DHEA and Its Metabolites Reduce the Cytokines Involved in the Inflammatory Response and Fibrosis in Primary Biliary Cholangitis
Abstract
:1. Introduction
2. Results
2.1. The Levels of DHEA and Estrogens (E2 and E3) in Sera of PBC Patients at Different Ages of Diagnosis
2.2. The Levels of Pro-, and Anti-Inflammatory Interleukins and TNF-α in Sera of PBC Patients
2.3. The Effect of DHEA and Its Metabolites on IL-8 and TNF-α Levels in Cholangiocytes and Hepatocytes
2.4. The Effect of DHEA and Its Metabolites on the Level of Pro-Fibrotic IL-13
2.5. Expression of TGF-β and α-SMA in Control Non-Cirrhotic and Cirrhotic Human Liver Tissues (PBC and PSC)
3. Discussion
4. Materials and Methods
4.1. Serum Samples and Cell Culture
4.2. Tissue Sample Preparation
4.3. ELISA Assays
4.4. Flow Cytometry
4.5. Quantitative Real-Time PCR (qRT-PCR) Analysis
4.6. Immunoblot Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Floreani, A.; Paternoster, D.; Mega, A.; Farinati, F.; Plebani, M.; Baldo, V.; Grella, P. Sex hormone profile and endometrial cancer risk in primary biliary cirrhosis: A case-control study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002, 103, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.M.; Gershwin, M.E. Primary biliary cirrhosis. N. Engl. J. Med. 2005, 353, 1261–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, C.; Giordano, D.M.; Maroni, L.; Marzioni, M. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Huebert, R.C.; Karlsen, T.; Strazzabosco, M.; LaRusso, N.F.; Gores, G.J. Cholangiocyte pathobiology. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Kilanczyk, E.; Ruminkiewicz, D.; Banales, J.M.; Milkiewicz, P.; Milkiewicz, M. DHEA protects human cholangiocytes and hepatocytes against apoptosis and oxidative stress. Cells 2022, 11, 1038. [Google Scholar] [CrossRef]
- Qazi, B.S.; Tang, K.; Qazi, A. Recent advances in underlying pathologies provide insight into interleukin-8 expression-mediated inflammation and angiogenesis. Int. J. Inflamm. 2011, 2011, 908468. [Google Scholar] [CrossRef] [Green Version]
- Eidelman, O.; Srivastava, M.; Zhang, J.; Leighton, X.; Murtie, J.; Jozwik, C.; Jacobson, K.; Weinstein, D.L.; Metcalf, E.L.; Pollard, H.B. Control of the proinflammatory state in cystic fibrosis lung epithelial cells by genes from the TNF-alphaR/NFkappaB pathway. Mol. Med. 2001, 7, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Reddi, K.; Phagoo, S.B.; Anderson, K.D.; Warburton, D. Burkholderia cepacia-induced IL-8 gene expression in an alveolar epithelial cell line: Signaling through CD14 and mitogen-activated protein kinase. Pediatr. Res. 2003, 54, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Iredale, J.P. Models of liver fibrosis: Exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Investig. 2007, 117, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.L.; Liu, Y.; Chen, J.L.; Huang, T.; Xu, L.J.; Godoy, P.; Hu, J.H.; Zhou, C.; Stickel, F.; Marx, A. The etiology of liver damage imparts cytokines transforming growth factor beta1 or interleukin-13 as driving forces in fibrogenesis. Hepatology 2009, 50, 230–243. [Google Scholar] [CrossRef]
