, K.; Koo, Y.; Song, J.; Seo, H. GW2 Functions as an E3 Ubiquitin Ligase for Rice Expansin-Like 1. Int. J. Mol. Sci. 2018, 19, 1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.L.; Jiang, J.Z.; Chen, B.H.; Kuo, C.H.; Ho, S.L. Overexpression of a Constitutively Active Truncated Form of OsCDPK1 Confers Disease Resistance by Affecting OsPR10a Expression in Rice. Sci. Rep. 2018, 8, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Huang, W.; Gao, J.P.; Yang, J.; Shi, M.; Zhu, M.Z.; Luo, D.; Lin, H.X. Genetic Control of Rice Plant Architecture under Domestication. Nat. Genet. 2008, 40, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.H.; Zhao, H.J.; Liu, Q.L.; Frank, T.; Engel, K.H.; An, G.; Shu, Q.Y. Mutations of the Multi-Drug Resistance-Associated Protein ABC Transporter Gene 5 Result in Reduction of Phytic Acid in Rice Seeds. Theor. Appl. Genet. 2009, 119, 75–83. [Google Scholar] [CrossRef]
- Su’udi, M.; Cha, J.Y.; Jung, M.H.; Ermawati, N.; Han, C.D.; Kim, M.G.; Woo, Y.M.; Son, D. Potential Role of the Rice OsCCS52A Gene in Endoreduplication. Planta 2012, 235, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Guo, T.; Becraft, P.W. The Maize CR4 Receptor-like Kinase Mediates a Growth Factor-like Differentiation Response. Genesis 2000, 27, 104–116. [Google Scholar] [CrossRef]
- Dong, H.; Dumenil, J.; Lu, F.H.; Na, L.; Vanhaeren, H.; Naumann, C.; Klecker, M.; Prior, R.; Smith, C.; McKenzie, N.; et al. Ubiquitylation Activates a Peptidase That Promotes Cleavage and Destabilization of Its Activating E3 Ligases and Diverse Growth Regulatory Proteins to Limit Cell Proliferation in Arabidopsis. Genes Dev. 2017, 31, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Ur Rehman, S.; Wang, J.; Chang, X.; Zhang, X.; Mao, X.; Jing, R. A Wheat Protein Kinase Gene TaSnRK2.9-5A Associated with Yield Contributing Traits. Theor. Appl. Genet. 2019, 132, 907–919. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, L.; Shi, W.; Tan, J.; Luo, X.; Zheng, S.; Chen, W.; Li, J.; Zhuang, C.; Jiang, D. Florigen Repression Complexes Involving Rice CENTRORADIALIS2 Regulate Grain Size. Plant Physiol. 2022, 190, 1260–1274. [Google Scholar] [CrossRef]
- Pouvreau, B.; Baud, S.; Vernoud, V.; Morin, V.; Py, C.; Gendrot, G.; Pichon, J.P.; Rouster, J.; Paul, W.; Rogowsky, P.M. Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis. Plant Physiol. 2011, 156, 674–686. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.; Gerald, J.N.F.; Berger, F. Maternal Control of Integument Cell Elongation and Zygotic Control of Endosperm Growth Are Coordinated to Determine Seed Size in Arabidopsis. Plant Cell 2005, 17, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, B.; Qian, Q.; Yu, Y.; Li, R.; Zhang, J.; Liu, X.; Zeng, D.; Li, J.; Zhou, Y. Brittle Culm 12, a Dual-Targeting Kinesin-4 Protein, Controls Cell-Cycle Progression and Wall Properties in Rice. Plant J. 2010, 63, 312–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Qian, Q.; Liu, Z.; Sun, H.; He, S.; Luo, D.; Xia, G.; Chu, C.; Li, J.; Fu, X. Natural Variation at the DEP1 Locus Enhances Grain Yield in Rice. Nat. Genet. 