Utilizing Genomics to Characterize the Common Oat Gene Pool—The Story of More Than a Century of Polish Breeding
Abstract
:1. Introduction
2. Results
2.1. Data Quality
2.2. Genetic Diversity
2.3. Genetic Relationship
2.4. Lost and Gained Alleles
2.5. Swan Mutant Case in Polish Breeding
2.6. Targeted Selection
2.7. Core Collection
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. DNA Extraction and Genotyping
4.3. Data Mining and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hickey, L.T.; Hafeez, A.N.; Robinson, H.; Jackson, S.A.; Leal-Bertioli, S.C.M.; Tester, M.; Gao, C.; Godwin, I.D.; Hayes, B.J.; Wulff, B.B.H. Breeding crops to feed 10 billion. Nat. Biotechnol. 2019, 37, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Gibiński, M.; Gumul, D.; Korus, J. Health-promoting properties of oats and oat products. Żywność. Nauk. Technol. Jakość 2005, 4, 49–60. [Google Scholar]
- Gąsiorowski, H. The physiological and nutritional value of oats. Przegląd Zbożowo-Młynarski 2003, 47, 26–28. [Google Scholar]
- Emmons, C.L.; Peterson, D.M. Antioxidant activity and phenolic contents of oat groats and hulls. Cereal Chem. 1999, 76, 902–906. [Google Scholar] [CrossRef]
- Chen, C.Y.; Milbury, P.E.; Kwak, H.K.; Collins, F.W.; Samuel, P.; Blumberg, J.B. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J. Nutr. 2004, 134, 1459–1466. [Google Scholar] [CrossRef] [PubMed]
- Świerczewski, A.; Mazaraki, M. Hodowla owsa (Oat breeding). In Biologia i Agrotechnika Owsa (Biology and Agrotechnology of Oats); Mazurek, J., Wojcieska, U., Mazurek, J., Król, M., Eds.; IUNG: Pulawy, Poland, 1993; pp. 129–161. [Google Scholar]
- Spiss, L. History of oat breeding in Poland. Biul. Inst. Hod. i Aklim. Roślin 2003, 229, 7–11. [Google Scholar]
- Paczos-Grzęda, E. Pedigree, RAPD and simplified AFLP-based assessment of genetic relationships among Avena sativa L. cultivars. Euphytica 2004, 138, 13–22. [Google Scholar] [CrossRef]
- Paczos-Grzęda, E.; Bednarek, P.T. Comparative analysis of hexaploid Avena species using REMAP and ISSR methods. Turk. J. Botany 2014, 38, 1103–1111. [Google Scholar] [CrossRef]
- Boczkowska, M.; Nowosielski, J.; Nowosielska, D.; Podyma, W. Assessing genetic diversity in 23 early Polish oat cultivars based on molecular and morphological studies. Genet. Resour. Crop Evol. 2014, 61, 927–941. [Google Scholar] [CrossRef]
- Koroluk, A.; Grzęda, E.P.-; Sowa, S.; Boczkowska, M.; Toporowska, J. Diversity of Polish Oat Cultivars with a Glance at Breeding History and Perspectives. Agronomy 2022, 12, 2423. [Google Scholar] [CrossRef]
- Boczkowska, M.; Tarczyk, E. Genetic diversity among Polish landraces of common oat (Avena sativa L.). Genet. Resour. Crop Evol. 2013, 60, 2157–2169. [Google Scholar] [CrossRef]
- Boczkowska, M.; Onyśk, A. Unused genetic resources: A case study of Polish common oat germplasm. Ann. Appl. Biol. 2016, 169, 155–165. [Google Scholar] [CrossRef]
- Kilian, A.; Wenzl, P.; Huttner, E.; Carling, J.; Xia, L.; Blois, H.; Caig, V.; Heller-Uszynska, K.; Jaccoud, D.; Hopper, C.; et al. Diversity Arrays Technology: A Generic Genome Profiling Technology on Open Platforms. In Data Production and Analysis in Population Genomics: Methods and Protocols, Methods in Molecular Biology; Pompanon, F., Bonin, A., Eds.; Springer Science + Business Media: New York, NY, USA, 2012; Volume 888, pp. 67–89. ISBN 978-1-61779-869-6. [Google Scholar]
