Baseline Susceptibility, Cross-Resistance, and Sublethal Effects of Broflanilide, a Novel Meta-Diamide Pesticide, in Spodoptera litura
Abstract
:1. Introduction
2. Results
2.1. Toxicity and Baseline Susceptibility of S. litura to Broflanilide
2.2. Cross-Resistance to Broflanilide and Three Other Popular Insecticides
2.3. Sublethal Effects of Broflanilide in S. litura
2.4. Detoxifying Enzyme Activity in LC25-Treated Insects
3. Discussion
4. Materials and Methods
4.1. Insects
4.2. Insecticides and Chemicals
4.3. Bioassays
4.4. Evaluation of Sublethal Broflanilide Effects on S. litura
4.5. Detoxifying Enzyme Assays in LC25-Treated Insects
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakao, T.; Banba, S. Broflanilide: A meta-diamide insecticide with a novel mode of action. Bioorg. Med. Chem. 2016, 24, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification–a tool for resistance management. Pestic. Biochem. Physiol. 2020, 167, 104587. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Hu, F.; Wang, P.; Fu, W.; Liu, X. Broflanilide effectively controls Helicoverpa armigera and Spodoptera exigua exhibiting diverse susceptibilities to chlorantraniliprole and emamectin benzoate. Pest Manag. Sci. 2021, 77, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Liu, H.; Mou, T.; Ma, Y.; Li, Y.; Song, Z.; Tang, T.; Han, Z.; Zhao, C. Novel meta-diamide insecticide, broflanilide, suppresses the population of common cutworm Spodoptera litura through its lethal and sublethal effects. Pest Manag. Sci. 2022, 78, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, T.; Tang, P.; Liu, S.; Hou, B.; Jiang, D.; Lu, J.; Yang, Y.; Carrière, Y.; Wu, Y. Baseline susceptibility of Helicoverpa armigera, Plutella xylostella, and Spodoptera frugiperda to the meta-diamide insecticide broflanilide. Insect Sci. 2022. [Google Scholar] [CrossRef]
- Shen, N.; Li, Y.; Leviticus, K.; Chang, X.; Tang, T.; Cui, L.; Han, Z.; Zhao, C. Effect of broflanilide on the phytophagous mite Tetranychus urticae and the predatory mite Typhlodromips swirskii. Pest Manag. Sci. 2021, 77, 2964–2970. [Google Scholar] [CrossRef]
- Chen, J.; Cao, L.; Sun, L.; Gao, Y.; Cao, H.; Ma, Z.; Ma, L.; Shen, X.; Wang, J.; Gong, Y.; et al. Variation in the toxicity of a novel meta-diamide insecticide, broflanilide, among thrips pest species and developmental stages. Pest Manag. Sci. 2022, 78, 5090–5096. [Google Scholar] [CrossRef]
- Li, R.; Cheng, S.; Chen, Z.; Guo, T.; Liang, P.; Zhen, C.; Wang, J.; Zhang, L.; Liang, P.; Gao, X. Establishment of toxicity and susceptibility baseline of broflanilide for Aphis gossypii Glove. Insects 2022, 13, 1033. [Google Scholar] [CrossRef]
- Sun, X.; Wei, R.; Li, L.; Zhu, B.; Liang, P.; Gao, X. Resistance and fitness costs in diamondback moths after selection using broflanilide, a novel meta-diamide insecticide. Insect Sci. 2022, 29, 188–198. [Google Scholar] [CrossRef]
- Xu, S.; Wu, Y.; Li, B.; Shi, X.; Xiong, Z. Toxicity of broflanilide on major rice pests and its influence on natural enemies in paddy fields. J. Plant Prot. 2019, 46, 574–581. [Google Scholar]
- Desneux, N.; Fauvergue, X.; Dechaume-Moncharmont, F.X.; Kerhoas, L.; Ballanger, Y.; Kaiser, L. Diaeretiella rapae limits Myzus persicae populations following applications of deltamethrin in oilseed rape. J. Econ. Entomol. 2005, 98, 9–17. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.R.; Istchuk, A.N.; Foresti, J.; Hunt, T.E.; de Araújo, T.A.; Fernandes, F.L.; de Alencar, E.R.; Bastos, C.S. Economic injury levels and economic thresholds for Diceraeus (Dichelops) melacanthus (Hemiptera: Pentatomidae) in vegetative maize. Crop Prot. 2021, 143, 105476. [Google Scholar] [CrossRef]
