Lifetime Evaluation of Left Ventricular Structure and Function in Male C57BL/6J Mice after Gamma and Space-Type Radiation Exposure
Abstract
:1. Introduction
2. Results
2.1. Effects of Irradiation on Physical Parameters in Mice
2.2. Acutely Altered LV Function following Irradiation
2.3. Degeneratively Altered LV Function following Irradiation
2.4. Perivascular Fibrosis in LV
2.5. Expression of Markers of Cardiac Hypertrophy, Fibrosis, and Inflammation
2.6. Circulating Cardiac Markers of Hemodynamic Stress and Endothelial Dysfunction
2.7. BMD Dose-Response Modeling
2.8. Dose-Response Models with Dichotomized Data
2.9. RBE and RER Calculations
3. Discussion
3.1. Early Effects
3.2. Degenerative Effects
3.3. Cardiac Remodeling
3.4. Individual Variation
3.5. RBE and RER
4. Materials and Methods
4.1. Animal Procedures
4.2. Irradiation Procedures
4.3. Echocardiography
4.4. Total RNA Isolation and RT-qPCR Analysis
4.5. Histological Analyses
4.6. Assessment of Plasma Cytokines
4.7. Assessment of Hemodynamic Stress
4.8. Modeling Code and Software
4.9. Dose-Response Modeling
4.10. RBE and RER Calculations
4.11. Statistics
4.11.1. For Echocardiography and Serum Markers
4.11.2. For Modeling
4.12. Study Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Bronnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Cutter, D.J.; Schaapveld, M.; Darby, S.C.; Hauptmann, M.; van Nimwegen, F.A.; Krol, A.D.; Janus, C.P.; van Leeuwen, F.E.; Aleman, B.M. Risk of valvular heart disease after treatment for Hodgkin lymphoma. J. Natl. Cancer Inst. 2015, 107, djv008. [Google Scholar] [CrossRef]
- Wang, H.; Wei, J.; Zheng, Q.; Meng, L.; Xin, Y.; Yin, X.; Jiang, X. Radiation-induced heart disease: A review of classification, mechanism and prevention. Int. J. Biol. Sci. 2019, 15, 2128–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghunathan, D.; Khilji, M.I.; Hassan, S.A.; Yusuf, S.W. Radiation-Induced Cardiovascular Disease. Curr. Atheroscler. Rep. 2017, 19, 22. [Google Scholar] [CrossRef]
- Barcellos-Hoff, M.H.; Mao, J.H. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis. Front. Oncol. 2016, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Shuryak, I.; Fornace, A.J., Jr.; Datta, K.; Suman, S.; Kumar, S.; Sachs, R.K.; Brenner, D.J. Scaling Human Cancer Risks from Low LET to High LET when Dose-Effect Relationships are Complex. Radiat. Res. 2017, 187, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Sasi, S.P.; Gee, H.; Lee, J.; Yang, Y.; Mehrzad, R.; Onufrak, J.; Song, J.; Enderling, H.; Agarwal, A.; et al. Cardiovascular risks associated with low dose ionizing particle radiation. PLoS ONE 2014, 9, e110269. [Google Scholar] [CrossRef] [Green Version]
- Sasi, S.P.; Yan, X.; Zuriaga-Herrero, M.; Gee, H.; Lee, J.; Mehrzad, R.; Song, J.; Onufrak, J.; Morgan, J.; Enderling, H.; et al. Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. Radiat. Res. 2017, 188, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Tungjai, M.; Whorton, E.B.; Rithidech, K.N. Persistence of apoptosis and inflammatory responses in the heart and bone marrow of mice following whole-body exposure to 28Silicon (28Si) ions. Radiat. Environ. Biophys. 2013, 52, 339–350. [Google Scholar] [CrossRef]
- Garikipati, V.N.S.; Arakelyan, A.; Blakely, E.A.; Chang, P.Y.; Truongcao, M.M.; Cimini, M.; Malaredy, V.; Bajpai, A.; Addya, S.; Bisserier, M.; et al. Long-Term Effects of Very Low Dose Particle Radiation on Gene Expression in the Heart: Degenerative Disease Risks. Cells 2021, 10, 387. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, M.L.; Kassiri, Z.; Virag, J.A.I.; de Castro Bras, L.E.; Scherrer-Crosbie, M. Guidelines for measuring cardiac physiology in mice. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H733–H752. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.; Fang, J.C.; Borlaug, B.A. Hemodynamics for the Heart Failure Clinician: A State-of-the-Art Review. J. Card. Fail. 2022, 28, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Gardin, J.M.; Siri, F.M.; Kitsis, R.N.; Edwards, J.G.; Leinwand, L.A. Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ. Res. 1995, 76, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Scherrer-Crosbie, M.; Thibault, H.B. Echocardiography in translational research: Of mice and men. J. Am. Soc. Echocardiogr. 2008, 21, 1083–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, Y.; Sakata, Y.; Higashimori, M.; Mano, T.; Nishio, M.; Ohtani, T.; Hori, M.; Masuyama, T.; Kaneko, M.; Yamamoto, K. Noninvasive assessment of wall distensibility with the evaluation of diastolic epicardial movement. J. Card. Fail. 2009, 15, 68–77. [Google Scholar] [CrossRef]
- Li, V.W.; Cheuk, D.K.; Cheng, F.W.; Yang, J.Y.; Yau, J.P.; Ho, K.K.; Li, C.K.; Li, R.C.; Yuen, H.L.; Ling, A.S.; et al. Myocardial stiffness as assessed by diastolic wall strain in adult survivors of childhood leukaemias with preserved left ventricular ejection fraction. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Frangogiannis, N.G. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol. Asp. Med. 2019, 65, 70–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ni, J.; Li, L.; Sarhene, M.; Guo, R.; Bian, X.; Liu, X.; Fan, G. SERCA2a: A key protein in the Ca2+ cycle of the heart failure. Heart Fail. Rev. 2020, 25, 523–535. [Google Scholar] [CrossRef]
- Niu, J.; Kolattukudy, P.E. Role of MCP-1 in cardiovascular disease: Molecular mechanisms and clinical implications. Clin. Sci. 2009, 117, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Krenz, M.; Robbins, J. Impact of beta-myosin heavy chain expression on cardiac function during stress. J. Am. Coll. Cardiol. 2004, 44, 2390–2397. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, Y.; Nishikimi, T.; Kuwahara, K. Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides 2019, 111, 18–25. [Google Scholar] [CrossRef]
- Gurbel, P.A.; Serebruany, V.L.; Shustov, A.R.; Dalesandro, M.; Gumbs, C.I.; Grablutz, L.B.; Bahr, R.D.; Ohman, E.M.; Topol, E.J. Increased baseline levels of platelet P-selectin, and platelet-endothelial cell adhesion molecule-1 in patients with acute myocardial infarction as predictors of unsuccessful thrombolysis. Coron. Artery Dis. 1998, 9, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Serebruany, V.L.; Gurbel, P.A. Effect of thrombolytic therapy on platelet expression and plasma concentration of PECAM-1 (CD31) in patients with acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Castellino, F.J.; Ploplis, V.A. Plasminogen activator inhibitor-1 (PAI-1) is cardioprotective in mice by maintaining microvascular integrity and cardiac architecture. Blood 2010, 115, 2038–2047. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.K.; Donahue, D.L.; Sandoval-Cooper, M.J.; Castellino, F.J.; Ploplis, V.A. Plasminogen Activator Inhibitor-1 Protects Mice Against Cardiac Fibrosis by Inhibiting Urokinase-type Plasminogen Activator-mediated Plasminogen Activation. Sci. Rep. 2017, 7, 365. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, T.; Mohammed, S.F.; Yamamoto, K.; Dunlay, S.M.; Weston, S.A.; Sakata, Y.; Rodeheffer, R.J.; Roger, V.L.; Redfield, M.M. Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. Eur. Heart J. 2012, 33, 1742–1749. [Google Scholar] [CrossRef]
- Romanic, A.M.; Harrison, S.M.; Bao, W.; Burns-Kurtis, C.L.; Pickering, S.; Gu, J.; Grau, E.; Mao, J.; Sathe, G.M.; Ohlstein, E.H.; et al. Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovasc. Res. 2002, 54, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Halade, G.V.; Jin, Y.F.; Lindsey, M.L. Matrix metalloproteinase (MMP)-9: A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol. Ther. 2013, 139, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000, 14, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Morishita, T.; Uzui, H.; Mitsuke, Y.; Amaya, N.; Kaseno, K.; Ishida, K.; Fukuoka, Y.; Ikeda, H.; Tama, N.; Yamazaki, T.; et al. Association between matrix metalloproteinase-9 and worsening heart failure events in patients with chronic heart failure. ESC Heart Fail. 2017, 4, 321–330. [Google Scholar] [CrossRef]