- Liu, Y.; Munker, S.; Mullenbach, R.; Weng, H.L. IL-13 Signaling in Liver Fibrogenesis. Front. Immunol. 2012, 3, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, M.L. Estrogen, a double-edged sword: Modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr. Drug Targets-Inflamm. Allergy 2004, 3, 97–104. [Google Scholar] [CrossRef] [PubMed]
- AbdulHussain, G.; Azizieh, F.; Makhseed, M.; Raghupathy, R. Effects of Progesterone, Dydrogesterone and Estrogen on the Production of Th1/Th2/Th17 Cytokines by Lymphocytes from Women with Recurrent Spontaneous Miscarriage. J. Reprod. Immunol. 2020, 140, 103132. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.T.; Heaton, N.S. The Impact of Estrogens and Their Receptors on Immunity and Inflammation during Infection. Cancers 2022, 14, 909. [Google Scholar] [CrossRef] [PubMed]
- Javadian, A.; Salehi, E.; Bidad, K.; Sahraian, M.A.; Izad, M. Effect of estrogen on Th1, Th2 and Th17 cytokines production by proteolipid protein and PHA activated peripheral blood mononuclear cells isolated from multiple sclerosis patients. Arch. Med. Res. 2014, 45, 177–182. [Google Scholar] [CrossRef]
- Alvaro, D.; Alpini, G.; Onori, P.; Perego, L.; Svegliata Baroni, G.; Franchitto, A.; Baiocchi, L.; Glaser, S.S.; Le Sage, G.; Folli, F. Estrogens stimulate proliferation of intrahepatic biliary epithelium in rats. Gastroenterology 2000, 119, 1681–1691. [Google Scholar] [CrossRef]
- Alvaro, D.; Invernizzi, P.; Onori, P.; Franchitto, A.; De Santis, A.; Crosignani, A.; Sferra, R.; Ginanni-Corradini, S.; Mancino, M.G.; Maggioni, M. Estrogen receptors in cholangiocytes and the progression of primary biliary cirrhosis. J. Hepatol. 2004, 41, 905–912. [Google Scholar] [CrossRef]
- Alvaro, D.; Mancino, M.G.; Onori, P.; Franchitto, A.; Alpini, G.; Francis, H.; Glaser, S.; Gaudio, E. Estrogens and the pathophysiology of the biliary tree. World J. Gastroenterol. 2006, 12, 3537–3545. [Google Scholar] [CrossRef]
- Labrie, F.; Luu-The, V.; Belanger, A.; Lin, S.X.; Simard, J.; Pelletier, G.; Labrie, C. Is dehydroepiandrosterone a hormone? J. Endocrinol. 2005, 187, 169–196. [Google Scholar] [CrossRef]
- Rutkowski, K.; Sowa, P.; Rutkowska-Talipska, J.; Kuryliszyn-Moskal, A.; Rutkowski, R. Dehydroepiandrosterone (DHEA): Hypes and hopes. Drugs 2014, 74, 1195–1207. [Google Scholar] [CrossRef]
- Puche, R.C.; Nes, W.R. Binding of dehydroepiandrosterone sulfate to serum albumin. Endocrinology 1962, 70, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Wunsch, E.; Klak, M.; Wasik, U.; Milkiewicz, M.; Blatkiewicz, M.; Urasinska, E.; Barbier, O.; Bielicki, D.; Bogdanos, D.P.; Elias, E. Liver Expression of Sulphotransferase 2A1 Enzyme Is Impaired in Patients with Primary Sclerosing Cholangitis: Lack of the Response to Enhanced Expression of PXR. J. Immunol. Res. 2015, 2015, 571353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahboucha, S.; Pomier-Layrargues, G.; Vincent, C.; Hassoun, Z.; Tamaz, R.; Baker, G.; Butterworth, R.F. Reduced plasma dehydroepiandrosterone sulfate levels are significantly correlated with fatigue severity in patients with primary biliary cirrhosis. Neurochem. Int. 2008, 52, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, R.F.; Lalonde, R.; Power, C.; Baker, G.B.; Gamrani, H.; Ahboucha, S. Dehydroepiandrosterone sulphate improves cholestasis-associated fatigue in bile duct ligated rats. Neurogastroenterol. Motil. 2009, 21, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Wronka, K.M.; Wunsch, E.; Kozlowska-Petriczko, K.; Wojcicki, M.; Kruk, B.; Milkiewicz, P. Dehydroepiandrosterone sulfate indicates decreased sulfation capacity and impaired quality of life in patients with primary sclerosing cholangitis. Pol. Arch. Intern. Med. 2021, 131, 790–796. [Google Scholar]