2009, 41, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.-S.; Li, Q.-F.; Zhang, C.-Q.; Zhang, C.; Yang, Q.-Q.; Pan, L.-X.; Ren, X.-Y.; Lu, J.; Gu, M.-H.; Liu, Q.-Q. GS9 Acts as a Transcriptional Activator to Regulate Rice Grain Shape and Appearance Quality. Nat. Commun. 2018, 9, 1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, H.; Tanaka, A.; Tanabata, T.; Ohtake, M.; Fujioka, S.; Nakamura, H.; Ichikawa, H.; Mori, M. SHORT GRAIN1 Decreases Organ Elongation and Brassinosteroid Response in Rice. Plant Physiol. 2012, 158, 1208–1219. [Google Scholar] [CrossRef] [Green Version]
- Chettoor, A.M.; Yi, G.; Gomez, E.; Hueros, G.; Meeley, R.B.; Becraft, P.W. A Putative Plant Organelle RNA Recognition Protein Gene Is Essential for Maize Kernel Development. J. Integr. Plant Biol. 2015, 57, 236–246. [Google Scholar] [CrossRef]
- Jang, S.; An, G.; Li, H.Y. Rice Leaf Angle and Grain Size Are Affected by the OsBUL1 Transcriptional Activator Complex. Plant Physiol. 2017, 173, 688–702. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; He, H.; Zhang, S.; Sun, F.; Xin, X.; Wang, W.; Qian, X.; Yang, J.; Luo, X. A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. J. Integr. Plant Biol. 2012, 54, 979–990. [Google Scholar] [CrossRef]
- Cai, M.; Li, S.; Sun, F.; Sun, Q.; Zhao, H.; Ren, X.; Zhao, Y.; Tan, B.-C.; Zhang, Z.; Qiu, F. Emp10 Encodes a Mitochondrial PPR Protein That Affects the Cis -Splicing of Nad2 Intron 1 and Seed Development in Maize. Plant J. 2017, 91, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Manavski, N.; Guyon, V.; Meurer, J.; Wienand, U.; Brettschneidera, R. An Essential Pentatricopeptide Repeat Protein Facilitates 5′ Maturation and Translation Initiation of Rps3 MRNA in Maize Mitochondria. Plant Cell 2012, 24, 3087–3105. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhong, M.; Shuai, B.; Song, J.; Zhang, J.; Han, L.; Ling, H.; Tang, Y.; Wang, G.; Song, R. E+ Subgroup PPR Protein Defective Kernel 36 Is Required for Multiple Mitochondrial Transcripts Editing and Seed Development in Maize and Arabidopsis. New Phytol. 2017, 214, 1563–1578. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Ren, D.; Hu, S.; Li, G.; Dong, G.; Jiang, L.; Hu, X.; Ye, W.; Cui, Y.; Zhu, L.; et al. Mutation of OsNaPRT1 in the NAD Salvage Pathway Leads to Withered Leaf Tips in Rice. Plant Physiol. 2016, 171, 1085–1098. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Hou, M.M.; Tan, B.C. The Requirement of WHIRLY1 for Embryogenesis Is Dependent on Genetic Background in Maize. PLoS ONE 2013, 8, e67369. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Shen, Y.; Meeley, R.; McCarty, D.R.; Tan, B.C. Embryo Defective 14 Encodes a Plastid-Targeted CGTPase Essential for Embryogenesis in Maize. Plant J. 2015, 84, 785–799. