Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia—Antioxidant and Anti-Tyrosinase Properties
Abstract
:1. Introduction
2. Results
2.1. Identification of Secondary Metabolites
2.2. Isolation of Secondary Metabolites
2.3. Total Phenolic Content (TPC)
2.4. DPPH Assay
2.5. Tyrosinase Inhibitory Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals and Reagents
4.3. Extraction, Fractionation, and Purification Procedures
4.3.1. Black Seeds of P. clusii subsp. rhodia
4.3.2. Red Seeds of P. clusii subsp. rhodia
4.4. Analysis of the Volatile Constituents
4.4.1. Headspace Solid-Phase Microextraction (HS-SPME)
4.4.2. GC-MS Analysis
4.5. Nuclear Magnetic Resonance (NMR)
4.6. Analysis through UHPLC-HRMS
4.7. Total Phenolic Content (TPC)
4.8. DPPH (2,2-DiPhenyl-1-PicrylHydrazyl) Assay
4.9. Tyrosinase Inhibition
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BS | Black Seeds |
RS | Red Seeds |
UHPLC-HRMS | Ultra-High-Performance Liquid Chromatography-High Resolution Mass Spectrometry |
HS-SPME | Headspace Solid-Phase Microextraction |
GC-MS | Gas Chromatography–Mass Spectrometry |
Rt | Retention Time |
DCM | Dichloromethane |
TPC | Total Phenolic Content |
DPPH | (2,2-Diphenyl-1-Picrylhydrazyl |
IC50 | Half-Maximal Inhibitory Concentration |
CC | Column Chromatography |
VLC | Vacuum Liquid Chromatography |
HPLC | High-Performance Liquid Chromatography |
TLC | Thin-Layer Chromatography |
NMR | Nuclear Magnetic Resonance |
References
- Hong, D.Y.; Zhou, S.L.; He, X.J.; Yuan, J.H.; Zhang, Y.L.; Cheng, F.Y.; Zeng, X.L.; Wang, Y.; Zhang, X.X. Current status of wild tree peony species with special reference to conservation. Biodivers. Sci. 2017, 25, 781–793. [Google Scholar] [CrossRef]
- Kritsanida, M.; Magiatis, P.; Skaltsounis, A.-L.; Stables, J.P. Phytochemical Investigation and Anticonvulsant Activity of Paeonia parnassica Radix. Nat. Prod. Commun. 2007, 2, 351–356. [Google Scholar] [CrossRef]
- He, C.N.; Peng, Y.; Zhang, Y.C.; Xu, L.J.; Gu, J.; Xiao, P.G. Phytochemical and Biological Studies of Paeoniaceae. Chem. Biodivers. 2010, 7, 805–838. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Lee, M.-K.; Lee, K.-Y.; Sung, S.-H.; Kim, J.; Kim, Y.-C. Chemical constituents isolated from Paeonia lactiflora roots and their neuroprotective activity against oxidative stress in vitro. J. Enzym. Inhib. Med. Chem. 2009, 24, 1138–1140. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.; May, B.; Zhang, C.; Zhang, A.-L.; Lu, C.; Xue, C.-C. A Pharmacological Review of Bioactive Constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phytother. Res. 2016, 30, 1445–1473. [Google Scholar] [CrossRef]
- Takagi, K.; Harada, M. Pharmacological studies on herb paeony root. II. Anti-inflammatory effect, inhibitory effect on gastric juice secretion, preventive effect on stress ulcer, antidiuretic effect of paeoniflorin and combined effects with licorice component. Yakugaku Zasshi 1969, 89, 887–892. [Google Scholar] [CrossRef] [Green Version]
