miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives
Abstract
:1. Introduction
2. Methods
2.1. Inclusion and Exclusion Criteria
2.2. Quality Assessment and Data Extraction
2.3. Characteristics of Eligible Studies
3. Results and Discussion
3.1. miRNA Dysregulation and Heart Failure
3.2. miRNA Dysregulation and Acute Coronary Syndrome (ACS)
3.3. miRNA Dysregulation in Heart Tissue Samples
3.4. miRNA Dysregulation and Increased Risks of Hypertension
3.5. The Most Investigated miRNAs: The Role of miR-133a-3p, miR-21, miR-499a-5p, miR-1, and miR-126
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sturzu, A.C.; Wu, S.M. Developmental and Regenerative Biology of Multipotent Cardiovascular Progenitor Cells. Circ. Res. 2011, 108, 353–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016, 17, 1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Cai, J. The Role of MicroRNAs in Heart Failure. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Gorabi, A.M.; Bianconi, V.; Pirro, M.; Banach, M.; Sahebkar, A. Regulation of cardiac stem cells by microRNAs: State-of-the-art. Biomed. Pharmacother. 2019, 120, 109447. [Google Scholar] [CrossRef]
- Samra, M.; Srivastava, K. Non-coding RNA and their potential role in cardiovascular diseases. Gene 2023, 851, 147011. [Google Scholar] [CrossRef]
- Ramos, J.T.G.D.S.; Pereira, A.G.; Ferrari, F.S.; Andrade, M.F.; de Melo, C.S.; Boas, P.J.F.V.; Felix, T.F.; de Carvalho, M.; Dorna, M.S.; Azevedo, P.S.; et al. Circulating miRNAs are associated with frailty and ST-elevation myocardial infarction pathways. Arch. Gerontol. Geriatr. 2023, 106, 104870. [Google Scholar] [CrossRef]
- Qian, L.; Zhao, Q.; Yu, P.; Lü, J.; Guo, Y.; Gong, X.; Ding, Y.; Yu, S.; Fan, L.; Fan, H.; et al. Diagnostic potential of a circulating miRNA model associated with therapeutic effect in heart failure. J. Transl. Med. 2022, 20, 267. [Google Scholar] [CrossRef]
- Vilella-Figuerola, A.; Gallinat, A.; Escate, R.; Mirabet, S.; Padró, T.; Badimon, L. Systems Biology in Chronic Heart Failure—Identification of Potential miRNA Regulators. Int. J. Mol. Sci. 2022, 23, 15226. [Google Scholar] [CrossRef]
- Klimczak-Tomaniak, D.; Haponiuk-Skwarlińska, J.; Kuch, M.; Pączek, L. Crosstalk between microRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 15013. [Google Scholar] [CrossRef]
- Kolodziej, F.; McDonagh, B.; Burns, N.; Goljanek-Whysall, K. MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling. Int. J. Mol. Sci. 2022, 23, 14716. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhao, J.; Tuazon, J.P.; Borlongan, C.V.; Yu, G. MicroRNA-133a and Myocardial Infarction. Cell Transplant. 2019, 28, 831–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horak, M.; Novak, J.; Bienertova-Vasku, J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016, 410, 1–13. [Google Scholar] [CrossRef]
- Sessa, F.; Esposito, M.; Salerno, M. Experimental studies on androgen administration in animal models: Current and future perspectives. Curr. Opin. Endocrinol. Diabetes 2022, 29, 566–585. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Wei, W.; Wang, C.; Zhong, Y.; Lv, L.; Wang, J. Serum MicroRNA Expression Patterns in Subjects After the 5-km Exercise Are Strongly Associated With Cardiovascular Adaptation. Front. Physiol. 2021, 12, 755656. [Google Scholar] [CrossRef] [PubMed]
- Inzulza-Tapia, A.; Alarcón, M. Role of Non-Coding RNA of Human Platelet in Cardiovascular Disease. Curr. Med. Chem. 2021, 29, 3420–3444. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.A.C.; Veras, A.S.C.; Batista, V.R.G.; Tavares, M.E.A.; Correia, R.R.; Suggett, C.B.; Teixeira, G.R. Physical exercise and the functions of microRNAs. Life Sci. 2022, 304, 120723. [Google Scholar] [CrossRef]
- Pomara, C.; D’Errico, S.; Riezzo, I.; De Cillis, G.P.; Fineschi, V. Sudden cardiac death in a child affected by Prader-Willi syndrome. Int. J. Leg. Med. 2005, 119, 153–157. [Google Scholar] [CrossRef]
- Shah, V.; Shah, J. Restoring Ravaged Heart: Molecular Mechanisms and Clinical Application of miRNA in Heart Regeneration. Front. Cardiovasc. Med. 2022, 9, 835138. [Google Scholar] [CrossRef]
- Pang, J.K.S.; Phua, Q.H.; Soh, B.-S. Applications of miRNAs in cardiac development, disease progression and regeneration. Stem Cell Res. Ther. 2019, 10, 336. [Google Scholar] [CrossRef] [Green Version]
- Cerretani, D.; Riezzo, I.; Fiaschi, A.I.; Centini, F.; Giorgi, G.; D’Errico, S.; Fiore, C.; Karch, S.B.; Neri, M.; Pomara, C.; et al. Cardiac Oxidative Stress Determination and Myocardial Morphology after a Single Ecstasy (MDMA) Administration in a Rat Model. Int. J. Legal Med. 2008, 122, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Bayés-Genis, A.; Lanfear, D.E.; de Ronde, M.W.J.; Lupón, J.; Leenders, J.J.; Liu, Z.; Zuithoff, N.P.A.; Eijkemans, M.J.C.; Zamora, E.; De Antonio, M.; et al. Prognostic Value of Circulating MicroRNAs on Heart Failure-Related Morbidity and Mortality in Two Large Diverse Cohorts of General Heart Failure Patients. Eur. J. Heart Fail. 2018, 20, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Luo, J.; Zhao, J.; Shang, D.; Lv, Q.; Zang, P. Combined Use of Circulating MiR-133a and NT-ProBNP Improves Heart Failure Diagnostic Accuracy in Elderly Patients. Med. Sci. Monit. 2018, 24, 8840–8848. [Google Scholar] [CrossRef] [PubMed]
