Molecular Insights into IQSEC2 Disease
Abstract
:1. Introduction
2. IQSEC2 Function
3. IQSEC2 Structure
4. Recapitulation of IQSEC2 Disease in Mice
5. IQSEC2 Dosage
6. Role of IQSEC2 in Inhibitory Neural Transmission
7. Increased ARF6-GTP Levels Correlate with IQSEC2 Disease
8. Heat Treatment Reduces the Seizure Burden and Improves Other Social and Biochemical Defects Seen in A350V IQSEC2 Disease
9. Summary and Future Directions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shoubridge, C.; Tarpey, P.S.; Abidi, F.; Ramsden, S.L.; Rujirabanjerd, S.; Murphy, J.A.; Boyle, J.; Shaw, M.; Gardner, A.; Proos, A.; et al. Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability. Nat. Genet. 2010, 42, 486–488. [Google Scholar] [CrossRef] [Green Version]
- Heyne, H.O.; EuroEPINOMICS RES Consortium; Singh, T.; Stamberger, H.; Jamra, R.A.; Caglayan, H.; Craiu, D.; De Jonghe, P.; Guerrini, R.; Helbig, K.L.; et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat. Genet. 2018, 50, 1048–1053. [Google Scholar] [CrossRef] [Green Version]
- Um, J.W. Synaptic functions of the IQSEC family of ADP-ribosylation factor guanine nucleotide exchange factors. Neurosci. Res. 2017, 116, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.; Brown, J.; Gerges, N.Z. BRAG1/IQSEC2 as a regulator of small GTPase-dependent trafficking. Small GTPases 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, R.S.; Casanova, J.E. The BRAG/IQSec family of Arf GEFs. Small GTPases 2016, 7, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakagami, H.; Sanda, M.; Fukaya, M.; Miyazaki, T.; Sukegawa, J.; Yanagisawa, T.; Suzuki, T.; Fukunaga, K.; Watanabe, M.; Kondo, H. IQ-ArfGEF/BRAG1 is a guanine nucleotide exchange factor for Arf6 that interacts with PSD-95 at postsynaptic density of excitatory synapses. Neurosci. Res. 2008, 60, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Petersen, A.; Zhong, L.; Himelright, M.L.; Murphy, J.A.; Walikonis, R.S.; Gerges, N.Z. Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression. Nat. Commun. 2016, 7, 11080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elagabani, M.N.; Briševac, D.; Kintscher, M.; Pohle, J.; Köhr, G.; Schmitz, D.; Kornau, H.-C. Subunit-selective N-Methyl-d-aspartate (NMDA) Receptor Signaling through Brefeldin A-resistant Arf Guanine Nucleotide Exchange Factors BRAG1 and BRAG2 during Synapse Maturation. J. Biol. Chem. 2016, 291, 9105–9118. [Google Scholar] [CrossRef] [Green Version]
- Myers, K.R.; Wang, G.; Sheng, Y.; Conger, K.K.; Casanova, J.E.; Zhu, J.J. Arf6-GEF BRAG1 Regulates JNK-Mediated Synaptic Removal of GluA1-Containing AMPA Receptors: A New Mechanism for Nonsyndromic X-Linked Mental Disorder. J. Neurosci. 2012, 32, 11716–11726. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.; Jada, R.; Schragenheim-Rozales, K.; Sah, M.; Cortes, M.; Florence, M.; Levy, N.S.; Moss, R.; Walikonis, R.S.; Palty, R.; et al. An IQSEC2 Mutation Associated with Intellectual Disability and Autism Results in Decreased Surface AMPA Receptors. Front. Mol. Neurosci. 2019, 12, 43. [Google Scholar] [CrossRef]
- Hinze, S.J.; Jackson, M.R.; Lie, S.; Jolly, L.; Field, M.; Barry, S.C.; Harvey, R.J.; Shoubridge, C. Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis. Transl. Psychiatry 2017, 7, e1110. [Google Scholar] [CrossRef] [Green Version]