- Yamahara, J.; Yamada, T.; Kimura, H.; Sawada, T.; Fujimura, H. Biologically active principles of crude drugs. II. Anti-allergic principles in “Shoseiryu-To” anti-inflammatory properties of paeoniflorin and its derivatives. J. Pharmacobiodyn. 1982, 5, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Xiao, P.-G. A Preliminary Study of the Chemistry and Systematics of Paeoniaceae. J. Syst. Evol. 1987, 25, 172–179. [Google Scholar]
- Kim, H.-J.; Chang, E.-J.; Bae, S.-J.; Shim, S.-M.; Park, H.-D.; Rhee, C.-H.; Choi, S.-W. Cytotoxic and antimutagenic stilbenes from seeds of Paeonia lactiflora. Arch. Pharmacal Res. 2002, 25, 293–299. [Google Scholar] [CrossRef]
- Kim, H.J.; Chang, E.J.; Cho, S.H.; Chung, S.K.; Park, H.D.; Choi, S.W. Antioxidative Activity of Resveratrol and Its Derivatives Isolated from Seeds of Paeonia lactiflora. Biosci. Biotechnol. Biochem. 2002, 66, 1990–1993. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-C.; Geng, C.; Huang, X.-Y.; Zhang, X.-M.; Chen, J.-J. Anti-diabetic Stilbenes from Peony Seeds with PTP1B, α-Glucosidase and DPPIV Inhibitory Activities. J. Agric. Food Chem. 2019, 67, 6765–6772. [Google Scholar] [CrossRef]
- Tzanoudakis, D. Karyotypes of four wild Paeonia species from Greece. Nord. J. Bot. 1983, 3, 307–318. [Google Scholar] [CrossRef]
- Stearn, D. Peonies of Greece: A Taxonomic and Historical Survey of the Genus Paeonia in Greece; The Goulandris Natural History Museum: Kifissia, Greece, 1984. [Google Scholar]
- Papandreou, V.; Magiatis, P.; Chinou, I.; Kalpoutzakis, E.; Skaltsounis, A.-L.; Tsarbopoulos, A. Volatiles with antimicrobial activity from the roots of Greek Paeonia taxa. J. Ethnopharmacol. 2002, 81, 101–104. [Google Scholar] [CrossRef]
- Papandreou, V.; Magiatis, P.; Kalpoutzakis, E.; Skaltsounis, A.-L.; Harvala, C. Paeonicluside, a new salicylic glycoside from the Greek endemic species Paeonia clusii. Zeit. Naturforsch. C 2002, 57, 235–238. [Google Scholar] [CrossRef]
- Jiratchayamaethasakul, C.; Ding, Y.; Hwang, O.; Im, S.-T.; Jang, Y.; Myung, S.-W.; Lee, J.M.; Kim, H.-S.; Ko, S.-C.; Lee, S.-H. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish Aquat. Sci. 2020, 23, 6. [Google Scholar] [CrossRef] [Green Version]
- Merecz-Sadowska, A.; Sitarek, P.; Stelmach, J.; Zajdel, K.; Kucharska, E.; Zajdel, R. Plants as Modulators of Melanogenesis: Role of Extracts, Pure Compounds and Patented Compositions in Therapy of Pigmentation Disorders. Int. J. Mol. Sci. 2022, 23, 14787. [Google Scholar] [CrossRef]
- Neto, C.F.G.; do Nascimento, P.; da Silveira, V.C.; de Mattos, A.B.N.; Bertol, C.D. Natural sources of melanogenic inhibitors: A systematic review. Int. J. Cosmet. Sci. 2022, 44, 143–153. [Google Scholar] [CrossRef]
- Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A.L.; Aligiannis, N. Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus alba Wood. Molecules 2017, 22, 514. [Google Scholar] [CrossRef] [Green Version]