- Masson, S.; Batkai, S.; Beermann, J.; Bär, C.; Pfanne, A.; Thum, S.; Magnoli, M.; Balconi, G.; Nicolosi, G.L.; Tavazzi, L.; et al. Circulating MicroRNA-132 Levels Improve Risk Prediction for Heart Failure Hospitalization in Patients with Chronic Heart Failure. Eur. J. Heart Fail. 2018, 20, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, S.Y.; Liu, M.; Ruan, J.W.; Wang, Z.D.; Xie, W.C. Value of the Expression of MiR-208, MiR-494, MiR-499 and MiR-1303 in Early Diagnosis of Acute Myocardial Infarction. Life Sci. 2019, 232, 116547. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, J.; Dong, J.; Bai, R.; Song, D.; Ma, X.; Zhao, L.; Yao, Y.; Zhang, H.; Liu, T. Association of MiR-197-5p, a Circulating Biomarker for Heart Failure, with Myocardial Fibrosis and Adverse Cardiovascular Events among Patients with Stage C or D Heart Failure. Cardiology 2019, 141, 212–225. [Google Scholar] [CrossRef]
- Mayer, O.; Seidlerová, J.; Černá, V.; Kučerová, A.; Vaněk, J.; Karnosová, P.; Bruthans, J.; Wohlfahrt, P.; Cífková, R.; Pešta, M.; et al. The Low Expression of Circulating MicroRNA-19a Represents an Additional Mortality Risk in Stable Patients with Vascular Disease. Int. J. Cardiol. 2019, 289, 101–106. [Google Scholar] [CrossRef]
- Pinchi, E.; Frati, P.; Aromatario, M.; Cipolloni, L.; Fabbri, M.; La Russa, R.; Maiese, A.; Neri, M.; Santurro, A.; Scopetti, M.; et al. MiR-1, MiR-499 and MiR-208 Are Sensitive Markers to Diagnose Sudden Death Due to Early Acute Myocardial Infarction. J. Cell Mol. Med. 2019, 23, 6005–6016. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, B.; Qin, F.; Bai, F.; Sun, C.; Liu, Q. Expression of Serum MicroRNA-155 and Its Clinical Importance in Patients with Heart Failure after Myocardial Infarction. J. Int. Med. Res. 2019, 47, 6294–6302. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, T.; Ye, W.; Wang, J.Y.; Zhou, J.P.; Li, Z.Y.; Li, C.C. Circulating MiR-182-5p and MiR-5187-5p as Biomarkers for the Diagnosis of Unprotected Left Main Coronary Artery Disease. J. Thorac. Dis. 2019, 11, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Asulin, N.; Volinsky, N.; Grosman-Rimon, L.; Kachel, E.; Sternik, L.; Raanani, E.; Altshuler, R.; Magen, I.; Ben-Zvi, I.; Margalit, N.; et al. Differential MicroRNAs Expression in Calcified versus Rheumatic Aortic Valve Disease. J. Card Surg. 2020, 35, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Barbalata, T.; Moraru, O.E.; Stancu, C.S.; Devaux, Y.; Simionescu, M.; Sima, A.V.; Niculescu, L.S. Increased Mir-142 Levels in Plasma and Atherosclerotic Plaques from Peripheral Artery Disease Patients with Post-Surgery Cardiovascular Events. Int. J. Mol. Sci. 2020, 21, 9600. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zvi, I.; Volinsky, N.; Grosman-Rimon, L.; Haviv, I.; Rozen, G.; Andria, N.; Asulin, N.; Margalit, N.; Marai, I.; Amir, O. Cardiac-Peripheral Transvenous Gradients of MicroRNA Expression in Systolic Heart Failure Patients. ESC Heart Fail. 2020, 7, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, M.; Faccini, J.; Laperche, C.; Grousset, E.; Roncalli, J.; Ruidavets, J.B.; Vindis, C. Identification of a MiRNA Based-Signature Associated with Acute Coronary Syndrome: Evidence from the FLORINF Study. J. Clin. Med. 2020, 9, 1674. [Google Scholar] [CrossRef]
- Ling, H.; Guo, Z.; Shi, Y.; Zhang, L.; Song, C. Serum Exosomal MicroRNA-21, MicroRNA-126, and PTEN Are Novel Biomarkers for Diagnosis of Acute Coronary Syndrome. Front. Physiol. 2020, 11, 654. [Google Scholar] [CrossRef]
- Liu, S.; Guo, X.; Zhong, W.; Weng, R.; Liu, J.; Gu, X.; Zhong, Z. Circulating Microrna Expression Profiles in Patients with Stable and Unstable Angina. Clinics 2020, 75, e1546. [Google Scholar] [CrossRef]
- Nie, X.; He, M.; Wang, J.; Chen, P.; Wang, F.; Lai, J.; Li, C.; Yu, T.; Zuo, H.; Cui, G.; et al. Circulating MiR-4763-3p Is a Novel Potential Biomarker Candidate for Human Adult Fulminant Myocarditis. Mol. Ther. Methods Clin. Dev. 2020, 17, 1079–1087. [Google Scholar] [CrossRef]
- Santos, J.L.; Rodríguez, I.; Olesen, M.S.; Bentzen, B.H.; Schmitt, N. Investigating Gene-MicroRNA Networks in Atrial Fibrillation Patients with Mitral Valve Regurgitation. PLoS ONE 2020, 15, e0232719. [Google Scholar] [CrossRef]
- Silverman, M.G.; Yeri, A.; Moorthy, M.V.; Camacho Garcia, F.; Chatterjee, N.A.; Glinge, C.S.A.; Tfelt-Hansen, J.; Salvador, A.M.; Pico, A.R.; Shah, R.; et al. Circulating MiRNAs and Risk of Sudden Death in Patients with Coronary Heart Disease. JACC Clin. Electrophysiol. 2020, 6, 70–79. [Google Scholar] [CrossRef]
- Su, T.; Shao, X.; Zhang, X.; Yang, C.; Shao, X. Value of Circulating MiRNA-1 Detected within 3 h after the Onset of Acute Chest Pain in the Diagnosis and Prognosis of Acute Myocardial Infarction. Int. J. Cardiol. 2020, 307, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Turky, H.F.E.S.; Mohammed, W.A.L.E.; Shalaby, S.M.; Etewa, R.L.; Kandil, N.T.; Galal, I. Plasma MicroRNA-133a as a Potential Biomarker for Acute Coronary Syndrome. Jordan J. Biol. Sci. 2020, 13, 191–196. [Google Scholar]
- Wakabayashi, I.; Eguchi, R.; Sotoda, Y.; von Lewinski, D.; Sourij, H.; Daimon, T.; Groschner, K.; Rainer, P.P. Blood Levels of MicroRNAs Associated with Ischemic Heart Disease Differ between Austrians and Japanese: A Pilot Study. Sci. Rep. 2020, 10, 13628. [Google Scholar] [CrossRef]
- Wang, X.; Tian, L.; Sun, Q. Diagnostic and Prognostic Value of Circulating MiRNA-499 and MiRNA-22 in Acute Myocardial Infarction. J. Clin. Lab. Anal. 2020, 34, 2410–2417. [Google Scholar] [CrossRef] [PubMed]