- Bisi, S.; Marchesi, S.; Rizvi, A.; Carra, D.; Beznoussenko, G.V.; Ferrara, I.; Deflorian, G.; Mironov, A.; Bertalot, G.; Pisati, F.; et al. IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nat. Commun. 2020, 11, 3516. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Wan, L.; Zhang, X.; Wang, H.; Zhang, H.; Zhu, G.; Liang, Y.; Yan, H.; Zhang, B.; et al. IQSEC2-related encephalopathy in male children: Novel mutations and phenotypes. Front. Mol. Neurosci. 2022, 15, 984776. [Google Scholar] [CrossRef] [PubMed]
- Mignot, C.; McMahon, A.C.; Bar, C.; Campeau, P.M.; Davidson, C.; Buratti, J.; Nava, C.; Jacquemont, M.-L.; Tallot, M.; Milh, M.; et al. IQSEC2-related encephalopathy in males and females: A comparative study including 37 novel patients. Anesth. Analg. 2019, 21, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Mosallaei, M.; Ehtesham, N.; Beheshtian, M.; Khoshbakht, S.; Davarnia, B.; Kahrizi, K.; Najmabadi, H. Phenotype and genotype spectrum of variants in guanine nucleotide exchange factor genes in a broad cohort of Iranian patients. Mol. Genet. Genom. Med. 2022, 10, e1894. [Google Scholar] [CrossRef]
- Radley, J.A.; O’Sullivan, R.B.; Turton, S.E.; Cox, H.; Vogt, J.; Morton, J.; Jones, E.; Smithson, S.; Lachlan, K.; Rankin, J.; et al. Deep phenotyping of 14 new patients with IQSEC2 variants, including monozygotic twins of discordant phenotype. Clin. Genet. 2019, 95, 496–506. [Google Scholar] [CrossRef]
- Shoubridge, C.; Harvey, R.J.; Dudding-Byth, T. IQSEC2 mutation update and review of the female-specific phenotype spectrum including intellectual disability and epilepsy. Hum. Mutat. 2019, 40, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Lopergolo, D.; Privitera, F.; Castello, G.; Rizzo, C.L.; Mencarelli, M.A.; Pinto, A.M.; Ariani, F.; Currò, A.; Lamacchia, V.; Canitano, R.; et al. IQSEC2 disorder: A new disease entity or a Rett spectrum continuum? Clin. Genet. 2021, 99, 462–474. [Google Scholar] [CrossRef] [PubMed]
- Accogli, A.; Jarvis, G.E.; Schiavetto, A.; Lai, L.; Amirali, E.L.; Cruz, D.A.J.; Rivière, J.-B.; Trakadis, Y. Psychiatric features and variable neurodevelopment outcome in four females with IQSEC2 spectrum disorder. J. Genet. 2020, 99, 47. [Google Scholar] [CrossRef]
- Frank, R.A.W.; Zhu, F.; Komiyama, N.H.; Grant, S.G.N. Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes. J. Neurochem. 2017, 142, 504–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, A.; Shirai, Y.; Kouyama-Suzuki, E.; Zhou, M.; Yoshizawa, T.; Yanagawa, T.; Mori, T.; Tabuchi, K. IQSEC2 Deficiency Results in Abnormal Social Behaviors Relevant to Autism by Affecting Functions of Neural Circuits in the Medial Prefrontal Cortex. Cells 2021, 10, 2724. [Google Scholar] [CrossRef]
- Sah, M.; Shore, A.N.; Petri, S.; Kanber, A.; Yang, M.; Weston, M.C.; Frankel, W.N. Altered excitatory transmission onto hippocampal interneurons in the IQSEC2 mouse model of X-linked neurodevelopmental disease. Neurobiol. Dis. 2020, 137, 104758. [Google Scholar] [CrossRef]