- Burlando, B.; Clericuzio, M.; Cornara, L. Moraceae Plants with Tyrosinase Inhibitory Activity: A Review. Mini-Rev. Med. Chem. 2017, 17, 108–121. [Google Scholar] [CrossRef]
- Nie, R.; Zhang, Y.; Jin, Q.; Zhang, S.; Wu, G.; Chen, L.; Zhang, H.; Wang, X. Identification and characterisation of bioactive compounds from the seed kernels and hulls of Paeonia lactiflora Pall by UPLC-QTOF-MS. Food Res. Int. 2021, 139, 109916. [Google Scholar] [CrossRef]
- He, J.; Dong, Y.; Liu, X.; Wan, Y.; Gu, T.; Zhou, X.; Liu, M. Comparison of chemical compositions, antioxidant, and anti-photoaging activities of Paeonia suffruticosa flowers at different flowering stages. Antioxidants 2019, 8, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, E.-H.; Qi, L.-W.; Li, B.; Peng, Y.-B.; Li, P.; Li, C.-Y.; Cao, J. High-speed separation and characterization of major constituents in Radix Paeoniae Rubra by fast high-performance liquid chromatography coupled with diode-array detection and time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Li, S.L.; Song, J.Z.; Choi, F.F.K.; Qiao, C.F.; Zhou, Y.; Han, Q.B.; Xu, H.-X. Chemical profiling of Radix Paeoniae evaluated by ultra-performance liquid chromatography/photo-diode-array/quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2009, 49, 253–266. [Google Scholar] [CrossRef]
- Sun, Z.; Zuo, L.; Sun, T.; Tang, J.; Ding, D.; Zhou, L.; Kang, J.; Zhang, X. Chemical profiling and quantification of XueBiJing injection, a systematic quality control strategy using UHPLC-Q Exactive hybrid quadrupole-orbitrap high-resolution mass spectrometry. Sci. Rep. 2017, 7, 16921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sut, S.; Zengin, G.; Dall’Acqua, S.; Gazdová, M.; Smejkal, K.; Bulut, G.; Dogan, A.; Haznedaroglu, M.Z.; Aumeeruddy, M.Z.; Maggi, F.; et al. Paeonia arietina and Paeonia kesrounansis bioactive constituents: NMR, LC-DAD-MS fingerprinting and in vitro assays. J. Pharm. Biomed. Anal. 2019, 165, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Flamini, R.; Rosso, M. Chapter 5—High-Resolution Mass Spectrometry and Biological Properties of Grapevine and Wine Stilbenoids. Stud. Nat. Prod. Chem. 2019, 61, 175–210. [Google Scholar] [CrossRef]
- Lu, M.; Hu, Q.; Zhang, Y.; Zhai, Y.; Zhou, Y.; Jiang, J. Comparative chemical profiling of three TCM drugs in the Paeoniaceae family by UPLC-MS/MS combined with chemometric methods. Biochem. Syst. Ecol. 2019, 83, 121–129. [Google Scholar] [CrossRef]
- Soares, J.C.; Rosalen, P.L.; Lazarini, J.G.; Massarioli, A.P.; Silva, C.F.; Nani, B.D.; Franchin, M.; Alencar, S.M. Comprehensive characterization of bioactive phenols from new Brazilian superfruits by LC-ESI-QTOF-MS, and their ROS and RNS scavenging effects and anti-inflammatory activity. Food Chem. 2009, 281, 178–188. [Google Scholar] [CrossRef]
- Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [Google Scholar] [CrossRef]