- Cruz, V.M.V.; Kilian, A.; Dierig, D.A. Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS ONE 2013, 8, e64062. [Google Scholar] [CrossRef]
- Tyrka, M.; Mokrzycka, M.; Bakera, B.; Tyrka, D.; Szeliga, M.; Stojałowski, S.; Matysik, P.; Rokicki, M.; Rakoczy-Trojanowska, M.; Krajewski, P. Evaluation of genetic structure in European wheat cultivars and advanced breeding lines using high-density genotyping-by-sequencing approach. BMC Genom. 2021, 22, 1–17. [Google Scholar] [CrossRef]
- Egea, L.A.; Mérida-García, R.; Kilian, A.; Hernandez, P.; Dorado, G. Assessment of genetic diversity and structure of large garlic (Allium sativum) germplasm bank, by diversity arrays technology “genotyping-by-sequencing” platform (DArTseq). Front. Genet. 2017, 8, 98. [Google Scholar] [CrossRef]
- Dziurdziak, J.; Podyma, W.; Bujak, H.; Boczkowska, M. Tracking Changes in the Spring Barley Gene Pool in Poland during 120 Years of Breeding. Int. J. Mol. Sci. 2022, 23, 4553. [Google Scholar] [CrossRef]
- Dziurdziak, J.; Bolc, P.; Wlodarczyk, S.; Puchta, M.; Gryziak, G.; Podyma, W.; Boczkowska, M. Multifaceted Analysis of Barley Landraces Collected during Gene Bank Expeditions in Poland at the End of the 20th Century. Agronomy 2020, 10, 1958. [Google Scholar] [CrossRef]
- Pailles, Y.; Ho, S.; Pires, I.S.; Tester, M.; Negrão, S.; Schmöcke, S.M. Genetic diversity and population structure of two tomato species from the galapagos islands. Front. Plant Sci. 2017, 8, 138. [Google Scholar] [CrossRef]
- Avena sativa—OT3098 v2, PepsiCo. Available online: https://wheat.pw.usda.gov/jb?data=/ggds/oat-ot3098v2-pepsico (accessed on 5 December 2022).
- Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009, 9, 1322–1332. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Sowa, S.; Paczos-Grzęda, E. Identification of molecular markers for the Pc39 gene conferring resistance to crown rust in oat. Theor. Appl. Genet. 2020, 133, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Toporowska, J.; Sowa, S.; Kilian, A.; Koroluk, A.; Paczos-Grzęda, E. Discovery and chromosomal location a highly effective oat crown rust resistance gene Pc50-5. Int. J. Mol. Sci. 2021, 22, 11183. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.H.; Mohler, V. Locating two novel genes for resistance to powdery mildew from Avena byzantina in the oat genome. Plant Breed. 2018, 137, 832–838. [Google Scholar] [CrossRef]
- Huang, Y.F.; Poland, J.A.; Wight, C.P.; Jackson, E.W.; Tinker, N.A. Using Genotyping-By-Sequencing (GBS) for genomic discovery in cultivated oat. PLoS ONE 2014, 9, e102448. [Google Scholar] [CrossRef]
- Wingen, L.U.; West, C.; Waite, M.L.; Collier, S.; Orford, S.; Goram, R.; Yang, C.Y.; King, J.; Allen, A.M.; Burridge, A.; et al. Wheat landrace genome diversity. Genetics 2017, 205, 1657–1676. [Google Scholar] [CrossRef]
- Cavanagh, C.R.; Chao, S.; Wang, S.; Huang, B.E.; Stephen, S.; Kiani, S.; Forrest, K.; Saintenac, C.; Brown-Guedira, G.L.; Akhunova, A.; et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. USA 2013, 110, 8057–8062. [Google Scholar] [CrossRef]
- Alipour, H.; Bihamta, M.R.; Mohammadi, V.; Peyghambari, S.A.; Bai, G.; Zhang, G. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Front. Plant Sci. 2017, 8, 1293. [Google Scholar] [CrossRef]