- Jackson, M.R.; Loring, K.E.; Homan, C.C.; Thai, M.H.; Määttänen, L.; Arvio, M.; Jarvela, I.; Shaw, M.; Gardner, A.; Gecz, J.; et al. Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females. Life Sci. Alliance 2019, 2, e201900386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, O.; McCoy, A.; Jada, R.; Borisov, V.; Zag, L.; Zag, A.; Schragenheim-Rozales, K.; Shalgi, R.; Levy, N.S.; Levy, A.P.; et al. Characterization of spontaneous seizures and EEG abnormalities in a mouse model of the human A350V IQSEC2 mutation and identification of a possible target for precision medicine based therapy. Epilepsy Res. 2022, 182, 106907. [Google Scholar] [CrossRef] [PubMed]
- Jabarin, R.; Levy, N.; Abergel, Y.; Berman, J.H.; Zag, A.; Netser, S.; Levy, A.P.; Wagner, S. Pharmacological modulation of AMPA receptors rescues specific impairments in social behavior associated with the A350V Iqsec2 mutation. Transl. Psychiatry 2021, 11, 234. [Google Scholar] [CrossRef] [PubMed]
- Jada, R.; Zag, L.; Borisov, V.; Levy, N.S.; Netser, S.; Jabarin, R.; Wagner, S.; Schragenheim-Rozales, K.; Shalgi, R.; Levy, A.P. Housing of A350V IQSEC2 pups at 37 °C ambient temperature prevents seizures and permits the development of social vocalizations in adulthood. Int. J. Hyperth. 2021, 38, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Moey, C.; Hinze, S.J.; Brueton, L.; Morton, J.; McMullan, D.J.; Kamien, B.; Barnett, C.P.; Brunetti-Pierri, N.; Nicholl, J.; Gecz, J.; et al. Xp11.2 microduplications including IQSEC2, TSPYL2 and KDM5C genes in patients with neurodevelopmental disorders. Eur. J. Hum. Genet. 2015, 24, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Tukiainen, T.; Villani, A.-C.; Yen, A.; Rivas, M.A.; Marshall, J.L.; Satija, R.; Aguirre, M.; Gauthier, L.; Fleharty, M.; Kirby, A.; et al. Landscape of X chromosome inactivation across human tissues. Nature 2017, 550, 244–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrigal, I.; Alvarez-Mora, M.I.; Rosell, J.; Rodríguez-Revenga, L.; Karlberg, O.; Sauer, S.; Syvänen, A.-C.; Mila, M. A novel splicing mutation in the IQSEC2 gene that modulates the phenotype severity in a family with intellectual disability. Eur. J. Hum. Genet. 2016, 24, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brant, B.; Stern, T.; Shekhidem, H.A.; Mizrahi, L.; Rosh, I.; Stern, Y.; Ofer, P.; Asleh, A.; Umanah, G.K.E.; Jada, R.; et al. IQSEC2 mutation associated with epilepsy, intellectual disability, and autism results in hyperexcitability of patient-derived neurons and deficient synaptic transmission. Mol. Psychiatry 2021, 26, 7498–7508. [Google Scholar] [CrossRef]
- Kalscheuer, V.M.; James, V.M.; Himelright, M.L.; Long, P.; Oegema, R.; Jensen, C.; Bienek, M.; Hu, H.; Haas, S.A.; Topf, M.; et al. Novel Missense Mutation A789V in IQSEC2 Underlies X-Linked Intellectual Disability in the MRX78 Family. Front. Mol. Neurosci. 2016, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Jada, R.; Borisov, V.; Laury, E.; Halpert, S.; Levy, N.S.; Wagner, S.; Netser, S.; Walikonis, R.; Carmi, I.; Berlin, S.; et al. Daily Brief Heat Therapy Reduces Seizures in A350V IQSEC2 Mice and Is Associated with Correction of AMPA Receptor-Mediated Synaptic Dysfunction. Int. J. Mol. Sci. 2023, 24, 3924. [Google Scholar] [CrossRef]