- Shi, Y.H.; Zhua, S.; Gea, Y.W.; Toumea, K.; Wang, Z.; Batkhuuc, J.; Komatsu, K. Characterization and quantification of monoterpenoids in different types of peony root and the related Paeonia species by liquid chromatography coupled with ion trap and time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2016, 129, 581–592. [Google Scholar] [CrossRef]
- Flamini, R.; Zanzotto, A.; Rosso, M.; Lucchetta, G.; DallaVedova, A.; Bavaresco, L. Stilbene oligomer phytoalexins in grape as a response to Aspergillus carbonarius infection. Physiol. Mol. Plant Pathol. 2016, 93, 112–118. [Google Scholar] [CrossRef]
- Gao, Y.; He, C.; Ran, R.; Zhang, D.; Li, D.; Xiao, P.-G.; Altman, E. The resveratrol oligomers, cis- and trans-gnetin H, from Paeonia suffruticosa seeds inhibit the growth of several human cancer cell lines. J. Ethnopharmacol. 2015, 169, 24–33. [Google Scholar] [CrossRef]
- Song, Y.; Pan, L.; Li, W.; Si, Y.; Zhou, D.; Zheng, C.; Hao, X.; Jia, X.; Jia, Y.; Shi, M.; et al. Natural neuro-inflammatory inhibitors from Caragana turfanensis. Bioorg. Med. Chem. Letts. 2017, 27, 4765–4769. [Google Scholar] [CrossRef]
- He, C.N.; Peng, Y.; Xu, L.J.; Liu, Z.A.; Gu, J.; Zhong, A.G.; Xiao, P.G. Three new oligostilbenes from the seeds of Paeonia suffruticosa. Chem. Pharm. Bull. 2010, 58, 843–847. [Google Scholar] [CrossRef] [Green Version]
- Rainer, B.; Revoltella, S.; Mayr, F.; Moesslacher, J.; Scalfari, V.; Kohl, R.; Waltenberger, B.; Pagitz, K.; Siewert, B.; Schwaiger, S.; et al. From bench to counter: Discovery and validation of a peony extract as tyrosinase inhibiting cosmeceutical. Eur. J. Med. Chem. 2019, 184, 111738. [Google Scholar] [CrossRef]
- Shomirzoeva, O.; Li, J.; Numonov, S.; Mamat, N.; Shataer, D.; Lu, X.; Aisa, H.A. Chemical components of Hyssopus seravshanicus: Antioxidant activity, activations of melanogenesis and tyrosinase, and quantitative determination by UPLC-DAD. Nat. Prod. Res. 2019, 33, 866–870. [Google Scholar] [CrossRef]
- Bader, A.; Braca, A.; De Tommasi, N.; Morelli, I. Further constituents from Caralluma negevensis. Phytochemistry 2003, 62, 1277–1281. [Google Scholar] [CrossRef]
- Demir, A.; Turumtay, H.; Emirik, M.; Sandalli, C.; Kanbolat, Ş.; Özgen, U.; Turumtay, E.A. Paeoniflorigenone purified from Paeonia daurica roots potently inhibits viral and bacterial DNA polymerases: Investigation by experimental validation and docking simulation. Med. Chem. Res. 2019, 28, 2232–2245. [Google Scholar] [CrossRef]
- Li, P.; Shen, J.; Wang, Z.; Liu, S.; Liu, Q.; Li, Y.; He, C.; Xiao, P. Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology. J. Ethnopharmacol. 2021, 269, 113708. [Google Scholar] [CrossRef]
- Ahn, K.S.; Kim, J.H.; Oh, S.R.; Ryu, S.H.; Lee, H.K. Inhibition activity of stilbenes from medicinal plants on the expression of cell adhesion molecules on THP1 cells. Planta Med. 2000, 66, 641–644. [Google Scholar] [CrossRef]
- Fremont, L. Biological effects of resveratrol. Life Sci. 2000, 66, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Qiu, L.; Yuan, H.M.; Yu, T.; Zou, L. Paeonenoides D and E: Two new nortriterpenoids from Paeonia lactiflora and their inhibitory activities on NO production. Helv. Chim. Acta 2016, 99, 46–49. [Google Scholar] [CrossRef]