- Vegeto, E.; Benedusi, V.; Maggi, A. Estrogen anti-inflammatory activity in brain: A therapeutic opportunity for menopause and neurodegenerative diseases. Front. Neuroendocrinol. 2008, 29, 507–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev. 2007, 28, 521–574. [Google Scholar] [CrossRef] [Green Version]
- Pelekanou, V.; Kampa, M.; Kiagiadaki, F.; Deli, A.; Theodoropoulos, P.; Agrogiannis, G.; Patsouris, E.; Tsapis, A.; Castanas, E.; Notas, G. Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk between estrogen receptor ERalpha36 and GPR30/GPER1. J. Leukoc. Biol. 2016, 99, 333–347. [Google Scholar] [CrossRef]
- Frederiksen, H.; Johannsen, T.H.; Andersen, S.E.; Albrethsen, J.; Landersoe, S.K.; Petersen, J.H.; Andersen, A.N.; Vestergaard, E.T.; Schorring, M.E.; Linneberg, A. Sex-specific Estrogen Levels and Reference Intervals from Infancy to Late Adulthood Determined by LC-MS/MS. J. Clin. Endocrinol. Metab. 2020, 105, 754–768. [Google Scholar] [CrossRef]
- Sun, S.; Xu, B.; Tan, W.; Xiang, X.; Zhou, Y.; Dan, Y.; Guo, Y.; Tan, Z.; Deng, G. Testosterone and Estradiol as Novel Prognostic Indicators for HBV-Related Acute-on-Chronic Liver Failure. Front. Med. 2021, 8, 729030. [Google Scholar] [CrossRef]
- Sinclair, M.; Grossmann, M.; Angus, P.W.; Hoermann, R.; Hey, P.; Scodellaro, T.; Gow, P.J. Low testosterone as a better predictor of mortality than sarcopenia in men with advanced liver disease. J. Gastroenterol. Hepatol. 2016, 31, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, M.; Hoermann, R.; Gani, L.; Chan, I.; Cheung, A.; Gow, P.J.; Li, A.; Zajac, J.D.; Angus, P. Low testosterone levels as an independent predictor of mortality in men with chronic liver disease. Clin. Endocrinol. 2012, 77, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Mauduit, C.; Hartmann, D.J.; Chauvin, M.A.; Revol, A.; Morera, A.M.; Benahmed, M. Tumor necrosis factor alpha inhibits gonadotropin action in cultured porcine Leydig cells: Site(s) of action. Endocrinology 1991, 129, 2933–2940. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhu, B.; Qu, Y.; Zhang, W. Abnormal Expression of ERalpha in Cholangiocytes of Patients With Primary Biliary Cholangitis Mediated Intrahepatic Bile Duct Inflammation. Front. Immunol. 2019, 10, 2815. [Google Scholar] [CrossRef] [Green Version]
- Neuman, M.; Angulo, P.; Malkiewicz, I.; Jorgensen, R.; Shear, N.; Dickson, E.R.; Haber, J.; Katz, G.; Lindor, K. Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J. Gastroenterol. Hepatol. 2002, 17, 196–202. [Google Scholar] [CrossRef]
- Tiegs, G.; Horst, A.K. TNF in the liver: Targeting a central player in inflammation. Semin. Immunopathol. 2022, 44, 445–459. [Google Scholar] [CrossRef]