- Weldy, C.S.; Syed, S.A.; Amsallem, M.; Hu, D.Q.; Ji, X.; Punn, R.; Taylor, A.; Navarre, B.; Reddy, S. Circulating Whole Genome MiRNA Expression Corresponds to Progressive Right Ventricle Enlargement and Systolic Dysfunction in Adults with Tetralogy of Fallot. PLoS ONE 2020, 15, e0241476. [Google Scholar] [CrossRef]
- Brundin, M.; Wågsäter, D.; Alehagen, U.; Carlhäll, C.J. Circulating MicroRNA-29-5p Can Add to the Discrimination between Dilated Cardiomyopathy and Ischaemic Heart Disease. ESC Heart Fail. 2021, 8, 3865–3874. [Google Scholar] [CrossRef]
- Chen, S.; Fang, H.; Liu, R.; Fang, Y.; Wu, Z.; Xie, P. MiR-6718-5p and MiR-4329 Can Be Used as Potential Biomarkers for Acute Myocardial Infarction. J. Card Surg. 2021, 36, 3721–3728. [Google Scholar] [CrossRef]
- Coban, N.; Ozuynuk, A.S.; Erkan, A.F.; Guclu-Geyik, F.; Ekici, B. Levels of MiR-130b-5p in Peripheral Blood Are Associated with Severity of Coronary Artery Disease. Mol. Biol. Rep. 2021, 48, 7719–7732. [Google Scholar] [CrossRef]
- Elgebaly, S.A.; Christenson, R.H.; Kandil, H.; Ibrahim, M.; Rizk, H.; El-Khazragy, N.; Rashed, L.; Yacoub, B.; Eldeeb, H.; Ali, M.M.; et al. Nourin-Dependent Mir-137 and Mir-106b: Novel Biomarkers for Early Diagnosis of Myocardial Ischemia in Coronary Artery Disease Patients. Diagnostics 2021, 11, 703. [Google Scholar] [CrossRef]
- Garcia-Elias, A.; Tajes, M.; Yañez-Bisbe, L.; Enjuanes, C.; Comín-Colet, J.; Serra, S.A.; Fernández-Fernández, J.M.; Aguilar-Agon, K.W.; Reilly, S.; Martí-Almor, J.; et al. Atrial Fibrillation in Heart Failure Is Associated with High Levels of Circulating MicroRNA-199a-5p and 22–5p and a Defective Regulation of Intracellular Calcium and Cell-to-Cell Communication. Int. J. Mol. Sci. 2021, 22, 10377. [Google Scholar] [CrossRef]
- Gevaert, A.B.; Witvrouwen, I.; Van Craenenbroeck, A.H.; Van Laere, S.J.; Boen, J.R.A.; Van de Heyning, C.M.; Belyavskiy, E.; Mueller, S.; Winzer, E.; Duvinage, A.; et al. MiR-181c Level Predicts Response to Exercise Training in Patients with Heart Failure and Preserved Ejection Fraction: An Analysis of the OptimEx-Clin Trial. Eur. J. Prev. Cardiol. 2021, 28, 1722–1733. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Pan, M.; Xu, M.; Chen, R. Circulating MiRNA-29b and Sclerostin Levels Correlate with Coronary Artery Calcification and Cardiovascular Events in Maintenance Hemodialysis Patients. Cardiol. Res. Pract. 2021, 2021, 9208634. [Google Scholar] [CrossRef]
- Hromadka, M.; Motovska, Z.; Hlinomaz, O.; Kala, P.; Tousek, F.; Jarkovsky, J.; Beranova, M.; Jansky, P.; Svoboda, M.; Krepelkova, I.; et al. Mir-126-3p and Mir-223-3p as Biomarkers for Prediction of Thrombotic Risk in Patients with Acute Myocardial Infarction and Primary Angioplasty. J. Pers. Med. 2021, 11, 508. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Li, X.; Long, C.; Ji, W.; Jiang, L.; Tian, J. Circulating MiR-27b as a Biomarker of the Development and Progression of Carotid Artery Stenosis. Clin. Appl. Thromb. Hemost. 2021, 27. [Google Scholar] [CrossRef] [PubMed]
- Mihaleva, I.; Kyurkchiyan, S.; Dodova, R.; Nikolov, R.; Markova, T.; Gateva, P.; Dimova, I. MiRNA Expression Analysis Emphasized the Role of MiR-424 in Diabetic Cardiovascular Complications. Int. J. Diabetes. Dev. Ctries 2021, 41, 579–585. [Google Scholar] [CrossRef]
- Moric-Janiszewska, E.; Smolik, S.; Morka, A.; Szydłowski, L.; Kapral, M. Expression Levels of Serum Circulating MicroRNAs in Pediatric Patients with Ventricular and Supraventricular Arrhythmias. Adv. Med. Sci. 2021, 66, 411–417. [Google Scholar] [CrossRef]
- Neiburga, K.D.; Vilne, B.; Bauer, S.; Bongiovanni, D.; Ziegler, T.; Lachmann, M.; Wengert, S.; Hawe, J.S.; Güldener, U.; Westerlund, A.M.; et al. Vascular Tissue Specific Mirna Profiles Reveal Novel Correlations with Risk Factors in Coronary Artery Disease. Biomolecules 2021, 11, 1683. [Google Scholar] [CrossRef]
- Sacchetto, C.; Mohseni, Z.; Colpaert, R.M.W.; Vitiello, L.; De Bortoli, M.; Vonhögen, I.G.C.; Xiao, K.; Poloni, G.; Lorenzon, A.; Romualdi, C.; et al. Circulating Mir-185-5p as a Potential Biomarker for Arrhythmogenic Right Ventricular Cardiomyopathy. Cells 2021, 10, 2578. [Google Scholar] [CrossRef]
- Shen, M.; Xu, X.; Liu, X.; Wang, Q.; Li, W.; You, X.; Peng, R.; Yuan, Y.; Long, P.; Niu, R.; et al. Prospective Study on Plasma Microrna-4286 and Incident Acute Coronary Syndrome. J. Am. Heart Assoc. 2021, 10, e018999. [Google Scholar] [CrossRef]
- Suzuki, K.; Yamada, H.; Fujii, R.; Munetsuna, E.; Ando, Y.; Ohashi, K.; Ishikawa, H.; Yamazaki, M.; Maeda, K.; Hashimoto, S.; et al. Association between Circulating Vascular-Related MicroRNAs and an Increase in Blood Pressure: A 5-Year Longitudinal Population-Based Study. J. Hypertens. 2021, 39, 84–89. [Google Scholar] [CrossRef]
- Szelenberger, R.; Karbownik, M.S.; Kacprzak, M.; Maciak, K.; Bijak, M.; Zielińska, M.; Czarny, P.; Śliwiński, T.; Saluk-Bijak, J. Screening Analysis of Platelet MiRNA Profile Revealed MiR-142-3p as a Potential Biomarker in Modeling the Risk of Acute Coronary Syndrome. Cells 2021, 10, 3526. [Google Scholar] [CrossRef] [PubMed]
- Thottakara, T.; Lund, N.; Krämer, E.; Kirchhof, P.; Carrier, L.; Patten, M. A Novel MiRNA Screen Identifies MiRNA-4454 as a Candidate Biomarker for Ventricular Fibrosis in Patients with Hypertrophic Cardiomyopathy. Biomolecules 2021, 11, 1718. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Chen, J.; Liu, W.; Liang, H.; Zhu, H. LncRNA LSINCT5/MiR-222 Regulates Myocardial Ischemia-reperfusion Injury through PI3K/AKT Pathway. J. Thromb. Thrombolysis. 2021, 52, 720–729. [Google Scholar] [CrossRef]