- Chung, E.Y.; Kim, B.H.; Lee, M.K.; Yun, Y.P.; Lee, S.H.; Min, K.R.; Kim, Y. Anti-inflammatory effect of the oligomeric stilbene α-viniferin and its mode of the action through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase. Planta Med. 2003, 69, 710–714. [Google Scholar] [PubMed]
- Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev. 2019, 39, 1851–1891. [Google Scholar] [CrossRef]
- Keylor, M.H.; Matsuura, B.S.; Stephenson, C.R.J. Chemistry and Biology of Resveratrol-Derived Natural Products. Chem. Rev. 2015, 115, 8976–9027. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Z.; Kong, F.; He, L.; Fang, L.; Shu, Q. Quantitative analysis of resveratrol derivatives in the seed coats of tree peonies and their hypoglycemic activities in vitro/vivo. Food Funct. 2022, 13, 846–856. [Google Scholar] [CrossRef]
- Orhan, I.; Demirci, B.; Omar, I.; Siddiqui, H.; Kaya, E.; Choudhary, M.I.; Ecevit-Genç, G.; Ozhatay, N.; Sener, B.; Başer, K.H.C. Essential oil compositions and antioxidant properties of the roots of twelve Anatolian Paeonia taxa with special reference to chromosome counts. Pharm. Biol. 2010, 48, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Yadav, A.; Chanotiya, C.S. Essential oil composition of Himalayan Peony (Paeonia emodi Royle). JEOR 2015, 27, 477–480. [Google Scholar]
- Fikejvar, E.M.; Rezadoost, H.; Zakizadeh, H.; Mozaffarian, V. A comparative study on the essential oil composition and antibacterial activities of different organs of wild growing Paeonia daurica subsp. tomentosa from Iran. Nat. Prod. Res. 2019, 33, 3153–3156. [Google Scholar] [CrossRef]
- Zhang, X.X.; Shi, Q.Q.; Ji, D.; Niu, L.X.; Zhang, Y.L. Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Moutan DC.) species native to China. Food Res. Intern. 2017, 97, 141–148. [Google Scholar] [CrossRef]
- Li, C.; Du, H.; Wang, L.S.; Shu, Q.; Zheng, Y.; Xu, Y.; Zhang, J.; Zhang, J.; Yang, R.; Ge, Y. Flavonoid Composition and Antioxidant Activity of Tree Peony (Paeonia Section Moutan) Yellow Flowers. J. Agric. Food Chem. 2009, 57, 8496–8503. [Google Scholar] [CrossRef]
- Picerno, P.; Mencherini, T.; Sansone, F.; Del Gaudio, P.; Granata, I.; Porta, A.; Aquino, R.P. Screening of a polar extract of Paeonia rockii: Composition and antioxidant and antifungal activities. J. Ethnopharmacol. 2011, 138, 705–712. [Google Scholar] [CrossRef]
- Fauconneau, B.; Waffo-Teguo, P.; Huguet, F.; Barrier, L.; Decendit, A.; Merillon, J.M. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci. 1997, 61, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Sevim, D.; Senol, F.S.; Gulpinar, A.R.; Orhan, I.E.; Kaya, E.; Kartal, M.; Sener, B. Discovery of potent in vitro neuroprotective effect of the seed extracts from seven Paeonia L. (peony) taxa and their fatty acid composition. Ind. Crops Prod. 2013, 49, 240–246. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Wu, Y.; Yu, X.; Li, S.; Wang, L. Characterization of stilbenes, in vitro antioxidant and cellular anti-photoaging activities of seed coat extracts from 18 Paeonia species. Ind. Crops Prod. 2022, 177, 114530. [Google Scholar] [CrossRef]