- Gabele, E.; Froh, M.; Arteel, G.E.; Uesugi, T.; Hellerbrand, C.; Scholmerich, J.; Brenner, D.A.; Thurman, R.G.; Rippe, R.A. TNFalpha is required for cholestasis-induced liver fibrosis in the mouse. Biochem. Biophys. Res. Commun. 2009, 378, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Samperio, P.; Garcia, E.; Vazquez, A.; Palma, J. Regulation of interleukin-8 by interleukin-10 and transforming growth factor beta in human monocytes infected with mycobacterium bovis. Clin. Vaccine Immunol. 2002, 9, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Chuang, Y.H.; Lian, Z.X.; Tsuneyama, K.; Chiang, B.L.; Ansari, A.A.; Coppel, R.L.; Gershwin, M.E. Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J. Autoimmun. 2006, 26, 232–240. [Google Scholar] [CrossRef]
- Liu, G.; Wang, X.; Yang, T.; Yan, Y.; Xiang, T.; Yang, L.; Luo, X. High Interleukin-8 Levels Associated With Decreased Survival in Patients With Cirrhosis Following Transjugular Intrahepatic Portosystemic Shunt. Front. Med. 2022, 9, 829245. [Google Scholar] [CrossRef]
- Zimmermann, H.W.; Seidler, S.; Gassler, N.; Nattermann, J.; Luedde, T.; Trautwein, C.; Tacke, F. Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS ONE 2011, 6, e21381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umemura, T.; Sekiguchi, T.; Joshita, S.; Yamazaki, T.; Fujimori, N.; Shibata, S.; Ichikawa, Y.; Komatsu, M.; Matsumoto, A.; Shums, Z. Association between serum soluble CD14 and IL-8 levels and clinical outcome in primary biliary cholangitis. Liver Int. 2017, 37, 897–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erice, O.; Munoz-Garrido, P.; Vaquero, J.; Perugorria, M.J.; Fernandez-Barrena, M.G.; Saez, E.; Santos-Laso, A.; Arbelaiz, A.; Jimenez-Aguero, R.; Fernandez-Irigoyen, J. MicroRNA-506 promotes primary biliary cholangitis-like features in cholangiocytes and immune activation. Hepatology 2018, 67, 1420–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.R.; Ryu, S.Y.; Kim, H.S.; Choi, B.M.; Lee, E.J.; Kim, H.M.; Chung, H.T. Administration of dehydroepiandrosterone reverses the immune suppression induced by high dose antigen in mice. Immunol. Investig. 1995, 24, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Tanaka, S.; Yamada, Y.; Kiuchi, Y.; Yamakawa, T.; Sekihara, H. Dehydroepiandrosterone decreases serum tumor necrosis factor-alpha and restores insulin sensitivity: Independent effect from secondary weight reduction in genetically obese Zucker fatty rats. Endocrinology 1998, 139, 3249–3253. [Google Scholar] [CrossRef]
- Tabata, N.; Tagami, H.; Terui, T. Dehydroepiandrosterone may be one of the regulators of cytokine production in atopic dermatitis. Arch. Dermatol. Res. 1997, 289, 410–414. [Google Scholar] [CrossRef]
- Alexaki, V.I.; Fodelianaki, G.; Neuwirth, A.; Mund, C.; Kourgiantaki, A.; Ieronimaki, E.; Lyroni, K.; Troullinaki, M.; Fujii, C.; Kanczkowski, W. DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol. Psychiatry 2018, 23, 1410–1420. [Google Scholar] [CrossRef]
- Barkhausen, T.; Hildebrand, F.; Krettek, C.; van Griensven, M. DHEA-dependent and organ-specific regulation of TNF-alpha mRNA expression in a murine polymicrobial sepsis and trauma model. Crit. Care 2009, 13, R114. [Google Scholar] [CrossRef] [Green Version]
- Fichtner-Feigl, S.; Strober, W.; Kawakami, K.; Puri, R.K.; Kitani, A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat. Med. 2006, 12, 99–106. [Google Scholar] [CrossRef]