- Eltaher, S.; Sallam, A.; Belamkar, V.; Emara, H.A.; Nower, A.A.; Salem, K.F.M.; Poland, J.; Baenziger, P.S. Genetic diversity and population structure of F3:6 Nebraska Winter wheat genotypes using genotyping-by-sequencing. Front. Genet. 2018, 9, 76. [Google Scholar] [CrossRef]
- Jaccoud, D.; Peng, K.; Feinstein, D.; Kilian, A. Diversity Arrays: A solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001, 29, e25. [Google Scholar] [CrossRef] [PubMed]
- Oliver, R.E.; Jellen, E.N.; Ladizinsky, G.; Korol, A.B.; Kilian, A.; Beard, J.L.; Dumlupinar, Z.; Wisniewski-Morehead, N.H.; Svedin, E.; Coon, M.; et al. New Diversity Arrays Technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L. Theor. Appl. Genet. 2011, 123, 1159–1171. [Google Scholar] [CrossRef]
- Young, W.P.; Schupp, J.M.; Keim, P. DNA methylation and AFLP marker distribution in the soybean genome. Theor. Appl. Genet. 1999, 99, 785–792. [Google Scholar] [CrossRef]
- Peng, J.; Korol, A.B.; Fahima, T.; Röder, M.S.; Ronin, Y.I.; Li, Y.C.; Nevo, E. Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: Genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res. 2000, 10, 1509–1531. [Google Scholar] [CrossRef]
- Künzel, G.; Korzun, L.; Meister, A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 2000, 154, 397–412. [Google Scholar] [CrossRef]
- Lukaszewski, A.J.; Curtis, C.A. Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor. Appl. Genet. 1993, 86, 121–127. [Google Scholar] [CrossRef]
- Werner, J.E.; Endo, T.R.; Gill, B.S. Toward a cytogenetically based physical map of the wheat genome. Proc. Natl. Acad. Sci. USA 1992, 89, 11307–11311. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Presting, G.G.; Buell, C.R.; Wing, R.A.; Jiang, J. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 2001, 157, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.S.; Tanksley, S.D. Genetic and physical mapping of telomeres and macrosatellites of rice. Plant Mol. Biol. 1993, 22, 861–872. [Google Scholar] [CrossRef]
- Dziurdziak, J.; Gryziak, G.; Groszyk, J.; Podyma, W.; Boczkowska, M. DArTseq Genotypic and Phenotypic Diversity of Barley Landraces Originating from Different Countries. Agronomy 2021, 11, 2330. [Google Scholar] [CrossRef]
- Alipour, H.; Bai, G.; Zhang, G.; Bihamta, M.R.; Mohammadi, V.; Peyghambari, S.A. Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. PLoS ONE 2019, 14, e0208614. [Google Scholar] [CrossRef]
- Ketema, S.; Tesfaye, B.; Keneni, G.; Fenta, B.A.; Assefa, E.; Greliche, N.; Machuka, E.; Yao, N. DArTSeq SNP-based markers revealed high genetic diversity and structured population in Ethiopian cowpea [Vigna unguiculata (L.) Walp] germplasms. PLoS ONE 2020, 15, e0239122. [Google Scholar] [CrossRef] [PubMed]
- Vasumathy, S.K.; Peringottillam, M.; Sundaram, K.T.; Kumar, S.H.K.; Alagu, M. Genome- wide structural and functional variant discovery of rice landraces using genotyping by sequencing. Mol. Biol. Rep. 2020, 47, 7391–7402. [Google Scholar] [CrossRef]
- Delfini, J.; Moda-Cirino, V.; dos Santos Neto, J.; Ruas, P.M.; Sant’Ana, G.C.; Gepts, P.; Gonçalves, L.S.A. Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Sci. Rep. 2021, 11, 2964. [Google Scholar] [CrossRef]