- Ahmadi, S.M.; Farhoosh, R.; Sharif, A.; Rezaie, M. Structure-Antioxidant Activity Relationships of Luteolin and Catechin. J. Food Sci. 2020, 85, 298–305. [Google Scholar] [CrossRef]
- Teguo, P.W.; Fauconneau, B.; Deffieux, G.; Huguet, F.; Vercauteren, J.; Mérillon, J.M. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J. Nat. Prod. 1998, 61, 655–657. [Google Scholar] [CrossRef]
- He, S.; Yan, X. From Resveratrol to Its Derivatives: New Sources of Natural Antioxidant. Curr. Med. Chem. 2013, 20, 1005–1017. [Google Scholar]
- Wu, Y.; Jiang, Y.; Zhang, L.; Zhou, J.; Yu, Y.; Zhou, Y.; Kang, T. Chemical profiling and antioxidant evaluation of Paeonia lactiflora Pall. “Zhongjiang” by HPLC–ESI–MS combined with DPPH assay. J. Chrom. Sci. 2021, 59, 795–805. [Google Scholar] [CrossRef]
- Matsuda, H.; Ohta, T.; Kawaguchi, A.; Yoshikawa, M. Bioactive constituents of chinese natural medicines. VI. Moutan cortex. (2): Structures and radical scavenging effects of suffruticosides A, B, C, D, and E and galloyl-oxypaeoniflorin. Chem. Pharm. Bull. 2001, 49, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.A.; Jang, E.S.; Lee, A.Y.; Lee, S.J.; Kim, J.H. Anti-inflammatory and anti-oxidant effects of oxypaeoniflorin, paeoniflorin and Paeonia lactiflora cv.‘Red Charm’flower petal extracts in macrophage cells. Korean J. Plant Resour. 2020, 33, 153–162. [Google Scholar]
- Morel-Salmi, C.; Audrey, J.; Vigor, C.; Vercauteren, J. A Huge PVDF Adsorption Difference Between Resveratrol and ε-Viniferin Allows to Quantitatively Purify Them and to Assess Their Anti-Tyrosinase Property. Chromatographia 2014, 77, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.Y.; Chen, Y.H.; Zhang, X.T.; Yu, Z.G. Analysis of Volatiles in Paeonia obovata Flowers by HS-SPME-GC-MS. Chem. Nat. Compd. 2016, 52, 922–923. [Google Scholar] [CrossRef]
- Dina, E.; Sklirou, A.D.; Chatzigeorgiou, S.; Manola, M.S.; Cheilari, A.; Louka, X.P.; Argyropoulou, A.; Xynos, N.; Skaltsounis, A.-L.; Aligiannis, N.; et al. An enriched polyphenolic extract obtained from the by-product of Rosa damascena hydrodistillation activates antioxidant and proteostatic modules. Phytomedicine 2021, 93, 153757. [Google Scholar] [CrossRef]
No. | Rt (min) | Compound | Molecular Formula | m/z | MS/MS Fragment Mass | Literature |
---|---|---|---|---|---|---|
1 | 0.39 | bis-hexoses | C12H22O11 | 341.1092 | 89, 59 | - |
2 | 0.46 | citric acid | C6H8O7 | 191.0192 | 85, 127, 111, 173, 150 | [21] |
3 | 0.51 | desbenzoyl-paeoniflorin | C16H24O10 | 375.1301 | 165, 345, 89 | [21,22] |
4 | 0.57 | glucogallin | C13H16O10 | 331.0676 | 169, 211, 151, 271 | [21,22] |
5 | 1.65 | methyl gallate | C8H8O5 | 183.029 | 183, 168 | [21,23] |