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Tian, Z.; Lu, L.; Chen, X.; Chen, X.; Zhang, W.; Song, R. Editing of Mitochondrial Transcripts Nad3 and Cox2 by Dek10 Is Essential for Mitochondrial Function and Maize Plant Development. Genetics 2017, 205, 1489–1501. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Huang, L.; Chen, G.; Liu, H.; Zhang, Y.; Zhang, R.; Zhang, S.; Liu, J.; Hu, Q.; Hu, F.; et al. The Elite Alleles of OsSPL4 Regulate Grain Size and Increase Grain Yield in Rice. Rice 2021, 14, 90. [Google Scholar] [CrossRef]
- Yang, X.; Wu, F.; Lin, X.; Du, X.; Chong, K.; Gramzow, L.; Schilling, S.; Becker, A.; Theißen, G.; Meng, Z. Live and Let Die—The Bsister MADS-Box Gene OsMADS29 Controls the Degeneration of Cells in Maternal Tissues during Seed Development of Rice (Oryza sativa). PLoS ONE 2012, 7, e51435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyota, K.; Tamura, M.; Ohdan, T.; Nakamura, Y. Expression Profiling of Starch Metabolism-Related Plastidic Translocator Genes in Rice. Planta 2006, 223, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Song, X.J.; Huang, W.; Shi, M.; Zhu, M.Z.; Lin, H.X. A QTL for Rice Grain Width and Weight Encodes a Previously Unknown RING-Type E3 Ubiquitin Ligase. Nat. Genet. 2007, 39, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, H.; Zheng, X.M.; Jin, M.; Weng, J.F.; Ma, J.; Ren, Y.; Zhou, K.; Wang, Q.; Wang, J.; et al. An Evolutionarily Conserved Gene, FUWA, Plays a Role in Determining Panicle Architecture, Grain Shape and Grain Weight in Rice. Plant J. 2015, 83, 427–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Fu, J.; Chen, Y.; Fan, K.; He, C.; Zhang, Z.; Li, L.; Liu, Y.; Zheng, J.; Ren, D.; et al. The U6 Biogenesis-Like 1 Plays an Important Role in Maize Kernel and Seedling Development by Affecting the 3′ End Processing of U6 SnRNA. Mol. Plant 2017, 10, 470–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingram, G.C.; Magnard, J.L.; Vergne, P.; Dumas, C.; Rogowsky, P.M. ZmOCL1, an HDGL2 Family Homeobox Gene, Is Expressed in the Outer Cell Layer throughout Maize Development. Plant Mol. Biol. 1999, 40, 343–354. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Cao, X.; Song, X. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice. Plant Physiol. 2015, 169, 2118–2128. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, Y.; Fang, Y.; Zeng, L.; Xu, J.; Yu, H.; Shi, Z.; Pan, J.; Zhang, D.; Kang, S.; et al. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Mol. Plant 2015, 8, 1455–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, S.M.; Møller, A.L.B.; Dionisio, G.; Kichey, T.; Jahn, T.P.; Dubois, F.; Baudo, M.; Lopes, M.S.; Tercé-Laforgue, T.; Foyer, C.H.; et al. Gene Expression, Cellular Localisation and Function of Glutamine Synthetase Isozymes in Wheat (Triticum aestivum L.). Plant Mol. Biol. 2008, 67, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Rao, Y.; Zeng, D.; Yang, Y.; Xu, R.; Zhang, B.; Dong, G.; Qian, Q.; Li, Y. SMALL GRAIN 1, Which Encodes a Mitogen-Activated Protein Kinase Kinase 4, Influences Grain Size in Rice. Plant J. 2014, 77, 547–557. [Google Scholar] [CrossRef]