- Wakeley, J. The excess of transitions among nucleotide substitutions: New methods of estimating transition bias underscore its significance. Trends Ecol. Evol. 1996, 11, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Newell, M.A.; Cook, D.; Tinker, N.A.; Jannink, J.-L. Population structure and linkage disequilibrium in oat (Avena sativa L.): Implications for genome-wide association studies. Theor. Appl. Genet. 2011, 122, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Asoro, F.G.; Newell, M.A.; Beavis, W.D.; Scott, M.P.; Jannink, J.-L. Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats. Plant Genome 2011, 4, 132–144. [Google Scholar] [CrossRef]
- Tumino, G.; Voorrips, R.E.; Rizza, F.; Badeck, F.W.; Morcia, C.; Ghizzoni, R.; Germeier, C.U.; Paulo, M.J.; Terzi, V.; Smulders, M.J.M. Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. Theor. Appl. Genet. 2016, 129, 1711–1724. [Google Scholar] [CrossRef]
- Esvelt Klos, K.; Huang, Y.-F.; Bekele, W.A.; Obert, D.E.; Babiker, E.; Beattie, A.D.; Bjørnstad, Å.; Bonman, J.M.; Carson, M.L.; Chao, S.; et al. Population genomics related to adaptation in elite oat germplasm. Plant Genome 2016, 9, 2015.10.0103. [Google Scholar] [CrossRef]
- Winkler, L.R.; Michael Bonman, J.; Chao, S.; Admassu Yimer, B.; Bockelman, H.; Esvelt Klos, K. Population Structure and Genotype-Phenotype Associations in a Collection of Oat Landraces and Historic Cultivars. Front. Plant Sci. 2016, 7, 1077. [Google Scholar] [CrossRef] [PubMed]
- Bjørnstad, Å.; He, X.; Tekle, S.; Klos, K.; Huang, Y.F.; Tinker, N.A.; Dong, Y.; Skinnes, H. Genetic variation and associations involving Fusarium head blight and deoxynivalenol accumulation in cultivated oat (Avena sativa L.). Plant Breed. 2017, 136, 620–636. [Google Scholar] [CrossRef]
- Haikka, H.; Knürr, T.; Manninen, O.; Pietilä, L.; Isolahti, M.; Teperi, E.; Mäntysaari, E.A.; Strandén, I. Genomic prediction of grain yield in commercial Finnish oat (Avena sativa) and barley (Hordeum vulgare) breeding programmes. Plant Breed. 2020, 139, 550–561. [Google Scholar] [CrossRef]
- Isidro-Sánchez, J.; D’Arcy Cusack, K.; Verheecke-Vaessen, C.; Kahla, A.; Bekele, W.; Doohan, F.; Magan, N.; Medina, A. Genome-wide association mapping of Fusarium langsethiae infection and mycotoxin accumulation in oat (Avena sativa L.). Plant Genome 2020, 13, e20023. [Google Scholar] [CrossRef]
- Rio, S.; Gallego-Sánchez, L.; Montilla-Bascón, G.; Canales, F.J.; Isidro y Sánchez, J.; Prats, E. Genomic prediction and training set optimization in a structured Mediterranean oat population. Theor. Appl. Genet. 2021, 134, 3595–3609. [Google Scholar] [CrossRef] [PubMed]
- Harlan, J.R. Genetics of Disaster. J. Environ. Qual. 1972, 1, 212–215. [Google Scholar] [CrossRef]
- Aleksandrov, V.; Kartseva, T.; Alqudah, A.M.; Kocheva, K.; Tasheva, K.; Börner, A.; Misheva, S. Genetic diversity, linkage disequilibrium and population structure of bulgarian bread wheat assessed by genome-wide distributed snp markers: From old germplasm to semi-dwarf cultivars. Plants 2021, 10, 1116. [Google Scholar] [CrossRef]
- Troup, G.; Paynter, B. Oat Variety Sowing Guide for Western Australia; Biulletin 4891; 2018 Western Australian Agriculture Authority: South Perth, Australia, 2018. Available online: https://www.agric.wa.gov.au/sites/gateway/files/Oat%20Variety%20Guide%20for%20WA%202018.pdf (accessed on 28 January 2023).