6 | 1.84 | di-galloylglucoside | C20H20O14 | 483.0789 | 169 | [24] |
7 | 4.80 | paeoniflorin isomer | C23H28O11 | 479.1559 | 121, 165 | [21,25] |
8 | 4.88 | O-methyldesbenzoyl-paeoniflorin | C17H26O10 | 435.1299 | 227, 389 | [21,25] |
9 | 4.94 | trigalloyl glucose | C8H8O2 | 635.0906 | 169, 313, 465 | [24,26] |
10 | 5.12 | cis-resveratrol hexoside | C20H22O8 | 389.1248 | 227, 185 | [21,27] |
11 | 5.22–5.29 | Paeoniflorin */albiflorin | C23H28O11 | 479.1559525.1618 | 121, 165 | [21,28] |
12 | 6.00 | kaempferol dihexoside | C30H25O14 | 609.1472 | 285, 447 | [21,29] |
13 | 6.06 | tetragalloyl glucose | C8H8O2 | 787.1014 | 169, 465, 313 | [24,25,26] |
14 | 6.15 | tetrahydroxyflavone hexoside | C21H20O11 | 447.0936 | 285 | [21,30] |
15 | 6.16 | luteolin 3′,4′-di-O-β-d-glucopyranoside * | C27H30O16 | 609.1462 | 285, 447 | [21] |
16 | 6.35 | tetrahydroxyflavone hexoside | C21H20O11 | 447.0933 | 285 | [21,30] |
17 | 6.43 | galloyl paeoniflorin isomer | C30H32O11 | 631.1676 | 169, 313, 211, 271, 121, 399 | [25,31] |
18 | 6.72 | trans-resveratrol-4′-O-β-d-glucopyranoside * | C20H22O8 | 389.1249 | 227 | [27] |
19 | 6.85 | kaempferol hexoside | C21H20O11 | 447.0938 | 285 | [29] |
20 | 7.13 | cis-resveratrol | C14H12O3 | 227.0712 | 185, 143, 183 | [21,27] |
21 | 7.15 | luteolin-3′-O-β-d-glucopyranoside * | C21H20O11 | 447.0938 | 285 | [21] |
22 | 7.87 | kaempferol | C15H10O6 | 285.0406 | 151, 175 | [21] |
23 | 7.87 | cis-ε-viniferin hexoside | C34H32O11 | 615.1873 | 453, 347, 359, 333, 227 | [21] |
24 | 7.88 | kaempferol arabinoside | C20H18O10 | 417.0833 | 285 | [24] |
25 | 8.00 | luteolin * | C15H10O6 | 285.0408 | 151, 175 | [21] |
26 | 8.15 | trans-resveratrol * | C14H12O3 | 227.0711 | 185, 143, 183 | [21,27] |
27 | 8.44 | trans-ε-viniferin hexoside | C34H32O11 | 615.1873 | 453, 347, 359, 333, 227 | [21] |
28 | 8.49 | kaempferol arabinoside | C20H18O10 | 417.0833 | 285 | [24] |
29 | 8.75 | cis-ε-viniferin | C28H22O6 | 453.1349 | 347, 225, 93, 411 | [32] |
30 | 8.75 | kaempferol arabinoside | C20H18O10 | 417.0833 | 285 | [24] |
31 | 9.15 | trans-ε-viniferin * | C28H22O6 | 453.1347 | 347, 225, 93, 411 | [32] |
32 | 9.20 | cis-gnetin H | C42H32O9 | 679.1984 | 93, 491, 478, 449, 357, 225, 585 | [27,33] |
33 | 9.63 | trans-gnetin H * | C42H32O9 | 679.1981 | 93, 345, 225, 491, 449, 357, 585 | [27,33] |
Compound | HS-SPME | GS-MS of DCM Extract | GS-MS of Pentane Extract |
---|---|---|---|
nopinone | 20.64 ± 0.17 | 15.65 ± 0.76 | 17.54 ± 0.33 |
p-menth-3-en-9-ol | 5.96 ± 0.06 | - | 3.32 ± 0.24 |
camphene | 4.76 ± 0.15 | - | 5.33 ± 0.26 |
a-methyl- benzenemethanol | - | 8.60 ± 0.65 | 17.92 ± 0.28 |
myrtanal | 32.67 ± 0.38 | 14.14 ± 0.30 | 18.68 ± 0.47 |
β-pinene oxide | 3.86 ± 0.24 | 6.57 ± 0.36 | - |
myrtenal | 3.75 ± 0.08 | - | - |
1-ethanol-2,2,4-trimethyl-3-cyclopentene | 4.58 ± 0.16 | - | - |
cis-myrtanol | 3.73 ± 0.13 | 3.79 ± 0.14 | 2.18 ± 0.25 |
trans-myrtanol | 9.80 ± 0.09 | - | - |
unknown | 5.94 ± 0.15 | 21.54 ± 0.22 | 25.41 ± 0.90 |