- Shen, Y.; Li, C.; McCarty, D.R.; Meeley, R.; Tan, B.C. Embryo Defective12 Encodes the Plastid Initiation Factor 3 and Is Essential for Embryogenesis in Maize. Plant J. 2013, 74, 792–804. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ren, Y.; Cai, Y.; Niu, M.; Feng, Z.; Jing, R.; Mou, C.; Liu, X.; Xiao, L.; Zhang, X.; et al. Overexpression of OsbHLH107, a Member of the Basic Helix-Loop-Helix Transcription Factor Family, Enhances Grain Size in Rice (Oryza sativa L.). Rice 2018, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Cheng, Z.; Wu, F.; Jin, M.; Zhang, L.; Zhou, F.; Wang, J.; Zhou, K.; Ma, J.; Lin, Q.; et al. BEAK LIKE SPIKELET1 Is Required for Lateral Development of Lemma and Palea in Rice. Plant Mol. Biol. Report. 2013, 31, 98–108. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Kato, T.; Ohki, S.; Ishikawa, A.; Kitano, H.; Sasaki, T.; Asahi, T.; Iwasaki, Y. Suppression of the Heterotrimeric G Protein Causes Abnormal Morphology, Including Dwarfism, in Rice. Proc. Natl. Acad. Sci. USA 1999, 96, 7575–7580. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Jin, Y.; Liu, W.; Li, F.; Fang, J.; Yin, Y.; Qian, Q.; Zhu, L.; Chu, C. DWARF and LOW-TILLERING, a New Member of the GRAS Family, Plays Positive Roles in Brassinosteroid Signaling in Rice. Plant J. 2009, 58, 803–816. [Google Scholar] [CrossRef]
- Bernardi, J.; Lanubile, A.; Li, Q.B.; Kumar, D.; Kladnik, A.; Cook, S.D.; Ross, J.J.; Marocco, A.; Chourey, P.S. Impaired Auxin Biosynthesis in the Defective Endosperm18 Mutant Is Due to Mutational Loss of Expression in the ZmYuc1 Gene Encoding Endosperm-Specific YUCCA1 Protein in Maize. Plant Physiol. 2012, 160, 1318–1328. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Hua, L.; Dong, S.; Chen, H.; Zhu, X.; Jiang, J.; Zhang, F.; Li, Y.; Fang, X.; Chen, F. OsMAPK6, a Mitogen-Activated Protein Kinase, Influences Rice Grain Size and Biomass Production. Plant J. 2015, 84, 672–681. [Google Scholar] [CrossRef]
- Li, J.; Chu, H.; Zhang, Y.; Mou, T.; Wu, C.; Zhang, Q.; Xu, J. The Rice HGW Gene Encodes a Ubiquitin-Associated (UBA) Domain Protein That Regulates Heading Date and Grain Weight. PLoS ONE 2012, 7, e34231. [Google Scholar] [CrossRef] [PubMed]
- Sosso, D.; Mbelo, S.; Vernoud, V.; Gendrot, G.; Dedieu, A.; Chambrier, P.; Dauzat, M.; Heurtevin, L.; Guyon, V.; Takenaka, M.; et al. PPR2263, a DYW-Subgroup Pentatricopeptide Repeat Protein, Is Required for Mitochondrial Nad5 and Cob Transcript Editing, Mitochondrion Biogenesis, and Maize Growth. Plant Cell 2012, 24, 676–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clancy, M.; Hannah, L.C. Splicing of the Maize Sh1 First Intron Is Essential for Enhancement of Gene Expression, and a T-Rich Motif Increases Expression without Affecting Splicing. Plant Physiol. 2002, 130, 918–929. [Google Scholar] [CrossRef] [Green Version]