- Polish National List of Agricultural Plant Varieties; Research Centre for Cultivar Testing: Słupia Wielka, Poland, 2020; ISBN 1231 8299. Available online: https://coboru.gov.pl/en/nli/nli_inf (accessed on 28 January 2023).
- Sowa, S.; Paczos-Grzęda, E. A study of crown rust resistance in historical and modern oat cultivars representing 120 years of Polish oat breeding. Euphytica 2020, 216, 1–10. [Google Scholar] [CrossRef]
- De Koeyer, D.L.; Tinker, N.A.; Wight, C.P.; Deyl, J.; Burrows, V.D.; O’Donoughue, L.S.; Lybaert, A.; Molnar, S.J.; Armstrong, K.C.; Fedak, G.; et al. A molecular linkage map with associated QTLs from a hulless x covered spring oat population. Theor. Appl. Genet. 2004, 108, 1285–1298. [Google Scholar] [CrossRef]
- Tinker, N.A.; Wight, C.P.; Bekele, W.A.; Yan, W.; Jellen, E.N. Genome analysis in Avena sativa reveals hidden breeding barriers and opportunities for oat improvement. Commun. Biol. 2022, 5, 474. [Google Scholar] [CrossRef]
- Holland, J.B.; Portyanko, V.A.; Hoffman, D.L.; Lee, M. Genomic regions controlling vernalization and photoperiod responses in oat. Theor. Appl. Genet. 2002, 105, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Bekele, W.A.; Wight, C.P.; Chao, S.; Howarth, C.J.; Tinker, N.A. Haplotype based genotyping-by-sequencing in oat genome research. Plant Biotechnol. J. 2018, 16, 1452–1463. [Google Scholar] [CrossRef]
- Chaffin, A.S.; Huang, Y.Y.; Smith, S.; Bekele, W.A.; Babiker, E.; Gnanesh, B.N.; Foresman, B.J.; Blanchard, S.G.; Jay, J.J.; Reid, R.W.; et al. A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement. Plant Genome 2016, 9, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Bekele, W.A.; Wight, C.P.; Peng, Y.; Langdon, T.; Latta, R.G.; Fu, Y.B.; Diederichsen, A.; Howarth, C.J.; Jellen, E.N.; et al. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theor. Appl. Genet. 2016, 129, 2133–2149. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.; Tsardakas Renhuldt, N.; Bentzer, J.; Gundlach, H.; Haberer, G.; Juhász, A.; Lux, T.; Bose, U.; Tye-Din, J.A.; Lang, D.; et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature 2022, 606, 113–119. [Google Scholar] [CrossRef]
- Peng, Y.; Yan, H.; Guo, L.; Deng, C.; Wang, C.; Wang, Y.; Kang, L.; Zhou, P.; Yu, K.; Dong, X.; et al. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat. Genet. 2022, 54, 1248–1258. [Google Scholar] [CrossRef]
- Kianian, S.F.; Egli, M.A.; Phillips, R.L.; Rines, H.W.; Somers, D.A.; Gengenbach, B.G.; Webster, F.H.; Livingston, S.M.; Groh, S.; O’Donoughue, L.S.; et al. Association of a major groat oil content QTL and an acetyl-CoA carboxylase gene in oat. Theor. Appl. Genet. 1999, 98, 884–894. [Google Scholar] [CrossRef]
- Kianian, S.F.; Phillips, R.L.; Rines, H.W.; Fulcher, R.G.; Webster, F.H.; Stuthman, D.D. Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n=6x=42). Theor. Appl. Genet. 2000, 101, 1039–1048. [Google Scholar] [CrossRef]