- Wang, R.; Zheng, H.; Qu, C.; Wang, Z.; Kong, Z.; Luo, C. Lethal and sublethal effects of a novel cis-nitromethylene neonicotinoid insecticide, cycloxaprid, on Bemisia tabaci. Crop Prot. 2016, 83, 15–19. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, W.; Che, W.; Qu, C.; Li, F.; Desneux, N.; Luo, C. Lethal and sublethal effects of cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci (Hemiptera: Aleyrodidae) MED. Crop Prot. 2017, 91, 108–113. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, J.; Luo, C.; Wang, R. Lethal and sublethal effects of clothianidin on the development and reproduction of Bemisia tabaci (Hemiptera: Aleyrodidae) MED and MEAM1. J. Insect Sci. 2018, 18, 37. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.; Zhang, W.; Li, F.; Tetreau, G.; Luo, C.; Wang, R. Lethal and sublethal effects of dinotefuran on two invasive whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae) J. Asia-Pac. Entomol. 2017, 20, 325–330. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Zheng, H.; Zhang, Q.; Gong, J.; Li, C.; Wang, R. Physiological and biochemical responses to sublethal concentrations of the novel pyropene insecticide, afidopyropen, in whitefly Bemisia tabaci MED. Agronomy 2021, 11, 2260. [Google Scholar] [CrossRef]
- Han, W.; Zhang, S.; Shen, F.; Liu, M.; Ren, C.; Gao, X. Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag. Sci. 2012, 68, 1184–1190. [Google Scholar] [CrossRef]
- Cutler, G.C. Insects, insecticides and hormesis: Evidence and considerations for study. Dose-Response 2013, 11, 154–177. [Google Scholar] [CrossRef]
- Cutler, G.C.; Amichot, M.; Benelli, G.; Guedes, R.N.C.; Qu, Y.; Rix, R.R.; Ullah, F.; Desneux, N. Hormesis and insects: Effects and interactions in agroecosystems. Sci. Total Environ. 2022, 823, 153899. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Smagghe, G.; Stark, J.D.; Desneux, N. Pesticide induced stress in Arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 2016, 61, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ge, L.; Liu, F.; Song, Q.; Stanley, D. Pesticide-induced planthopper population resurgence in rice cropping systems. Annu. Rev. Entomol. 2019, 65, 409–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takatsuka, J.; Okuno, S.; Nakai, M.; Kunimi, Y. Genetic and phenotypic comparisons of viral genotypes from two nucleopolyhedroviruses interacting with a common host species, Spodoptera litura (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 2016, 139, 42–49. [Google Scholar] [CrossRef]
- Gong, J.; Cheng, T.; Wu, Y.; Yang, X.; Feng, Q.; Mita, K. Genome-wide patterns of copy number variations in Spodoptera litura. Genomics 2019, 111, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Sayyed, A.H.; Saleem, M.A.; Ahmad, M. Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot. 2008, 27, 1367–1372. [Google Scholar] [CrossRef]
- Shad, S.A.; Sayyed, A.H.; Fazal, S.; Saleem, M.A.; Zaka, S.M.; Ali, M. Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura Fab. (Lepidoptera: Noctuidae). J. Pest. Sci. 2012, 85, 153–162. [Google Scholar] [CrossRef]
- Tong, H.; Su, Q.; Zhou, X.; Bai, L. Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. J. Pest. Sci. 2013, 86, 599–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Huang, Q.; Hao, Q.; Ran, S.; Wu, Y.; Cui, P.; Yang, J.; Jiang, C.; Yang, Q. Insecticide resistance and enhanced cytochrome P450 monooxygenase activity in field populations of Spodoptera litura from Sichuan, China. Crop Prot. 2018, 106, 110–116. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, X.; Yao, X.; Gong, C.; Shen, L. Effects of bistrifluron resistance on the biological traits of Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). Ecotoxicology 2019, 28, 323–332. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Liu, H.; Chen, X.; Zhou, L. Metabolism and antioxidant activity of SlGSTD1 in Spodoptera litura as a detoxification enzyme to pyrethroids. Sci. Rep. 2022, 12, 10108. [Google Scholar] [CrossRef]
- Hou, W.; Staehelin, C.; Elzaki, M.E.A.; Hafeez, M.; Luo, Y.; Wang, R. Functional analysis of CYP6AE68, a cytochrome P450 gene associated with indoxacarb resistance in Spodoptera litura (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 2021, 178, 104946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, B.; Qu, C.; Gong, J.; Li, W.; Luo, C.; Wang, R. Resistance monitoring for six insecticides in vegetable field-collected populations of Spodoptera litura from China. Horticulturae 2022, 8, 255. [Google Scholar] [CrossRef]
- APRD. Arthropod Pesticide Resistance Database. 2022. Available online: https://www.pesticideresistance.org/ (accessed on 21 May 2022).