- Adamski, N.M.; Simmonds, J.; Brinton, J.F.; Backhaus, A.E.; Chen, Y.; Smedley, M.; Hayta, S.; Florio, T.; Crane, P.; Scott, P.; et al. Ectopic Expression of Triticum Polonicum VRT-A2 Underlies Elongated Glumes and Grains in Hexaploid Wheat in a Dosage-Dependent Manner. Plant Cell 2021, 33, 2296–2319. [Google Scholar] [CrossRef]
- Tanaka, A.; Nakagawa, H.; Tomita, C.; Shimatani, Z.; Ohtake, M.; Nomura, T.; Jiang, C.J.; Dubouzet, J.G.; Kikuchi, S.; Sekimoto, H.; et al. Brassinosteroid Upregulated1, Encoding a Helix-Loop-Helix Protein, Is a Novel Gene Involved in Brassinosteroid Signaling and Controls Bending of the Lamina Joint in Rice. Plant Physiol. 2009, 151, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, K.; Ikeda, M.; Matsubara, A.; Song, X.J.; Ito, M.; Asano, K.; Matsuoka, M.; Kitano, H.; Ashikari, M. OsSPL14 Promotes Panicle Branching and Higher Grain Productivity in Rice. Nat. Genet. 2010, 42, 545–549. [Google Scholar] [CrossRef]
- Kim, S.-R.; Ramos, J.M.; Hizon, R.J.M.; Ashikari, M.; Virk, P.S.; Torres, E.A.; Nissila, E.; Jena, K.K. Introgression of a Functional Epigenetic OsSPL14WFP Allele into Elite Indica Rice Genomes Greatly Improved Panicle Traits and Grain Yield. Sci. Rep. 2018, 8, 3833. [Google Scholar] [CrossRef]
- Liu, C.; Ma, T.; Yuan, D.; Zhou, Y.; Long, Y.; Li, Z.; Dong, Z.; Duan, M.; Yu, D.; Jing, Y.; et al. The OsEIL1-OsERF115-target Gene Regulatory Module Controls Grain Size and Weight in Rice. Plant Biotechnol. J. 2022, 20, 1470–1486. [Google Scholar] [CrossRef]
- Wang, S.; Wu, K.; Yuan, Q.; Liu, X.; Liu, Z.; Lin, X.; Zeng, R.; Zhu, H.; Dong, G.; Qian, Q.; et al. Control of Grain Size, Shape and Quality by OsSPL16 in Rice. Nat. Genet. 2012, 44, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Wang, D.; Duan, P.; Zhang, B.; Xu, R.; Li, N.; Li, Y. WIDE AND THICK GRAIN 1, Which Encodes an Otubain-like Protease with Deubiquitination Activity, Influences Grain Size and Shape in Rice. Plant J. 2017, 91, 849–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Ali, A.; Wang, J.; Song, J.; Fang, Y.; Zhou, T.; Luo, Y.; Zhang, H.; Chen, X.; Liao, Y.; et al. A Homologous Gene of OsREL2/ASP1, ASP-LSL Regulates Pleiotropic Phenotype Including Long Sterile Lemma in Rice. BMC Plant Biol. 2021, 21, 390. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhao, Z.; Zhou, S.; Liu, L.; Kong, W.; Chen, H.; Long, W.; Feng, Z.; Jiang, L.; Wan, J. Top Bending Panicle1 Is Involved in Brassinosteroid Signaling and Regulates the Plant Architecture in Rice. Plant Physiol. Biochem. 2017, 121, 1–13. [Google Scholar] [CrossRef]