- Lucore, C.L.; Sobel, B.E. Interactions of tissue-type plasminogen activator with plasma inhibitors and their pharmacologic implications. Circulation 1988, 77, 660–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.K.; Vaughan, D.E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 2012, 227, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Aso, Y. Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis. Front. Biosci. 2007, 12, 2957–2966. [Google Scholar] [CrossRef] [Green Version]
- Jung, R.G.; Motazedian, P.; Ramirez, F.D.; Simard, T.; Di Santo, P.; Visintini, S.; Faraz, M.A.; Labinaz, A.; Jung, Y.; Hibbert, B. Association between plasminogen activator inhibitor-1 and cardiovascular events: A systematic review and meta-analysis. Thromb. J. 2018, 16, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn-Dantona, E.; Ramos-DeSimone, N.; Sipley, J.; Nagase, H.; French, D.L.; Quigley, J.P. Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann. N. Y. Acad. Sci. 1999, 878, 372–387. [Google Scholar] [CrossRef]
- Radosinska, J.; Barancik, M.; Vrbjar, N. Heart failure and role of circulating MMP-2 and MMP-9. Panminerva Med. 2017, 59, 241–253. [Google Scholar] [CrossRef]
- Sakai, N.; Wada, T.; Furuichi, K.; Shimizu, K.; Kokubo, S.; Hara, A.; Yamahana, J.; Okumura, T.; Matsushima, K.; Yokoyama, H.; et al. MCP-1/CCR2-dependent loop for fibrogenesis in human peripheral CD14-positive monocytes. J. Leukoc. Biol. 2006, 79, 555–563. [Google Scholar] [CrossRef]
- Lehmann, M.H.; Kuhnert, H.; Muller, S.; Sigusch, H.H. Monocyte chemoattractant protein 1 (MCP-1) gene expression in dilated cardiomyopathy. Cytokine 1998, 10, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.J.; Yeghiazarians, Y.; Shih, H.; Hwang, J.; Ye, J.; Sievers, R.; Zheng, D.; Palasubramaniam, J.; Palasubramaniam, D.; Karschimkus, C.; et al. Myocardial production and release of MCP-1 and SDF-1 following myocardial infarction: Differences between mice and man. J. Transl. Med. 2011, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Nakamura, K.; Kusano, K.F.; Nakamura, Y.; Ohta-Ogo, K.; Nagase, S.; Sakuragi, S.; Ohe, T. Expression of monocyte chemoattractant protein-1 in idiopathic dilated cardiomyopathy. Int. J. Cardiol. 2008, 126, 427–429. [Google Scholar] [CrossRef] [Green Version]
- Limas, C.J.; Olivari, M.T.; Goldenberg, I.F.; Levine, T.B.; Benditt, D.G.; Simon, A. Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc. Res. 1987, 21, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, S.J.; Cuijpers, I.; Heymans, S.; Jones, E.A.V. Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells 2020, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Guazzi, M.; Ghio, S.; Adir, Y. Pulmonary Hypertension in HFpEF and HFrEF: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 76, 1102–1111. [Google Scholar] [CrossRef]
- Dzhioeva, O.; Belyavskiy, E. Diagnosis and Management of Patients with Heart Failure with Preserved Ejection Fraction (HFpEF): Current Perspectives and Recommendations. Ther. Clin. Risk Manag. 2020, 16, 769–785. [Google Scholar] [CrossRef] [PubMed]
- de Lucia, C.; Wallner, M.; Eaton, D.M.; Zhao, H.; Houser, S.R.; Koch, W.J. Echocardiographic Strain Analysis for the Early Detection of Left Ventricular Systolic/Diastolic Dysfunction and Dyssynchrony in a Mouse Model of Physiological Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Response | Days after IR | Min simGCRsim Dose (cGy) | RBE | Max simGCRsim Dose (cGy) | RBE |
---|---|---|---|---|---|
LVEF (%) | 14 | 5.97665465 | 0.126348 | 107.954502 | 0.33423 |