- Xiao, S.; Xue, T.; Pan, Q.; Hu, Y.; Wu, Q.; Liu, Q.; Wang, X.; Liu, A.; Liu, J.; Zhu, H.; et al. MicroRNA-146a Serves as a Biomarker for Adverse Prognosis of ST-Segment Elevation Myocardial Infarction. Cardiovasc. Ther. 2021, 2021, 2923440. [Google Scholar] [CrossRef]
- Yamada, H.; Suzuki, K.; Fujii, R.; Kawado, M.; Hashimoto, S.; Watanabe, Y.; Iso, H.; Fujino, Y.; Wakai, K.; Tamakoshi, A. Circulating MiR-21, MiR-29a, and MiR-126 Are Associated with Premature Death Risk Due to Cancer and Cardiovascular Disease: The JACC Study. Sci. Rep. 2021, 11, 5298. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Chen, Y.; Ye, X.; Zhang, F.; Wang, S.; Zhang, L.; Luo, X. MiR-3113-5p, MiR-223-3p, MiR-133a-3p, and MiR-499a-5p Are Sensitive Biomarkers to Diagnose Sudden Cardiac Death. Diagn. Pathol. 2021, 16, 67. [Google Scholar] [CrossRef] [PubMed]
- Zhelankin, A.V.; Stonogina, D.A.; Vasiliev, S.V.; Babalyan, K.A.; Sharova, E.I.; Doludin, Y.V.; Shchekochikhin, D.Y.; Generozov, E.V.; Akselrod, A.S. Circulating Extracellular Mirna Analysis in Patients with Stable Cad and Acute Coronary Syndromes. Biomolecules 2021, 11, 962. [Google Scholar] [CrossRef]
- Eikelis, N.; Dixon, J.B.; Lambert, E.A.; Hanin, G.; Tzur, Y.; Greenberg, D.S.; Soreq, H.; Marques, F.Z.; Fahey, M.T.; Head, G.A.; et al. MicroRNA-132 May Be Associated with Blood Pressure and Liver Steatosis—Preliminary Observations in Obese Individuals. J. Hum. Hypertens. 2022, 36, 911–916. [Google Scholar] [CrossRef]
- Eyyupkoca, F.; Ercan, K.; Kiziltunc, E.; Ugurlu, I.B.; Kocak, A.; Eyerci, N. Determination of MicroRNAs Associated with Adverse Left Ventricular Remodeling after Myocardial Infarction. Mol. Cell Biochem. 2022, 477, 781–791. [Google Scholar] [CrossRef]
- Gager, G.M.; Eyileten, C.; Postula, M.; Gasecka, A.; Jarosz-Popek, J.; Gelbenegger, G.; Jilma, B.; Lang, I.; Siller-Matula, J. Association Between the Expression of MicroRNA-125b and Survival in Patients with Acute Coronary Syndrome and Coronary Multivessel Disease. Front. Cardiovasc. Med. 2022, 9, 948006. [Google Scholar] [CrossRef]
- James, K.; Bryl-Gorecka, P.; Olde, B.; Gidlof, O.; Torngren, K.; Erlinge, D. Increased Expression of MiR-224-5p in Circulating Extracellular Vesicles of Patients with Reduced Coronary Flow Reserve. BMC Cardiovasc. Disord. 2022, 22, 321. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, N.; Wen, X.; Huang, L.Y.; Cui, R.Q.; Zhang, J. Serum MiRNA-203 as a Novel Biomarker for the Early Prediction of Acute ST-Elevation Myocardial Infarction. J. Cardiovasc. Transl. Res. 2022, 15, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Gong, J.; Guo, X.; Guo, D.; Zhang, X.; Hu, H.; Zhong, J.; Yang, Y.; Li, Y. Diagnostic Value of MiRNA Expression and Right Ventricular Echocardiographic Functional Parameters for Chronic Thromboembolic Pulmonary Hypertension with Right Ventricular Dysfunction and Injury. BMC Pulm. Med. 2022, 22, 171. [Google Scholar] [CrossRef] [PubMed]
- Mompeón, A.; Pérez-cremades, D.; Paes, A.B.; Sanchis, J.; Ortega-paz, L.; Andrea, R.; Brugaletta, S.; Sabate, M.; Novella, S.; Dantas, A.P.; et al. Circulating MiRNA Fingerprint and Endothelial Function in Myocardial Infarction: Comparison at Acute Event and One-Year Follow-Up. Cells 2022, 11, 1823. [Google Scholar] [CrossRef] [PubMed]
- Moscoso, I.; Cebro-Márquez, M.; Martínez-Gómez, Á.; Abou-Jokh, C.; Martínez-Monzonís, M.A.; Martínez-Sande, J.L.; González-Melchor, L.; García-Seara, J.; Fernández-López, X.A.; Moraña-Fernández, S.; et al. Circulating MiR-499a and MiR-125b as Potential Predictors of Left Ventricular Ejection Fraction Improvement after Cardiac Resynchronization Therapy. Cells 2022, 11, 271. [Google Scholar] [CrossRef]
- de los Reyes-García, A.M.; Rivera-Caravaca, J.M.; Zapata-Martínez, L.; Águila, S.; Véliz-Martínez, A.; García-Barberá, N.; Gil-Perez, P.; Guijarro-Carrillo, P.J.; Orenes-Piñero, E.; López-García, C.; et al. MiR-146a Contributes to Thromboinflammation and Recurrence in Young Patients with Acute Myocardial Infarction. J. Pers. Med. 2022, 12, 1185. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Hou, H.; Shao, W.; Huang, D.; Hao, Z.; Xue, H.; Ye, Y. MiRNA-29 Aggravates Myocardial Infarction via Inhibiting the PI3K/MTOR/HIF1α/VEGF Pathway. Aging 2022, 14, 3129–3142. [Google Scholar] [CrossRef]
- Yang, N.; Song, Y.; Dong, B.; Yang, J.; Li, Y.; Qin, Q.; Guo, Z. Analysis of MiRNA Associated with Coronary Artery Calcification. Comput. Math. Methods Med. 2022, 2022, 3708547. [Google Scholar] [CrossRef]
- Yu, X.; Xu, J.F.; Song, M.; Zhang, L.; Li, Y.H.; Han, L.; Tang, M.X.; Zhang, W.; Zhong, M.; Wang, Z.H. Associations of Circulating MicroRNA-221 and 222 With the Severity of Coronary Artery Lesions in Acute Coronary Syndrome Patients. Angiology 2022, 73, 579–587. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, B.; Xu, Y.; Zhou, N.; Zhang, R.; Lu, L.; Feng, Z. MiR-208b/MiR-21 Promotes the Progression of Cardiac Fibrosis Through the Activation of the TGF-Β1/Smad-3 Signaling Pathway: An in Vitro and in Vivo Study. Front. Cardiovasc. Med. 2022, 9, 924629. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Chen, A.; Ma, J.; Qian, J.; Ge, J. Elevated Serum MiR-133a Predicts Patients at Risk of Periprocedural Myocardial Injury after Elective Percutaneous Coronary Intervention. Cardiol. J. 2022, 29, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Fineschi, V.; Silver, M.D.; Karch, S.B.; Parolini, M.; Turillazzi, E.; Pomara, C.; Baroldi, G. Myocardial Disarray: An Architectural Disorganization Linked with Adrenergic Stress? Int. J. Cardiol. 2005, 99, 277–282. [Google Scholar] [CrossRef]