- Luo, M.; Platten, D.; Chaudhury, A.; Peacock, W.J.; Dennis, E.S. Expression, Imprinting, and Evolution of Rice Homologs of the Polycomb Group Genes. Mol. Plant 2009, 2, 711–723. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, X.; Xu, W.; Chang, J.; Li, A.; Mao, X.; Zhang, X.; Jing, R. Novel Function of a Putative MOC1 Ortholog Associated with Spikelet Number per Spike in Common Wheat. Sci. Rep. 2015, 5, 12211. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Wang, X.; Bonnard, G.; Shen, Y.; Xiu, Z.; Li, X.; Gao, D.; Zhang, Z.; Tan, B.C. Empty Pericarp7 Encodes a Mitochondrial E-Subgroup Pentatricopeptide Repeat Protein That Is Required for CcmFN Editing, Mitochondrial Function and Seed Development in Maize. Plant J. 2015, 84, 283–295. [Google Scholar] [CrossRef]
- Song, X.J.; Kuroha, T.; Ayano, M.; Furuta, T.; Nagai, K.; Komeda, N.; Segami, S.; Miura, K.; Ogawa, D.; Kamura, T.; et al. Rare Allele of a Previously Unidentified Histone H4 Acetyltransferase Enhances Grain Weight, Yield, and Plant Biomass in Rice. Proc. Natl. Acad. Sci. USA 2015, 112, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Sheng, M.; Ma, X.; Wang, J.; Xue, T.; Li, Z.; Cao, Y.; Yu, X.; Zhang, X.; Wang, Y.; Xu, W.; et al. KNOX II Transcription Factor HOS59 Functions in Regulating Rice Grain Size. Plant J. 2022, 110, 863–880. [Google Scholar] [CrossRef]
- Hong, Z.; Ueguchi-Tanaka, M.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; Hasegawa, Y.; Ashikari, M.; Kitano, H.; Matsuoka, M. The Rice Brassinosteroid-Deficient Dwarf2 Mutant, Defective in the Rice Homolog of Arabidopsis DIMINUTO/DWARF1, Is Rescued by the Endogenously Accumulated Alternative Bioactive Brassinosteroid, Dolichosterone. Plant Cell 2005, 17, 2243–2254. [Google Scholar] [CrossRef] [Green Version]
- Song, J.M.; Guan, Z.; Hu, J.; Guo, C.; Yang, Z.; Wang, S.; Liu, D.; Wang, B.; Lu, S.; Zhou, R.; et al. Eight High-Quality Genomes Reveal Pan-Genome Architecture and Ecotype Differentiation of Brassica Napus. Nat. Plants 2020, 6, 34–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, J.; Xu, Y.; Yu, Y.; Fu, J.; Ren, F.; Guo, J.; Zhao, J.; Jiang, Q.; Wei, J.; Xie, H. Genome Structure Variation Analyses of Peach Reveal Population Dynamics and a 1.67 Mb Causal Inversion for Fruit Shape. Genome Biol. 2021, 22, 13. [Google Scholar] [CrossRef] [PubMed]
Chr | QTL Hotspots | Position (Mb) | QTLs or MTAs | Type | References |
---|---|---|---|---|---|
1H | hotspot1H-1 | 19–38 | QTL_1H-4, qGw1-3, qSL1.1 | QTL | [5,6,36,37] |
1_0186, SCRI_RS_123187 | MTA | ||||
1H | hotspot1H-2 | 333–391 | QTL_1H-6, QGl.NaTx-1H, QTL1_TGW | QTL | [5,38,39,40] |
SCRI_RS_141598 | MTA | ||||
1H | hotspot1H-3 | 474–500 | QTL_1H-12, QTL_1H-13, QTL_1H-14, qGL1 | QTL | [5,17,39,41,42] |
SCRI_RS_188218, Cmwg706, 12_30191 | MTA | ||||
2H | hotspot2H-1 | 17–45 | QTL-GL1, QTL_2H-2, QTL_2H-3, QTL_2H-4, QTL4_TGW | QTL | [5,40,41,43] |
BK_12 | MTA | ||||
2H | hotspot2H-2 | 562–583 | qGL2, QTL_2H-8, QTL6_TGW, qGl2-1, qGw2-3, qTgw2-1, KW-MA-2H, cqGW2–3, cqGW2–4, QTL_2H-9, KW-BA-2H | QTL | [5,6,17,31,32,39,40,42,44] |