- Nakao, T.; Banba, S.; Nomura, M.; Hirase, K. Metadiamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists. Insect Biochem. Mol. Biol. 2013, 43, 366–375. [Google Scholar] [CrossRef]
- Lees, R.S.; Ambrose, P.; Williams, J.; Morgan, J.; Praulins, G.; Ingham, V.A.; Williams, C.T.; Logan, R.A.E.; Ismail, H.M.; Malone, D. Tenebenal: A meta-diamide with potential for use as a novel mode of action insecticide for public health. Malar. J. 2020, 19, 398. [Google Scholar] [CrossRef] [PubMed]
- Ngufor, C.; Govoetchan, R.; Fongnikin, A.; Vigninou, E.; Syme, T.; Akogbeto, M.; Rowland, M. Efficacy of broflanilide (VECTRON T500), a new meta-diamide insecticide, for indoor residual spraying against pyrethroid-resistant malaria vectors. Sci. Rep. 2021, 11, 7976. [Google Scholar] [CrossRef]
- Zhu, Q.; He, Y.; Yao, J.; Liu, Y.; Tao, L.; Huang, Q. Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura. J. Insect Sci. 2012, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Jia, Z.; Peng, Y.; Sheng, C.; Tao, T.; Xu, L.; Han, Z.; Zhao, C. Toxicity and sublethal effects of fluralaner on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 2018, 152, 8–16. [Google Scholar] [CrossRef]
- Kong, F.; Song, Y.; Zhang, Q.; Wang, Z.; Liu, Y. Sublethal effects of chlorantraniliprole on Spodoptera litura (Lepidoptera: Noctuidae) moth: Implication for attract-and-kill strategy. Toxics 2021, 9, 20. [Google Scholar] [CrossRef]
- Jia, Z.; Zhan, E.; Zhang, S.; Jones, A.K.; Zhu, L.; Wang, Y.; Huang, Q.T.; Han, Z.; Zhao, C. Sublethal doses of broflanilide prevents molting in the fall armyworm, Spodoptera frugiperda via altering molting hormone biosynthesis. Pestic. Biochem. Physiol. 2022, 181, 105017. [Google Scholar] [CrossRef]
- Wang, R.; Fang, Y.; Che, W.; Zhang, Q.; Wang, J.; Luo, C. The toxicity, sublethal effects, and biochemical mechanism of β-asarone, a potential plant-derived insecticide, against Bemisia tabaci. Int. J. Mol. Sci. 2022, 23, 10462. [Google Scholar] [CrossRef] [PubMed]
- Raoufi, H.; Jafari, S.; Ghadamyari, M.; Arbabi, M. Lethal and sublethal effects of fenazaquin and acequinocyl on demographic and some biochemical parameters of Panonychus citri (McGregor) (Acari: Tetranychidae). Int. J. Acarol. 2021, 48, 27–35. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, H.; Zhu, J.; Liu, F. Transcriptome analysis to identify responsive genes under sublethal concentration of bifenazate in the diamondback moth, Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Int. J. Mol. Sci. 2022, 23, 13173. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhao, J.; Xu, D.; Xu, G.; Gu, Z.; Xiao, Z.; Dewer, Y.; Zhang, Y. Application of transcriptomic analysis to unveil the toxicity mechanisms of fall armyworm response after exposure to sublethal chlorantraniliprole. Ecotoxicol. Environ. Saf. 2022, 230, 113145. [Google Scholar] [CrossRef]
- Su, J.; Lai, T.; Li, J. Susceptibility of field populations of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Prot. 2012, 42, 217–222. [Google Scholar] [CrossRef]
- Pu, X.; Yang, Y.; Wu, S.; Wu, Y. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Manag. Sci. 2010, 66, 371–378. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- LeOra Software. Polo Plus; A User’s Guide to Probit or Logit Analysis; LeOra Software: Berkeley, CA, USA, 2002.