28 | 4.512451222 | 0.842589 | 104.6594033 | 1.825615 | |
365 | 0.2615792 | 2.46268 | 8.01562382 | 3.802952 | |
440 | 2.212052131 | 19.74135 | 100.599105 | 2.295173 | |
LVFS (%) | 14 | 2.977494895 | 0.193363 | 104.3445831 | 0.306601 |
28 | 5.689671903 | 0.840422 | 103.3125764 | 2.979034 | |
365 | 0.185973405 | 1.087121 | 19.83534394 | 1.853151 | |
440 | 8.497120528 | 7.655587 | 1737.15217 | 2.221847 | |
DWS | 365 | 5.271755497 | 0.438695 | 459.969739 | 2.807636 |
440 | 5.830303739 | 6.525775 | 621.9755207 | 2.839298 |
Radiation Dose (cGy) | ||||||
---|---|---|---|---|---|---|
Response | Day after IR | 0 | 50 | 100 | 150 | 200 |
LVEF (%) | 14 | 0.990423 | 1.354822 | 1.055008 | 0.870207 | 0.746942 |
28 | 0.982736 | 1.060224 | 0.967893 | 0.861646 | 0.771131 | |
365 | 1.000013 | 0.911371 | 0.915443 | 0.915489 | 0.91549 | |
440 | 0.951101 | 0.814465 | 0.847583 | 0.90196 | 0.958549 | |
LVFS (%) | 14 | 0.999928 | 1.084308 | 1.015748 | 0.983877 | 0.968795 |
28 | 0.993236 | 1.020032 | 0.982412 | 0.934373 | 0.890226 | |
365 | 1.000009 | 0.968722 | 0.967345 | 0.967311 | 0.96731 | |
440 | 0.975545 | 0.947676 | 0.926543 | 0.910477 | 0.898302 | |
DWS | 365 | 1.006697 | 0.96099 | 0.921255 | 0.886393 | 0.85556 |
440 | 0.992132 | 0.961376 | 0.933461 | 0.908008 | 0.884706 |
Ion | Energy (MeV/n) | Fraction (%) |
---|---|---|
1H | 1000 | 35 |
28Si | 600 | 1 |
4He | 250 | 18 |
16O | 350 | 6 |
56Fe | 600 | 1 |
1H | 1000 | 39 |
Gene | Primers (5′–3′) |
---|---|
Tgfβ1 | F-CCTGCAAGACCATCGACATGGAG R-GGTCGCGGGTGCTGTTGTA |
Col1a1 | F-CTGGCAAGAAGGGAGATGA R-CACCATCCAAACCACTGAAA |
Col3a1 | F-GATGGAAACCCTGGATCAGA |
Ncx | F-TTTGCCTTCGTCCCACCTAC R-AACGGCAGTCACGGAATCTT |
Serca2a | F-ACGCCTGCAACTCGGTCATA R-ATGTCCGGCTTGGCTTGTTT |
Tnfα | F-CAAGTGGAGGAGCAGCTGGA R-CTGACGGTGTGGGTGAGGAG |
Mcp1 | F-TGCAGGTCCCTGTCATGCTT R-TCTTTGGGACACCTGCTGCT |
Mmp9 | F-CGCTCATGTACCCGCTGTAT R-CCGTGGGAGGTATAGTGGGA |
Gals3 | F-ACAGTCAGCCTTCCCCTTTG R-GTTAGCGCTGGTGAGGGTTA |
βmhc | F-ACTGTCAACACTAAGAGGGTCA R-TTGGATGATTTGATCTTCCAGGG |
Anp | F-GCTTCCAGGCCATATTGGAG R-GGGGGCATGACCTCATCTT |
Bnp | F-CTGGAAGTCCTAGCCAGTC R-TTTTCTCTTATCAGCTCCAGCA |
Gapdh | F-GTGAAGGTCGGTGTGAACG R-TCGTTGATGGCAACAATCTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brojakowska, A.; Jackson, C.J.; Bisserier, M.; Khlgatian, M.K.; Grano, C.; Blattnig, S.R.; Zhang, S.; Fish, K.M.; Chepurko, V.; Chepurko, E.; et al. Lifetime Evaluation of Left Ventricular Structure and Function in Male C57BL/6J Mice after Gamma and Space-Type Radiation Exposure. Int. J. Mol. Sci. 2023, 24, 5451. https://doi.org/10.3390/ijms24065451
Brojakowska A, Jackson CJ, Bisserier M, Khlgatian MK, Grano C, Blattnig SR, Zhang S, Fish KM, Chepurko V, Chepurko E, et al. Lifetime Evaluation of Left Ventricular Structure and Function in Male C57BL/6J Mice after Gamma and Space-Type Radiation Exposure. International Journal of Molecular Sciences. 2023; 24(6):5451. https://doi.org/10.3390/ijms24065451
Chicago/Turabian StyleBrojakowska, Agnieszka, Cedric J. Jackson, Malik Bisserier, Mary K. Khlgatian, Cynthia Grano, Steve R. Blattnig, Shihong Zhang, Kenneth M. Fish, Vadim Chepurko, Elena Chepurko, and et al. 2023. "Lifetime Evaluation of Left Ventricular Structure and Function in Male C57BL/6J Mice after Gamma and Space-Type Radiation Exposure" International Journal of Molecular Sciences 24, no. 6: 5451. https://doi.org/10.3390/ijms24065451
APA StyleBrojakowska, A., Jackson, C. J., Bisserier, M., Khlgatian, M. K., Grano, C., Blattnig, S. R., Zhang, S., Fish, K. M., Chepurko, V., Chepurko, E., Gillespie, V., Dai, Y., Lee, B., Garikipati, V. N. S., Hadri, L., Kishore, R., & Goukassian, D. A. (2023). Lifetime Evaluation of Left Ventricular Structure and Function in Male C57BL/6J Mice after Gamma and Space-Type Radiation Exposure. International Journal of Molecular Sciences, 24(6), 5451. https://doi.org/10.3390/ijms24065451