- Sessa, F.; Esposito, M.; Messina, G.; di Mizio, G.; di Nunno, N.; Salerno, M. Sudden Death in Adults: A Practical Flow Chart for Pathologist Guidance. Healthcare 2021, 9, 870. [Google Scholar] [CrossRef] [PubMed]
- Argo, A.; Zerbo, S.; Buscemi, R.; Trignano, C.; Bertol, E.; Albano, G.D.; Vaiano, F. A Forensic Diagnostic Algorithm for Drug-Related Deaths: A Case Series. Toxics 2022, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Fineschi, V.; Karch, S.B.; D’Errico, S.; Pomara, C.; Riezzo, I.; Turillazzi, E. Cardiac Pathology in Death from Electrocution. Int. J. Legal Med. 2006, 120, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Anna, V.; Messina, G.; Cibelli, G.; Monda, V.; Marsala, G.; Ruberto, M.; Biondi, A.; Cascio, O.; Bertozzi, G.; et al. Heart Rate Variability as Predictive Factor for Sudden Cardiac Death. Aging 2018, 10, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.-F.; Wang, R.; Chen, W.; Cao, Y.-D.; Li, L.-P.; Chen, X. MiR-133a-3p Attenuates Cardiomyocyte Hypertrophy through Inhibiting Pyroptosis Activation by Targeting IKKε. Acta Histochem. 2021, 123, 151653. [Google Scholar] [CrossRef]
- Peters, L.J.F.; Biessen, E.A.L.; Hohl, M.; Weber, C.; van der Vorst, E.P.C.; Santovito, D. Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Front. Physiol. 2020, 11, 793. [Google Scholar] [CrossRef]
- Ahmed, S.; Kurusamy, S.; David, E.L.S.; Khan, K.; Kalyanakrishnan, K.; Ian-Gobo, M.; Kola, T.M.; Wilkinson, R.N.; Kannappan, V.; Wang, W.; et al. Aberrant Expression of MiR-133a in Endothelial Cells Inhibits Angiogenesis by Reducing pro-Angiogenic but Increasing Anti-Angiogenic Gene Expression. Sci. Rep. 2022, 12, 14730. [Google Scholar] [CrossRef]
- Escate, R.; Padró, T.; Suades, R.; Camino, S.; Muñiz, O.; Diaz-Diaz, J.L.; Sionis, A.; Mata, P.; Badimon, L. High MiR-133a Levels in the Circulation Anticipates Presentation of Clinical Events in Familial Hypercholesterolaemia Patients. Cardiovasc. Res. 2021, 117, 109–122. [Google Scholar] [CrossRef]
- Dai, B.; Wang, F.; Nie, X.; Du, H.; Zhao, Y.; Yin, Z.; Li, H.; Fan, J.; Wen, Z.; Wang, D.W.; et al. The Cell Type–Specific Functions of MiR-21 in Cardiovascular Diseases. Front. Genet. 2020, 11, 563166. [Google Scholar] [CrossRef] [PubMed]
- Surina, S.; Fontanella, R.A.; Scisciola, L.; Marfella, R.; Paolisso, G.; Barbieri, M. MiR-21 in Human Cardiomyopathies. Front. Cardiovasc. Med. 2021, 8, 767064. [Google Scholar] [CrossRef] [PubMed]
- Kura, B.; Kalocayova, B.; Devaux, Y.; Bartekova, M. Potential Clinical Implications of Mir-1 and Mir-21 in Heart Disease and Cardioprotection. Int. J. Mol. Sci. 2020, 21, 700. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, X.; Su, T.; Li, H.; Huang, Q.; Wu, D.; Yang, C.; Han, Z. Circulating MiR-499 Are Novel and Sensitive Biomarker of Acute Myocardial Infarction. J. Thorac. Dis. 2015, 7, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Wan, Q.; Xu, T.; Ding, W.; Zhang, X.; Ji, X.; Yu, T.; Yu, W.; Lin, Z.; Wang, J. MiR-499-5p Attenuates Mitochondrial Fission and Cell Apoptosis via P21 in Doxorubicin Cardiotoxicity. Front. Genet. 2019, 10, 734. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Han, Y.; Niu, L.; Li, J.; Chen, Y. MiR-499 Inhibited Hypoxia/Reoxygenation Induced Cardiomyocytes Injury by Targeting SOX6. Biotechnol. Lett. 2019, 41, 837–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, J.; Zhang, R.; Gao, X.; Niu, H.-F.; Wang, N.; Xu, Y.; Li, Y.; Ma, N.; Sun, L.-H.; Pan, Z.-W.; et al. Overexpression of MicroRNA-1 Impairs Cardiac Contractile Function by Damaging Sarcomere Assembly. Cardiovasc. Res. 2012, 95, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Seok, H.; Lee, H.; Lee, S.; Ahn, S.H.; Lee, H.-S.; Kim, G.-W.D.; Peak, J.; Park, J.; Cho, Y.K.; Jeong, Y.; et al. Position-Specific Oxidation of MiR-1 Encodes Cardiac Hypertrophy. Nature 2020, 584, 279–285. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Chen, L.; Chen, K.; Zhou, J.; Song, J. MiR-1-3p That Correlates with Left Ventricular Function of HCM Can Serve as a Potential Target and Differentiate HCM from DCM. J. Transl. Med. 2018, 16, 161. [Google Scholar] [CrossRef] [Green Version]
- Pordzik, J.; Eyileten-Postuła, C.; Jakubik, D.; Czajka, P.; Nowak, A.; De Rosa, S.; Gasecka, A.; Cieślicka-Kapłon, A.; Sulikowski, P.; Filipiak, K.J.; et al. Mir-126 Is an Independent Predictor of Long-Term All-Cause Mortality in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. 2021, 10, 2371. [Google Scholar] [CrossRef]
- Czajka, P.; Fitas, A.; Jakubik, D.; Eyileten, C.; Gasecka, A.; Wicik, Z.; Siller-Matula, J.M.; Filipiak, K.J.; Postula, M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front. Physiol. 2021, 12, 498. [Google Scholar] [CrossRef] [PubMed]
- Arnab, B.; Debabrata, R.; Hindol, M.; Rudranil, B.; Sanmoy, K.; Abhishek, R.; Kaushik, M.; Navanil, B. Microrna 126 as a surrogate marker for primary prevention of atherosclerotic cardiovascular disease across different age groups in susceptible population. J. Am. Coll. Cardiol. 2022, 79, 3466. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Salerno, M.; di Mizio, G.; Bertozzi, G.; Messina, G.; Tomaiuolo, B.; Pisanelli, D.; Maglietta, F.; Ricci, P.; Pomara, C. Anabolic Androgenic Steroids: Searching New Molecular Biomarkers. Front. Pharmacol. 2018, 9, 1321. [Google Scholar] [CrossRef] [PubMed]