- SPSS. Release 13.0 Version for Windows; SPSS: Chicago, IL, USA, 2011. [Google Scholar]
Insecticide | N a | LC50 (95% CL) (mg L−1) b | Slope ± SE | X2 (df) |
---|---|---|---|---|
Broflanilide | 200 | 0.08 (0.06–0.10) | 2.09 ± 0.31 | 1.16 (3) |
Abamectin | 200 | 0.10 (0.08–0.13) | 1.68 ± 0.25 | 2.50 (3) |
Tetraniliprole | 200 | 0.19 (0.15–0.24) | 1.85 ± 0.13 | 2.10 (3) |
Spinetoram | 200 | 0.46 (0.31–0.60) | 1.69 ± 0.26 | 1.28 (3) |
Chlorfenapyr | 200 | 0.88 (0.69–1.12) | 1.89 ± 0.26 | 1.15 (3) |
Chromafenozide | 200 | 0.91 (0.73–1.12) | 2.22 ± 0.28 | 1.60 (3) |
Pyridalyl | 200 | 1.22 (0.93–1.54) | 1.97 ± 0.27 | 1.24 (3) |
Cyantraniliprole | 200 | 1.32 (0.96–1.72) | 1.67 ± 0.25 | 0.96 (3) |
Chlorantraniliprole | 200 | 2.21 (1.57–3.21) | 1.26 ± 0.25 | 0.91 (3) |
Metaflumizone | 200 | 3.61 (2.52–4.79) | 1.55 ± 0.25 | 0.81 (3) |
Flubendiamide | 200 | 9.95 (8.37–11.82) | 1.43 ± 0.13 | 2.53 (3) |
Insecticide | Strain | N a | LC50 (95% CL) (mg/L) b | Slope ± SE | χ2 (df) | RR c |
---|---|---|---|---|---|---|
Broflanilide | Lab-S | 200 | 0.06 (0.05–0.07) | 2.56 ± 0. 33 | 2.03 (3) | |
GZ | 200 | 0.20 (0.16–0.26) | 1.76 ± 0.25 | 2.62 (3) | 3.3 | |
YX | 200 | 0.11 (0.08–0.14) | 1.70 ± 0.26 | 2.34 (3) | 1.8 | |
ND | 200 | 0.13 (0.11–0.15) | 1.71 ± 0.15 | 1.45 (3) | 2.1 | |
Metaflumizone | Lab-S | 200 | 4.64 (3.17–6.21) | 1.51 ± 0.25 | 2.80 (3) | |
GZ | 200 | 373.21 (300.98–460.38) | 2.27 ± 0.28 | 1.62 (3) | 80.4 | |
YX | 200 | 300.04 (239.71–365.52) | 2.49 ± 0.31 | 1.22 (3) | 64.7 | |
ND | 200 | 240.18 (184.11–311.72) | 1.74 ± 0.25 | 1.57 (3) | 51.8 | |
Chlorantraniliprole | Lab-S | 200 | 3.36 (2.59–4.29) | 1.84 ± 0.25 | 2.30 (3) | |
GZ | 200 | 290.38 (221.52–400.66) | 1.62 ± 0.24 | 1.45 (3) | 86.4 | |
YX | 200 | 189.45 (146.00–245.35) | 1.77 ± 0.25 | 2.97 (3) | 56.4 | |
ND | 200 | 200.51 (150.78–256.41) | 1.83 ± 0.26 | 1.14 (3) | 59.7 | |
Pyridalyl | Lab-S | 200 | 1.18 (0.88–1.51) | 1.87 ± 0.17 | 1.77 (3) | |
GZ | 200 | 57.56 (41.06–75.21) | 1.68 ± 0.25 | 2.05 (3) | 48.8 | |
YX | 200 | 92.37 (64.91–120.09) | 1.82 ± 0.27 | 1.22 (3) | 78.3 | |
ND | 200 | 47.81 (35.11–64.60) | 1.48 ± 0.24 | 1.01 (3) | 40.5 |
Treatment | P450 Activity | EST Activity | GST Activity | |||
---|---|---|---|---|---|---|
nmol min−1 mg−1 | Ratio b | nmol min−1 mg−1 | Ratio b | nmol min−1 mg−1 | Ratio b | |
CK | 0.031 ± 0.003 | 115.71 ± 4.9 | 733.4 ± 20.1 | |||
LC25 | 0.050 ± 0.004 * | 1.6 | 130.14 ± 6.2 | 1.1 | 1255.3 ± 35.8 * | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Qu, C.; Zhang, Q.; Zhang, L.; Luo, C.; Wang, R. Baseline Susceptibility, Cross-Resistance, and Sublethal Effects of Broflanilide, a Novel Meta-Diamide Pesticide, in Spodoptera litura. Int. J. Mol. Sci. 2023, 24, 5351. https://doi.org/10.3390/ijms24065351
Li Y, Qu C, Zhang Q, Zhang L, Luo C, Wang R. Baseline Susceptibility, Cross-Resistance, and Sublethal Effects of Broflanilide, a Novel Meta-Diamide Pesticide, in Spodoptera litura. International Journal of Molecular Sciences. 2023; 24(6):5351. https://doi.org/10.3390/ijms24065351
Chicago/Turabian StyleLi, Yunyi, Cheng Qu, Qinghe Zhang, Liping Zhang, Chen Luo, and Ran Wang. 2023. "Baseline Susceptibility, Cross-Resistance, and Sublethal Effects of Broflanilide, a Novel Meta-Diamide Pesticide, in Spodoptera litura" International Journal of Molecular Sciences 24, no. 6: 5351. https://doi.org/10.3390/ijms24065351
APA StyleLi, Y., Qu, C., Zhang, Q., Zhang, L., Luo, C., & Wang, R. (2023). Baseline Susceptibility, Cross-Resistance, and Sublethal Effects of Broflanilide, a Novel Meta-Diamide Pesticide, in Spodoptera litura. International Journal of Molecular Sciences, 24(6), 5351. https://doi.org/10.3390/ijms24065351