- Alves Oliveira, L.F.; Moreno, E.C.; Gazzinelli, G.; Martins-Filho, O.A.; Silveira, A.M.; Gazzinelli, A.; Malaquias, L.C.; LoVerde, P.; Leite, P.M.; Correa-Oliveira, R. Cytokine production associated with periportal fibrosis during chronic schistosomiasis mansoni in humans. Infect. Immun. 2006, 74, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Guler, S.A.; Machahua, C.; Geiser, T.K.; Kocher, G.; Marti, T.M.; Tan, B.; Trappetti, V.; Ryerson, C.J.; Funke-Chambour, M. Dehydroepiandrosterone in fibrotic interstitial lung disease: A translational study. Respir. Res. 2022, 23, 149. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, H.; Yao, Y.; Cao, J.; Jiang, Z.; Yan, W.; Chu, X.; Li, Q.; Lu, M.; Ma, H. The sex steroid precursor dehydroepiandrosterone prevents nonalcoholic steatohepatitis by activating the AMPK pathway mediated by GPR30. Redox Biol. 2021, 48, 102187. [Google Scholar] [CrossRef] [PubMed]
Parameters | Patients | |
---|---|---|
PBC < 40 Correlation Coefficient (r) | PBC > 65 Correlation Coefficient (r) | |
IL-1β and TNF-α | 0.767 (p < 0.0001) | 0.934 (p < 0.0001) |
IL-1β and IL-10 | 0.549 (p = 0.001) | 0.729 (p < 0.0001) |
IL-1β and IL-12p70 | 0.328 (p = 0.046) | |
IL-10 and TNF- α | 0.737 (p < 0.0001) | 0.486 (p = 0.009) |
TNF-α and IL-12p70 | 0.414 (p = 0.008) | |
E3 and IL-1β | −0.523 (p = 0.0026) | |
E3 and IL-10 | −0.423 (p = 0.027) | |
E3 and TNF-α E3 and IL-13 | −0.401 (p = 0.027) 0.572 (p = 0.0007) | |
E2 and IL-8 | −0.542 (p = 0.002) | |
IL-13 and IL-1β | −0.507 (p = 0.0037) | |
IL-13 and TNF-α | −0.390 (p = 0.0325) | |
IL-8 and IL-1β | 0.382 (p = 0.036) | |
IL-8 and IL-10 | 0.397 (p = 0.039) |
Parameters | Patients | |
---|---|---|
PBC < 40 (n = 37) | PBC > 65 (n = 29) | |
Age of diagnosis (years, range) | 34 ± 4 (24–39) | 74 ± 5 (67–82) |
Age of the study (years, range) | 39 ± 7 (29–56) | 76 ± 6 (68–87) |
ALP (IU/L: normal: 40–120) | 384 ± 335 | 320 ± 198 |
Bilirubin (mg/dL: normal: 0.2–1.0) | 1.7 ± 2.4 | 2.6 ± 3.9 |
Total cholesterol (mg/dL: normal: 114–200) | 237 ± 86 | 229 ± 45 |
Liver fibrosis stages (F0–F3/F4) | 32/5 | 20/9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blatkiewicz, M.; Sielatycka, K.; Piotrowska, K.; Kilańczyk, E. DHEA and Its Metabolites Reduce the Cytokines Involved in the Inflammatory Response and Fibrosis in Primary Biliary Cholangitis. Int. J. Mol. Sci. 2023, 24, 5301. https://doi.org/10.3390/ijms24065301
Blatkiewicz M, Sielatycka K, Piotrowska K, Kilańczyk E. DHEA and Its Metabolites Reduce the Cytokines Involved in the Inflammatory Response and Fibrosis in Primary Biliary Cholangitis. International Journal of Molecular Sciences. 2023; 24(6):5301. https://doi.org/10.3390/ijms24065301
Chicago/Turabian StyleBlatkiewicz, Małgorzata, Katarzyna Sielatycka, Katarzyna Piotrowska, and Ewa Kilańczyk. 2023. "DHEA and Its Metabolites Reduce the Cytokines Involved in the Inflammatory Response and Fibrosis in Primary Biliary Cholangitis" International Journal of Molecular Sciences 24, no. 6: 5301. https://doi.org/10.3390/ijms24065301
APA StyleBlatkiewicz, M., Sielatycka, K., Piotrowska, K., & Kilańczyk, E. (2023). DHEA and Its Metabolites Reduce the Cytokines Involved in the Inflammatory Response and Fibrosis in Primary Biliary Cholangitis. International Journal of Molecular Sciences, 24(6), 5301. https://doi.org/10.3390/ijms24065301