- Neri, M.; Othman, S.M.; Cantatore, S.; de Carlo, D.; Pomara, C.; Riezzo, I.; Turillazzi, E.; Fineschi, V. Sudden Infant Death in an 8-Month-Old Baby with Dengue Virus Infection: Searching for Virus in Postmortem Tissues by Immunohistochemistry and Western Blotting. Pediatr. Infect. Dis. J. 2012, 31, 878–880. [Google Scholar] [CrossRef]
- Sessa, F.; Salerno, M.; Bertozzi, G.; Cipolloni, L.; Messina, G.; Aromatario, M.; Polo, L.; Turillazzi, E.; Pomara, C. MiRNAs as Novel Biomarkers of Chronic Kidney Injury in Anabolic-Androgenic Steroid Users: An Experimental Study. Front. Pharmacol. 2020, 11, 563756. [Google Scholar] [CrossRef]
- Sessa, F.; Salerno, M.; Cipolloni, L.; Bertozzi, G.; Messina, G.; di Mizio, G.; Asmundo, A.; Pomara, C. Anabolic-Androgenic Steroids and Brain Injury: MiRNA Evaluation in Users Compared to Cocaine Abusers and Elderly People. Aging 2020, 12, 15314–15327. [Google Scholar] [CrossRef]
- Kakimoto, Y.; Kamiguchi, H.; Ochiai, E.; Satoh, F.; Osawa, M. MicroRNA Stability in Postmortem FFPE Tissues: Quantitative Analysis Using Autoptic Samples from Acute Myocardial Infarction Patients. PLoS ONE 2015, 10, e0129338. [Google Scholar] [CrossRef]
- Sessa, F.; Salerno, M.; Pomara, C. Autopsy Tool in Unknown Diseases: The Experience with Coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2). Medicina 2021, 57, 309. [Google Scholar] [CrossRef]
- Annaratone, L.; de Palma, G.; Bonizzi, G.; Sapino, A.; Botti, G.; Berrino, E.; Mannelli, C.; Arcella, P.; di Martino, S.; Steffan, A.; et al. Basic Principles of Biobanking: From Biological Samples to Precision Medicine for Patients. Virchows Arch. 2021, 479, 233–246. [Google Scholar] [CrossRef]
- Cojocneanu, R.; Braicu, C.; Raduly, L.; Jurj, A.; Zanoaga, O.; Magdo, L.; Irimie, A.; Muresan, M.-S.; Ionescu, C.; Grigorescu, M.; et al. Plasma and Tissue Specific MiRNA Expression Pattern and Functional Analysis Associated to Colorectal Cancer Patients. Cancers 2020, 12, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speirs, V.; Cox, A.; Chelala, C.; James, J.A.; Adams, R.A.; Jones, J.L. A Biobank Perspective on Use of Tissue Samples Donated by Trial Participants. Lancet Oncol. 2022, 23, e205. [Google Scholar] [CrossRef] [PubMed]
First Author, Year, and Country | Study Model | miRNAs Investigated | Biological Sample/Target | Dysregulation (Up/Down) | Effect of Dysregulation |
---|---|---|---|---|---|
Bayés-Genis et al., 2018, Spain [23] | Observational prospective study | miR-22-3p, miR-133a-3p, miR-133b, miR-208a-3p, miR-320a, miR-345-5p, MiR-378a-3p, miR-423-5p, miR-499a-5p, MiR-622, miR-1254, MiR-1306-5p | Serum/CCAR1 (cell division and apoptosis regulator protein 1) | up (miR-1254, miR-1306-5p) | Significantly associated with increased in-hospital heart failure (HF) death. |
Guo et al., 2018, China [24] | Case-control | miR-133a, miR-221 | Plasma/Heart Failure with Reduced Ejection Fraction (HFrEF) gene | down | HF diagnostic biomarkers in elderly patients |
Masson et al., 2018, Italy [25] | Randomized clinical trial | miR-132 | Plasma/anti-hypertrophic transcription factor FoxO3 | down | Prediction of HF severity |
Li et al., 2019, China [26] | Case-control | miR-208, miR-494, miR-499, miR-1303 | Plasma/PTEN, ROCK1 | down | miR-208, miR-494, miR-499 and miR-1303 can be used as markers of myocardial infarction (MI), however, they do not have a higher value than traditional troponins |
Liu et al., 2019, China [27] | Cohort | miR-150-3p, miR-197-5p, miR-320a, miR-494-3p, miR-939-5p, miR-1268a, miR-1275, | Plasma/Cardiomyocytes | up | Increase in HF adverse events |
Mayer et al., 2019, Czech Republic [28] | Observational prospective study | miR-1, miR-19a, miR-21, miR-34a, miR-126, miR-133a, miR-197, miR-208b, miR-214, miR-223, miR-499 | Serum/Inflammatory cells (increased fibrosis and apoptosis) | down (miR-19a) | In patients with carotid artery stenosis (CAS), a low level of miR-19a is an independent risk factor for mortality |
Pinchi et al., 2019, Italy [29] | Case-control | miR-1-3p, miR-133a-3p, miR-208a-3p, miR-499a-5p, | Heart tissue/Ion channels | down (miR-1, miR-208) up (all in SCD) | Biomarkers of sudden cardiac death (SCD) due to early acute MI |
Zhang et al., 2019, China [30] | Case-control | miR-155 | Serum/Genes involved in pulmonary fibrosis and CAD (coronary artery disease). | down | Patients with HF after MI have elevated levels of these miRNAs |
Zhu et al., 2019, China [31] | Retrospective cohort | miR-182-5p miR-5187-5p | Plasma/VEGF (vascular endothelial growth factor). | up | Diagnostic biomarkers for CAD |
Asulin et al., 2020, Israel [32] | Case-control | miR-145-5p, miR-199a-5p, miR-5701 | Human genes of development, cell growth, differentiation, proliferation, apoptosis, metabolism, and tissue remodeling | up (rheumatic valvulopathy) down (idiopathic valvulopathy) | Useful for differentiating the etiology of rheumatic from idiopathic valvulopathies |
Barbalata et al., 2020, Romania [33] | Original article | miR-92a-3p miR-142-3p, miR-155-5p, miR-223-3p, | Plasma/TGF-beta2 | (miR-92a) Down (miR-142, miR-155, miR-223) up | Prediction of CVD in patients with peripheral arterial disease |
Ben-Zvi et al., 2020, Israel [34] | Case-control | miR-21-5p, miR-92b-3p, miR-125b-5p, miR- 133a-3p | Serum/cardiomyocytes | up (miR-125b-5p, miR-133-3p), down (miR-21-5p, miR-92b-3p) | Increased incidence of HF |