- Fogarty, M.C.; Smith, S.M.; Sheridan, J.L.; Hu, G.; Islamovic, E.; Reid, R.; Jackson, E.W.; Maughan, P.J.; Ames, N.P.; Jellen, E.N.; et al. Identification of mixed linkage β-glucan quantitative trait loci and evaluation of AsCslF6 homoeologs in hexaploid oat. Crop Sci. 2020, 60, 914–933. [Google Scholar] [CrossRef]
- Carlson, M.O.; Montilla-Bascon, G.; Hoekenga, O.A.; Tinker, N.A.; Poland, J.; Baseggio, M.; Sorrells, M.E.; Jannink, J.L.; Gore, M.A.; Yeats, T.H. Multivariate Genome-Wide Association Analyses Reveal the Genetic Basis of Seed Fatty Acid Composition in Oat (Avena sativa L.). G3 Genes Genomes Genet. 2019, 9, 2963–2975. [Google Scholar] [CrossRef]
- Holland, J.B.; Moser, H.S.; O’Donoughue, L.S.; Lee, M. QTLs and Epistasis Associated with Vernalization Responses in Oat. Crop Sci. 1997, 37, 1306–1316. [Google Scholar] [CrossRef]
- Siripoonwiwat, W.; O’Donoughue, L.S.; Wesenberg, D.; Hoffman, D.L.; Barbosa-Neto, J.F.; Sorrells, M.E. Chromosomal regions associated with quantitative traits in oat. J. Agric. Genom. 1996, 2, 1–13. [Google Scholar]
- Sunstrum, F.G.; Bekele, W.A.; Wight, C.P.; Yan, W.; Chen, Y.; Tinker, N.A. A genetic linkage map in southern-by-spring oat identifies multiple quantitative trait loci for adaptation and rust resistance. Plant Breed. 2019, 138, 82–94. [Google Scholar] [CrossRef]
- Courtois, B.; Audebert, A.; Dardou, A.; Roques, S.; Ghneim-Herrera, T.; Droc, G.; Frouin, J.; Rouan, L.; Gozé, E.; Kilian, A.; et al. Genome-wide association mapping of root traits in a japonica rice panel. PLoS ONE 2013, 8, e0078037. [Google Scholar] [CrossRef] [PubMed]
- R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; RCoreTeam: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 28 January 2023).
- Gruber, B.; Unmack, P.J.; Berry, O.F.; Georges, A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018, 18, 691–699. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. circlize Implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef]
- Kalinowski, S.T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 2005, 5, 187–189. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Genetics of Populations, Volume 2: Theory of Gene Frequencies; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Kim, K.W.; Chung, H.K.; Cho, G.T.; Ma, K.H.; Chandrabalan, D.; Gwag, J.G.; Kim, T.S.; Cho, E.G.; Park, Y.J. PowerCore: A program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 2007, 23, 2155–2162. [Google Scholar] [CrossRef]
Transitions | Transversion | % Ts | % Tv | Ts/Tv Ratio | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Purines | Pyrimidines | Purines > Pyrimidines | Pyrimidines > Purines | |||||||||||||
A > G | G > A | C > T | T > C | A > C | A > T | G > C | G > T | C > A | C > G | T > A | T > G | |||||
Abundance on chromosome | 1A | 39 | 40 | 35 | 51 | 20 | 7 | 27 | 14 | 11 | 38 | 6 | 14 | 0.546 | 0.454 | 1.204 |
1C | 23 | 26 | 27 | 13 | 10 | 3 | 17 | 10 | 8 | 20 | 5 | 4 | 0.536 | 0.464 | 1.156 | |