perillyl alcohol | 4.31 ± 0.11 | - | - |
E-myrtenol | - | 1.81 ± 0.11 | - |
phellandral | - | 2.77 ± 0.07 | 3.85 ± 0.20 |
5,7-dimethyl-1,6-octadiene | - | 4.15 ± 0.29 | 2.49 ± 0.13 |
2,4-decadienal | - | 2.27 ± 0.06 | - |
unknown | - | 4.50 ± 0.30 | - |
methyl-3,4-dimethyl benzoate | - | - | 2.43 ± 0.25 |
unknown | - | 10.86 ± 0.29 | - |
Studied Extracts/Compounds | % DPPH Inhibition | IC50 | ||
---|---|---|---|---|
200 μg/mL | 100 μg/mL | 50 μg/mL | μg/mL | |
BS methanolic extract | 37.3 ± 0.6 Aa | 19.9 ± 1.8 Ba | 0 Ca | - |
RS methanolic extract | 95.5 ± 0.2 Ab | 84.0 ± 2.1 Bb | 51.7 ± 2.0 Cb | - |
trans-resveratrol-4′-O-β-d-glucopyranoside | 39.4 ± 2.9 Aa | 29.3 ± 1.5 Bc | 20.6 ± 0.8 Cc | - |
trans-ε-viniferin | 88.5 ± 0.1 Ac | 60.8 ± 1.2 Bd | 28.9 ± 5.7 Cd | - |
trans-gnetin H | 39.9 ± 0.9 Aa | 24.2 ± 2.5 Ba | 16.0 ± 1.0 Ce | - |
trans-resveratrol | 82.1 ± 0.4 Ad | 60.5 ± 2.1 Bd | 45.0 ± 2.5 Cf | - |
luteolin | 89.3 ± 0.4 Ac | 90.1± 0.6 Ae | 92.4 ± 0.1 Ag | 13.2 ± 3.5 |
paeoniflorin | 0 Ae | 0 Af | 0 Aa | - |
gallic acid | - | 96.3 Ag | 95.5 Ag | 4.2 ± 0.1 |
Studied Extracts/Compounds | % Tyrosinase Inhibition | IC50 | ||
---|---|---|---|---|
300 μg/mL | 150 μg/mL | 75 μg/mL | μg/mL | |
BS methanolic extract | 93.8 ± 1.2 Aa | 90.7 ± 2.8 Aa | 78.1 ± 2.4 Ba | 20.8 ± 1.8 |
RS methanolic extract | 45.9 ± 7.7 Ab | 39.2 ± 11.9 Ab | 31.9 ± 2.3 Bb | - |
trans-resveratrol-4′-O-β-d-glucopyranoside | 78.2 ± 2.1 Ac | 84.6 ± 1.6 Aac | 60.4 ± 2.2 Bc | 28.7 ± 6.8 |
trans-ε-viniferin | 99.1 ± 1.3 Aa | 90.7 ± 2.1 Bac | 89.6 ± 1.0 Bd | 5.1 ± 2.3 |
trans-gnetin H | 99.1 ± 1.6 Aa | 98.4 ± 1.6 Aa,ac | 97.1 ± 0.2 Ad | 3.7 ± 0.1 |
kojic acid | - | 96.0 ± 1.5 Aa,ac | 95.1 ± 0.8 Ad | 2.0 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klontza, V.; Graikou, K.; Cheilari, A.; Kasapis, V.; Ganos, C.; Aligiannis, N.; Chinou, I. Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia—Antioxidant and Anti-Tyrosinase Properties. Int. J. Mol. Sci. 2023, 24, 4935. https://doi.org/10.3390/ijms24054935
Klontza V, Graikou K, Cheilari A, Kasapis V, Ganos C, Aligiannis N, Chinou I. Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia—Antioxidant and Anti-Tyrosinase Properties. International Journal of Molecular Sciences. 2023; 24(5):4935. https://doi.org/10.3390/ijms24054935
Chicago/Turabian StyleKlontza, Vithleem, Konstantia Graikou, Antigoni Cheilari, Vasilios Kasapis, Christos Ganos, Nektarios Aligiannis, and Ioanna Chinou. 2023. "Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia—Antioxidant and Anti-Tyrosinase Properties" International Journal of Molecular Sciences 24, no. 5: 4935. https://doi.org/10.3390/ijms24054935
APA StyleKlontza, V., Graikou, K., Cheilari, A., Kasapis, V., Ganos, C., Aligiannis, N., & Chinou, I. (2023). Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia—Antioxidant and Anti-Tyrosinase Properties. International Journal of Molecular Sciences, 24(5), 4935. https://doi.org/10.3390/ijms24054935