Elbaz et al., 2020, France [35] | Case-control | miR-16, miR-92a, miR-122, miR-150, miR-186, miR-195, miR-223-5p, | Serum/Inflammatory cells (increased fibrosis and apoptosis) | up | Biomarker risk of ACS (acute coronary syndrome). |
Ling et al., 2020, China [36] | Case-control | miR-21, miR-126 | Serum/PTEN | (miR-21) down (miR-126) up | Biomarker of ACS |
Liu et al., 2020, China [37] | Case-control | miR-1-3p, miR-20b-5p, miR-30b-5p, miR-142-3p, miR-1273g-3p, miR-6515-3p, miR-6793-5p, miR-7109-3p, | Serum/MAPK signaling pathway | up | Involvement in the pathogenesis of angina (stable and unstable) |
Nie et al., 2020, China [38] | Case-control | miR-4281 miR-4763-3p | Plasma/KEGG related to apoptosis (TGF-β, mTOR, insulin, MAPK, p53) | up | Potential biomarker of fulminant myocarditis |
Santos et al., 2020, Denmark [39] | Case-control | miR-130b-3p, miR-208a-3p, miR-338-5p | Heart biopsy/ion channel genes, extracellular matrix genes | down (ion channel genes) up (extracellular matrix genes) | Involvement in the development of AF |
Silverman et al., 2020, USA [40] | Case-control | miR-29a-3p, miR-30a-5p, miR-150-5p | Plasma/Inflammatory cells (increased fibrosis and apoptosis) | up | Risk of increased SCD in patients with CAD |
Su et al., 2020, China [41] | Case-control | miR-1 | Serum/Endothelial function, angiogenesis and cell apoptosis | up | miR-1 within 3 h of acute chest pain is an independent risk factor for mortality in patients with MI |
Turky et al., 2020, Egypt [42] | Observational prospective study | miR-133a | Plasma/FGFR1 | up | Biomarker for early identification of stable CAD |
Wakabayashi, 2020, Japan [43] | Case-control | miR-16-5p, miR-17-5p, miR-92a-3p miR-106a-5p, miR-135a-3p, miR-150-3p, miR-191-5p, mR-320b, miR-451a, miR-486-5p, miR-663b, | Serum/pro-inflammatory cytokines in foam cells and collagen synthesis in vascular smooth muscle cells | up | Increased incidence of ischemic heart disease |
Wang et al., 2020, China [44] | Case-control | miR-22, miR-499 | Serum/Cardiac myosin heavy chain gene | up | Sensitive and specific biomarkers for the diagnosis of MI |
Weldy et al., 2020, USA [45] | Observational prospective study | miR-28- 3p, miR-371b-3p, miR-433-3p | Plasma/SMAD3 and 4, TGF-β1 and 2, E2F family transcription factors | up | Increasing right ventricular (RV) size and decreasing RV systolic function |
Brundin et al., 2021, Sweden [46] | Case-control | miR-16-5p, miR-21-5p, miR-29-5p, miR-133a-3p, miR-191-5p, miR-320a, miR-423-5p | Serum/extracellular matrix proteins | up | Seven miRNAs were upregulated both in subjects suffering from idiopathic dilated cardiomyopathy (DCM) and ischemic heart disease (IHD) |
Chen et al., 2021, China [47] | Case-control | miR-4329, miR-6718-5p | Plasma/MAPK, PI3K-Akt, Ras, Rap1 signaling pathway | down | Biomarkers for acute MI |
Coban et al., 2021, Turkey [48] | Original article | miR-18a-3p, miR-130b-5p | Serum/SPP1 and TNFRSF11B genes | up | Biomarkers of CAD development |
Elgebaly et al., 2021, USA [49] | Case-control | miR-106b miR-137, | Serum/Genes of Nourin | up | Biomarkers for early diagnosis of myocardial ischemia in patients suspected of CAD |
Garcia-Elias et al., 2021, Spain [50] | Case-control | miR-22-5p, miR-199a-5p | Plasma/L-type Ca2+ channel, NCX and connexin-40 | up | Decreased cardiac ejection fraction and increased incidence of AF |
Gevaert et al., 2021, Belgium [51] | Observational prospective study | miR-181c | MAPK1, DNM2, and CDH1 (HFpEF pathophysiology) | up | Predicts response to exercise training in patients with HF |
He et al., 2021, China [52] | Observational prospective study | miR-29b | Plasma/Inflammatory cells (increased fibrosis and apoptosis) | down | Independent risk factor for coronary artery calcification in patients with renal disease |
Hromadka et al., 2021, Czech Republic [53] | Randomized clinical trial | miR-126-3p, miR-223-3p | VEGF, VCAM-1, SPRED1, PIK3R2/p85- beta, P2Y12, RPS6KB1/HIF1a | up | Independent risk stratification biomarkers for thrombotic events after MI |
Lu et al., 2021, China [54] | Observational prospective study | miR-27b | Serum/Vascular smooth muscle cells | up | Prediction of the occurrence of ACS |
Mihaleva et al., 2021, Bulgaria [55] | Case-control | miR-16-5p, miR-155-3p, miR-155-5p, miR-210, miR-221-3p, miR-424-5p | Serum/HIF1A (transcriptional regulator of the adaptive response to hypoxia) | up | Biomarker of cardiovascular complications in diabetic patients |
Moric-Janiszewska et al., 2021, Poland [56] | Case-control | miR-1, miR-133a, miR-133b | Genes involved in the regulation of ion channels | up | Diagnostic biomarkers of arrhythmia in pediatric patient |
Neiburga et al., 2021, China [57] | Original article | miR-10-5p, miR-10b-3p, miR-17-3p, miR-21-5p, miR-151a-5p, miR-181a-5p, miR-185-5p, miR-194-5p, miR-199a-3p, miR-199b-3p, miR-212-3p, miR-363-3p, miR-548d-5p, miR-744-5p, miR-3117-3p, miR-5683, miR-5701 | Serum/AKT, PTEN and IRS1 | down | Biomarkers of CVD |
Sacchetto et al., 2021, Italy [58] | Case-control | miR-185-5p | Plasma/Inflammatory cells | up | Diagnostic biomarkers for ARVC (arrhythmogenic right ventricular cardiomyopathy) |
Shen et al., 2021, China [59] | Case-control | Let-7b-3p, miR-21-3p, miR-28-3p, miR-99b-5p, miR-181c-3p, miR-133b, miR-320a, miR-500a-3p, miR-574-5p, miR-940, miR-1268b, miR-1307-3p, miR-4286, miR-4485-3p, | Serum/PI3K/AKT pathway | up (miR-4286) | Biomarker for increased risk of ACS |
Suzuki, 2021, Japan [60] | Case-control | miR-126, miR-221, miR-222 | Serum/NF-κB pathway | down | Increased incidence of hypertension |