1D | 47 | 74 | 55 | 70 | 18 | 14 | 49 | 29 | 37 | 48 | 13 | 16 | 0.523 | 0.477 | 1.098 | |
2A | 17 | 23 | 24 | 16 | 7 | 5 | 20 | 9 | 7 | 10 | 3 | 7 | 0.541 | 0.459 | 1.176 | |
2C | 60 | 50 | 47 | 44 | 24 | 6 | 18 | 16 | 16 | 29 | 10 | 28 | 0.578 | 0.422 | 1.367 | |
2D | 49 | 64 | 57 | 47 | 12 | 11 | 34 | 24 | 23 | 34 | 5 | 25 | 0.564 | 0.436 | 1.292 | |
3A | 32 | 23 | 20 | 25 | 8 | 3 | 17 | 9 | 15 | 11 | 2 | 7 | 0.581 | 0.419 | 1.389 | |
3C | 39 | 43 | 27 | 26 | 18 | 8 | 32 | 17 | 17 | 23 | 2 | 14 | 0.508 | 0.492 | 1.031 | |
3D | 27 | 32 | 27 | 24 | 13 | 3 | 23 | 13 | 14 | 25 | 4 | 12 | 0.507 | 0.493 | 1.028 | |
4A | 53 | 40 | 35 | 43 | 13 | 10 | 34 | 25 | 16 | 33 | 9 | 18 | 0.520 | 0.480 | 1.082 | |
4C | 59 | 47 | 49 | 49 | 24 | 6 | 37 | 11 | 29 | 35 | 9 | 24 | 0.538 | 0.462 | 1.166 | |
4D | 67 | 68 | 71 | 66 | 22 | 16 | 52 | 37 | 38 | 50 | 15 | 22 | 0.519 | 0.481 | 1.079 | |
5A | 22 | 23 | 18 | 28 | 9 | 6 | 11 | 12 | 8 | 21 | 4 | 14 | 0.517 | 0.483 | 1.071 | |
5C | 46 | 41 | 49 | 42 | 22 | 6 | 30 | 17 | 18 | 28 | 13 | 10 | 0.553 | 0.447 | 1.236 | |
5D | 57 | 59 | 52 | 34 | 19 | 8 | 41 | 29 | 21 | 46 | 14 | 24 | 0.500 | 0.500 | 1.000 | |
6A | 33 | 20 | 30 | 28 | 14 | 9 | 13 | 14 | 13 | 29 | 5 | 10 | 0.509 | 0.491 | 1.037 | |
6C | 38 | 37 | 42 | 55 | 15 | 7 | 34 | 21 | 15 | 31 | 10 | 12 | 0.543 | 0.457 | 1.186 | |
6D | 17 | 29 | 22 | 16 | 4 | 1 | 10 | 10 | 15 | 16 | 6 | 7 | 0.549 | 0.451 | 1.217 | |
7A | 36 | 36 | 43 | 34 | 13 | 2 | 26 | 14 | 12 | 26 | 8 | 23 | 0.546 | 0.454 | 1.202 | |
7C | 39 | 38 | 33 | 32 | 14 | 3 | 23 | 21 | 18 | 15 | 6 | 13 | 0.557 | 0.443 | 1.257 | |
7D | 66 | 65 | 62 | 60 | 32 | 12 | 46 | 23 | 36 | 44 | 17 | 30 | 0.513 | 0.487 | 1.054 | |
Unknown | 161 | 127 | 138 | 133 | 57 | 32 | 107 | 63 | 64 | 115 | 34 | 63 | 0.511 | 0.489 | 1.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koroluk, A.; Sowa, S.; Boczkowska, M.; Paczos-Grzęda, E. Utilizing Genomics to Characterize the Common Oat Gene Pool—The Story of More Than a Century of Polish Breeding. Int. J. Mol. Sci. 2023, 24, 6547. https://doi.org/10.3390/ijms24076547
Koroluk A, Sowa S, Boczkowska M, Paczos-Grzęda E. Utilizing Genomics to Characterize the Common Oat Gene Pool—The Story of More Than a Century of Polish Breeding. International Journal of Molecular Sciences. 2023; 24(7):6547. https://doi.org/10.3390/ijms24076547
Chicago/Turabian StyleKoroluk, Aneta, Sylwia Sowa, Maja Boczkowska, and Edyta Paczos-Grzęda. 2023. "Utilizing Genomics to Characterize the Common Oat Gene Pool—The Story of More Than a Century of Polish Breeding" International Journal of Molecular Sciences 24, no. 7: 6547. https://doi.org/10.3390/ijms24076547
APA StyleKoroluk, A., Sowa, S., Boczkowska, M., & Paczos-Grzęda, E. (2023). Utilizing Genomics to Characterize the Common Oat Gene Pool—The Story of More Than a Century of Polish Breeding. International Journal of Molecular Sciences, 24(7), 6547. https://doi.org/10.3390/ijms24076547