SCRI_RS_200291, SCRI_RS_171032, SCRI_RS_138463, vrs1 | MTA | ||||
3H | hotspot3H-1 | 0–58 | QTL_3H-1, KW-MA-3H, QTL_3H-2, QTL_3H-3, QTL_3H-4, QTL9_TGW, qSB3.1 | QTL | [5,32,37,39,40,41] |
2_0662, 12_11414, SCRI_RS_230486, SCRI_RS_115045 | MTA | ||||
3H | hotspot3H-2 | 454–484 | KW-BA-3H.1, qGw3-5, QGl.NaTx-3H, QTL_3H-6 | QTL | [5,6,32,38,39,41] |
SCRI_RS_145300, SCRI_RS_235065 | MTA | ||||
3H | hotspot3H-3 | 562–565 | qGw3-4, QTL_3H-10, qGl3-1, cqGL3, cqGW3–1, cqGW3–2, LEN-3H | QTL | [5,6,31,45] |
4H | hotspot4H | 6–40 | QTL_4H-1, QTL_4H-2, QTL_4H-3, QTL12_TGW, QTL_4H-4, qGL4, QTL13_TGW | QTL | [4,17,36,39,40,41] |
1_0113, SCRI_RS_180891, 12_30793, int-c | MTA | ||||
5H | hotspot5H-1 | 0–23 | qTgw5-1, QTL_5H-1, QTL_5H-2, QTL_5H-3 | QTL | [5,6,39] |
SCRI_RS_168359, 11_10580 | MTA | ||||
5H | hotspot5H-2 | 427–431 | QTL-GL2, qGL5H, QTL_5H-6, qTGW5, qGL5 | QTL | [5,36,42,43,46] |
1_0641, 2_1239 | MTA | ||||
5H | hotspot5H-3 | 541–588 | QTL_5H-14, QTL-GP2, QTL-GT2, QTL_5H-15, QTL_5H-16, QTL16_TGW, QTL_5H-17 | QTL | [5,36,39,40,43] |
1_1071, 1_1490, SCRI_RS_159482, 11_10236, 12_30504 | MTA | ||||
6H | hotspot6H | 463–494 | QTL-GP3, QTL-GT3, QTL-GW2, QTL_6H-6, qTGW6.1, KW-BA-6H, KW-MA-6H | QTL | [5,17,32,37,43] |
ABC175 | MTA | ||||
7H | hotspot7H | 519–540 | QTL19_TGW, qGl7-1, qGw7-1, cqGL7–1 | QTL | [6,31,40,41] |
12_30996 | MTA |
QTL Hotspots | Candidate Genes | Barley Gene_ID | Other Plants | Accession Number | Functional Annotation | Reference |
---|---|---|---|---|---|---|
hotspot1H-1 | HvGSN1 | HORVU.MOREX.r3.1HG0008520 | Rice | Os05g0115800 | Dual specificity phosphatase | [47] |
HvRSR1 | HORVU.MOREX.r3.1HG0012250 | Rice | Os05g0121600 | AP2-like ethylene-responsive transcription factor | [48] | |
hotspot1H-2 | HvBSK2 | HORVU.MOREX.r3.1HG0052470 | Rice | Os10g0571300 | Serine/threonine-protein kinase BSK2 | [49] |
vrs3/int-a | HORVU.MOREX.r3.1HG0053590 | NA | NA | Lysine-specific demethylase | [50] | |
HvCO9 | HORVU.MOREX.r3.1HG0058180 | NA | NA | CONSTANS-like protein | [51] | |
HvSM1 | HORVU.MOREX.r3.1HG0058550 | Rice | Os05g0389000 | AP2-like ethylene-responsive transcription factor | [52] | |
hotspot1H-3 | HvSLG | HORVU.MOREX.r3.1HG0076820 | Rice | Os08g0562500 | HXXXD-type acyl-transferase family protein | [53] |
PPD-H2/HvFT3 | HORVU.MOREX.r3.1HG0077240 | NA | NA | RNA ligase/cyclic nucleotide phosphodiesterase family protein | [54,55,56] | |
Hvincw1 | HORVU.MOREX.r3.1HG0087260 | Maize | Zm00001eb242820 | Cell wall invertase | [57] | |
hotspot2H-1 | HvSDG725 | HORVU.MOREX.r3.2HG0096180 | Rice | Os02g0554000 | Histone-lysine N-methyltransferase | [58] |
PPD-H1 | HORVU.MOREX.r3.2HG0107710 | NA | NA | Pseudo-response regulator | [59,60] | |
hotspot2H-2 | VRS1/Int-d | HORVU.MOREX.r3.2HG0184740 | NA | NA | Homeobox leucine zipper protein | [61] |
hotspot3H-1 | vrs4 | HORVU.MOREX.r3.3HG0233930 | NA | NA | LOB domain protein | [62] |