Szelenberger et al., 2021, Poland [61] | Case-control | miR-130b-3p, miR-142-3p, miR-146a-3p, miR-197-5p, miR-301a-3p, miR-338-3p, miR-3162-5p, miR-3656, miR-4299, miR-8069 | Platelet/ARHGEF12, (regulation of actin cytoskeleton), AKT3 (focal adhesion), ARHGEF12 (vascular smooth muscle contraction) | 5 miRNAs were upregulated (miR-301a-3p, miR-142-3p, miR-146a-3p, miR-130b-3p, miR-338-3p) and 5 miRNAs were downregulated (miR-8069, miR-4299, miR-3656, miR-197-5p, miR-3162-5p) | Potential platelet biomarker of ACS |
Thottakara, 2021, Germany [62] | Case-control | miR-1, miR-495-3p, miR-499a-5p, miR-627-3p, miR-3144, miR-4454, | Plasma/Sarcomeric genes | up | Increased incidence of hypertrophic cardiomyopathy (HCM) |
Tong et al., 2021, China [63] | Observational prospective study | miR-222 | Serum/PI3K/AKT pathway | down | Increased incidence of MI/R |
Xiao et al., 2021, China [64] | Case-control | miR-146a | Serum/S100A12 | up | Biomarker for adverse prognosis of ST-Segment Elevation MI |
Yamada et al., 2021, Japan [65] | Retrospective cohort | miR-21, miR-29a, miR-126 | Serum/Inflammatory cells | up (miR-21 and miR-19a) down (miR-126) | Risk of premature death from cancer and CVD |
Yan et al., 2021, China [66] | Case-control | miR-133a-3p, miR-223-3p, miR-499a-5p, miR-3113-5p, | Heart tissue/Inflammatory cells (increased fibrosis and apoptosis) | up | Sensitive biomarkers of SCD |
Zhelankin et al., 2021, Russia [67] | Case-control | miR-21-5p, miR-17-5p, miR-146a-5p, | Plasma/cardiomyocytes | up (miR-21-5p, miR-146a-5p) down (miR-17-5p) | An increase in miR-146a-5p and miR-21-5p is an indicator of ACS, a decrease in miR-17-5p could be considered a general biomarker of CAD. |
Eikelis et al., 2022, Australia [68] | Original article | miR-132 | Serum/PTEN, SIRT1 | down | Biomarker of hypertension in obese patients |
Eyyupkoca et al., 2022, Turkey [69] | Case-control | miR-23b-3p, miR-26b-5p, miR-199a-5p, miR-301a-3p, miR-374a-5p, miR-423-5p, miR-483-5p, miR-652-3p | Plasma/Gene expression and remodeling of extracellular matrix | down (miR-301a-3p, miR-374a-5p) up (miR-423-5p) | Biomarker of adverse left ventricular remodeling after MI |
Gager, 2022, Austria [70] | Observational prospective study | miR-125a (miR-125b, miR-223) | Plasma/Cardiomyocytes | up | Reduction of survival for ACS |
James et al., 2022, Sweden [71] | Case-control | miR-224-5p | Extracellular Vesicles (EVs)/SMAD unit (TGF-beta pathway) | up | Biomarker of endothelial dysfunction in patients with low coronary flow reserve |
J. Li et al., 2022, China [72] | Case-control | miR-203 | Serum/Inflammatory cells (increased fibrosis and apoptosis) | up | Biomarker for early prediction of ST-Segment Elevation MI |
Miao et al., 2022, China [73] | Retrospective study | miR-17-5p, miR-20a-5p, miR-93-5p, miR-665, miR-3202 | Serum/Pulmonary artery smooth muscle cells and pulmonary artery endothelial cells (proliferation and apoptosis) | miR-20a-5p, miR-93-5p, miR-17-5p downregulated | Useful parameter in the diagnosis of chronic thromboembolic pulmonary hypertension (CTEPH) |
Mompeón et al., 2022, Spain [74] | Observational prospective study | let-7g-5p, let-7e-5p, miR-26a-5p | Plasma/Involvement in the production of cytokines and chemokines | down | Potential biomarker of MI prognosis |
Moscoso et al., 2022, Spain [75] | Observational prospective study | miR-125b, miR-499a, | Serum/KEGG related to apoptosis (TGF-β, mTOR, insulin, MAPK, p53) | up | Improvement of left ventricular ejection fraction after cardiac resynchronization therapy |
de los Reyes-García et al., 2022, Spain [76] | Original article | miR-146a | Serum/TLR/NF-kB pathway | down | Contribution to thrombo-inflammation and MI recurrence in young patients |
Wang et al., 2022, China [77] | Observational prospective study | miR-29 | Serum/PI3K/mTOR/HIF1α/VEGF pathway | down | Development of MI |
Yang et al., 2022, China [78] | Case-control | miR-29b (miR-let-7b) | Serum/Osteogenic transcription factors | down | Increased incidence of coronary artery calcification |
Yu et al., 2022, China [79] | Case-control | miR-221, miR-222 | Plasma/c-Raf/MEK/ERK pathway | up | Severity of ACS |
Zhang et al., 2022, China [80] | Case-control | miR-21, miR-208b | Plasma/TGF-β1/Smad-3 Signaling Pathway | up | Cardiac fibrosis progression through activation of the TGF-β1/Smad-3 signaling pathway |
Zhou et al., 2022, China [81] | Observational prospective study | miR-133a | Serum/FGFR1 | up | Biomarker for early identification of stable CAD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sessa, F.; Salerno, M.; Esposito, M.; Cocimano, G.; Pomara, C. miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 5192. https://doi.org/10.3390/ijms24065192
Sessa F, Salerno M, Esposito M, Cocimano G, Pomara C. miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. International Journal of Molecular Sciences. 2023; 24(6):5192. https://doi.org/10.3390/ijms24065192
Chicago/Turabian StyleSessa, Francesco, Monica Salerno, Massimiliano Esposito, Giuseppe Cocimano, and Cristoforo Pomara. 2023. "miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives" International Journal of Molecular Sciences 24, no. 6: 5192. https://doi.org/10.3390/ijms24065192
APA StyleSessa, F., Salerno, M., Esposito, M., Cocimano, G., & Pomara, C. (2023). miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. International Journal of Molecular Sciences, 24(6), 5192. https://doi.org/10.3390/ijms24065192