- Briševac, D.; Scholz, R.; Du, D.; Elagabani, M.N.; Köhr, G.; Kornau, H. The small GTPase Arf6 is dysregulated in a mouse model for fragile X syndrome. J. Neurochem. 2021, 157, 666–683. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, K.; Baradaran-Heravi, A.; Yin, Q.; Duc, K.D.; Spradling, A.C.; Greenblatt, E.J. FMRP-dependent production of large dosage-sensitive proteins is highly conserved. Genetics 2022, 221, iyac094. [Google Scholar] [CrossRef] [PubMed]
- Seedor, R.S.; Orloff, M.; Sato, T. Genetic Landscape and Emerging Therapies in Uveal Melanoma. Cancers 2021, 13, 5503. [Google Scholar] [CrossRef]
- Levy, A.P.; Levy, N.S.; Heyman, E.; Schertz, M.; Genizi, J. Reduction in seizure burden in a child with a A350V IQSEC2 mutation using heat therapy with a Jacuzzi. Clin. Case Rep. 2021, 9, e04734. [Google Scholar] [CrossRef]
- Streicher, J.M. The Role of Heat Shock Proteins in Regulating Receptor Signal Transduction. Mol. Pharmacol. 2019, 95, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Jablonka, S.; Hennlein, L.; Sendtner, M. Therapy development for spinal muscular atrophy: Perspectives for muscular dystrophies and neurodegenerative disorders. Neurol. Res. Pract. 2022, 4, 1–32. [Google Scholar] [CrossRef]
- Yuval Raveh, A.I.; Zada, D.; Tovin, A.; Lerer-Goldshtein, T.; Appelbaum, L. Zebrafish model for IQSEC2-depenednt neurodevelopmental disorders. In Proceedings of the 9th ILANIT/FISEB Conference, Eilat, Israel, 17–20 February 2020. [Google Scholar]
- Williams, R.E.; Mruk, K. Aquatic Freshwater Vertebrate Models of Epilepsy Pathology: Past Discoveries and Future Directions for Therapeutic Discovery. Int. J. Mol. Sci. 2022, 23, 8608. [Google Scholar] [CrossRef] [PubMed]
IQSEC2 Mutation | Environment | Level of Arf6-GTP | Level of IQSEC | Reference |
---|---|---|---|---|
R863W, Q801P, R758Q, R359C | HEK293 cells | Lower than WT | high | [1] |
A789V | HEK293 cells | Lower than WT | high | [31] |
A350V | HEK293 cells | Higher than WT | high | [10] |
IQSEC2 KO male and KO Het female mice | Cortical tissue | Higher than WT | absent | [23] |
none | Mouse cortical neuron cultures DIV 21 and adult neurosynaptosomes from Fmr-1 KO mice (Fragile X model) | Higher than WT | low | [33] |
none | Rat cortical neurons DIV 21, infected at DIV2 or DIV15 with IQSEC2 KD RNAi | Higher than non-infected neurons | low | [8,33] |
none | Rat primary cortical neuron cultures DIV 7 | Higher than primary rat cortical neuron cultures DIV 21 | low | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levy, N.S.; Borisov, V.; Lache, O.; Levy, A.P. Molecular Insights into IQSEC2 Disease. Int. J. Mol. Sci. 2023, 24, 4984. https://doi.org/10.3390/ijms24054984
Levy NS, Borisov V, Lache O, Levy AP. Molecular Insights into IQSEC2 Disease. International Journal of Molecular Sciences. 2023; 24(5):4984. https://doi.org/10.3390/ijms24054984
Chicago/Turabian StyleLevy, Nina S., Veronika Borisov, Orit Lache, and Andrew P. Levy. 2023. "Molecular Insights into IQSEC2 Disease" International Journal of Molecular Sciences 24, no. 5: 4984. https://doi.org/10.3390/ijms24054984
APA StyleLevy, N. S., Borisov, V., Lache, O., & Levy, A. P. (2023). Molecular Insights into IQSEC2 Disease. International Journal of Molecular Sciences, 24(5), 4984. https://doi.org/10.3390/ijms24054984