HvCKX2 | HORVU.MOREX.r3.3HG0236930 | Arabidopsis | At2g19500 | Cytokinin oxidase/dehydrogenase | [63] | |
HvGI | HORVU.MOREX.r3.3HG0238250 | Arabidopsis | At1g22770 | Gigantea-like protein | [64] | |
hotspot3H-2 | uzu | HORVU.MOREX.r3.3HG0285210 | Rice | Os01g0718300 | Receptor kinase | [38,65,66] |
hotspot3H-3 | sdw1/denso | HORVU.MOREX.r3.3HG0307130 | Rice | Os07g0169700 | Gibberellin 20 oxidase 2 | [6,31] |
hotspot4H | HvRGB1 | HORVU.MOREX.r3.4HG0333750 | Rice | Os03g0669100 | Deoxyuridine 5′-triphosphate nucleotidohydrolase | [67] |
INT-C/Vrs5 | HORVU.MOREX.r3.4HG0336720 | Maize | Zm00001eb054440 | Teosinte branched 1 protein | [18] | |
Hvdek35 | HORVU.MOREX.r3.4HG0337450 | Maize | Zm00001eb055010 | Pentatricopeptide repeat-containing protein | [68] | |
HvAHKs | HORVU.MOREX.r3.4HG0337770 | Arabidopsis | At2g01830 | Histidine kinase | [69] | |
Hvemp4 | HORVU.MOREX.r3.4HG0339220 | Maize | Zm00001eb055980 | Pentatricopeptide repeat-containing protein | [70] | |
Vrn-H2 | HORVU.MOREX.r3.4HG0340200 | NA | NA | RING finger and CHY zinc finger protein | [71] | |
HvDAR1 | HORVU.MOREX.r3.4HG0341060 | Arabidopsis | At4g36860 | Protein DA1-related 1 | [11] | |
hotspot5H-1 | HvIKU2 | HORVU.MOREX.r3.5HG0421310 | Arabidopsis | At3g19700 | Receptor protein kinase, putative | [72] |
HvPPKL3 | HORVU.MOREX.r3.5HG0426290 | Rice | Os12g0617900 | Serine/threonine-protein phosphatase | [73] | |
hotspot5H-2 | HvDEP1 | HORVU.MOREX.r3.5HG0480200 | Rice | Os09g0441900 | Guanine nucleotide-binding protein subunit gamma 3 | [74,75] |
hotspot5H-3 | HvDST | HORVU.MOREX.r3.5HG0516880 | Rice | Os03g0786400 | Zinc finger protein, putative | [76] |
HvABA2 | HORVU.MOREX.r3.5HG0524120 | Arabidopsis | At1g52340 | Short-chain dehydrogenase/reductase | [77] | |
hotspot6H | Hvdek1 | HORVU.MOREX.r3.6HG0608170 | Maize | Zm00001eb014030 | Calpain-like protein | [78] |
HvLec1 | HORVU.MOREX.r3.6HG0611100 | Maize | Zm00001eb253260 | Nuclear transcription factor Y subunit B | [79,80] | |
hotspot7H | Nud | HORVU.MOREX.r3.7HG0719680 | NA | NA | Ethylene-responsive transcription factor | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Zhang, M.; Xu, R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int. J. Mol. Sci. 2023, 24, 4932. https://doi.org/10.3390/ijms24054932
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. International Journal of Molecular Sciences. 2023; 24(5):4932. https://doi.org/10.3390/ijms24054932
Chicago/Turabian StyleHong, Yi, Mengna Zhang, and Rugen Xu. 2023. "Genetic Localization and Homologous Genes Mining for Barley Grain Size" International Journal of Molecular Sciences 24, no. 5: 4932. https://doi.org/10.3390/ijms24054932
APA StyleHong, Y., Zhang, M., & Xu, R. (2023). Genetic Localization and Homologous Genes Mining for Barley Grain Size. International Journal of Molecular Sciences, 24(5), 4932. https://doi.org/10.3390/ijms24054932