Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Structure and Rational Design
2.2. In Vitro Investigation of the Antitumor Activity
2.3. In Vitro Radical Scavenging Activity
2.4. Amino Acid Binding Capacity
2.5. Investigation of Farnesyltransferase Inhibition
3. Materials and Methods
3.1. Materials
3.2. Synthesis
- PP: 1H NMR (400 MHz, DMSO-d6, ppm) δ =7.19 (t, 2H), 7.14 (d, 2H), 7.05 (d, 2H), 6.94 (t, 2H), 4.04 (t, 2H), 3.74 (t, 2H), 3.49–3.47 (m, 48H), 3.43–3.41 (m, 2H), 3.24 (s, 3H); FT-IR (KBr, cm−): 2870 (νCH), 1593, 1570, 1460 (νC = C), 1292 (νC-N), 1110 (νC-O), 755 (δC-H).
- PT: 1H NMR (400 MHz, CDCl3, ppm) δ = 7.16–7.11 (m, 4H), 6.91 (t, 4H), 4.10 (t, 2H), 3.85 (t, 2H), 3.66–3.62 (m, 6H), 3.55–3.53 (m, 2H), 3.37 (s, 3H); FT-IR (KBr, cm−): 2876 (νCH), 1597, 1571, 1463 (νC = C), 1291 (νC-N), 1110 (νC-O), 751 (δC-H).
- PTF: 1H NMR (400 MHz, DMSO-d6, ppm) δ = 9.80 (s, 1H), 7.72 (dd, 1H), 7.60 (d, 1H), 7.22 (td, 1H), 7.21 (d, 1H), 7.16 (dd, 1H), 7.12 (d, 1H), 7.01 (t, 1H), 4.13 (t, 2H), 3.77 (t, 2H), 3.50–3.46 (m, 6H), 3.39–3.36 (m, 2H), 3.20 (s, 3H); FT-IR (KBr, cm−): 2875 (νC-H), 1679 (νC = O), 1593, 1570, 1460 (νC = C), 1292 (νC-N), 1105 (ν C-O), 751 (δC-H).
- PPF: 1H NMR (400 MHz, DMSO-d6, ppm) δ = 9.80 (s, 1H), 7.71 (dd, 1H), 7.6 (d, 1H), 7.22 (td, 1H), 7.21 (d, 1H), 7.16 (dd, 1H), 7.12 (d, 1H), 7.01 (td, 1H), 4.13 (t, 2H), 3.78 (t, 2H), 3.51–3.47 (m, 60H), 3.24 (s, 3H); FT-IR (KBr, cm−): 3060 (νC-H), 2950, 2920 (νC-H), 1685 (νC = O), 1593, 1570, 1460 (νC = C), 1292 (νC-N), 1100 (νC-O), 804 (δC-H).
- PTMA: 1H NMR (400 MHz, DMSO-d6, ppm) δ = 8.40 (s, 1H), 7.80 (d, 2H), 7.60 (dd, 1H), 7.55 (d, 1H), 7.51 (d, 2H), 7.32 (bs, 2H), 7.21 (td, 1H), 7.17 (dd, 1H), 7.13 (d, 1H), 7.09 (d, 1H), 6.98 (t, 1H), 4.80 (s, 2H), 4.10 (t, 2H), 3.77 (t, 2H), 3.56–3.54 (m, 2H), 3.51–3.47 (m, 4H), 3.40–3.37 (m, 2H), 3.20 (s, 3H); FT-IR (KBr, cm−): 3333, 3239 (νN-H), 2932, 2875 (νC-H), 1638 (νC = N), 1598, 1570, 1466 (νC = C), 1335, 1153 (νS = O), 1292 (νC-N), 1096 (νC-O), 748 (δC-H).
- PTEA: 1H NMR (400 MHz, DMSO-d6, ppm) δ = 8.15 (s, 1H), 7.72 (d, 2H), 7.49 (dd, 1H), 7.45 (d, 1H), 7.42 (d, 2H), 7.27 (bs, 2H), 7.20 (td, 1H) 7.15 (dd, 1H), 7.08 (d, 1H), 7.07 (d, 1H), 6.97 (t, 1H), 4.07 (t, 2H), 3.78 (t, 2H), 3.75 (t, 2H), 3.55–3.36 (m, 8H), 3.20 (s, 3H), 2.98 (t, 2H); FT-IR (KBr, cm−): 3317, 3228 (νN-H), 2932, 2875 (νC-H), 1638 (νC = N), 1593, 1570, 1466 (νC = C), 1335, 1153 (νS = O), 1292 (νC-N), 1096 (νC-O), 748 (δC-H).
- PPMA: 1H NMR (400 MHz, DMSO-d6, ppm) δ = 8.41 (s, 1H), 7.80 (d, 2H), 7.60 (dd, 1H), 7.55 (d, 1H), 7.51 (d, 2H), 7.33 (bs, 2H), 7.21 (td, 1H), 7.16 (dd, 1H), 7.13 (d, 1H), 7.09 (d, 1H), 6.98 (t, 1H), 4.80 (s, 2H), 4.10 (t, 2H), 3.77 (t, 2H), 3.47–3.52 (m, 70H), 3.24 (s, 3H); FT-IR (KBr, cm−): 3277, 3228 (νN-H), 2875 (νCH), 1642 (νC = N), 1598, 1570, 1472 (νC = C), 1349, 1161 (νS = O), 1292 (νC-N), 1100 (νC-O), 754 (δC-H).
- PPEA: 1H NMR (400 MHz, DMSO-d6, ppm) δ = 8.16 (s, 1H), 7.72 (d, 2H), 7.49 (d, 1H), 7.46 (s, 1H), 7.43 (d, 2H), 7.28 (bs, 2H), 7.20 (t, 1H), 7.15 (d, 1H), 7.08 (d, 1H), 7.07 (d, 1H), 6.98 (t, 1H), 4.07 (t, 2H), 3.79–3.74 (m, 4H), 3.50 (m, 60H), 3.23 (s, 3H), 2.98 (t, 2H); FT-IR (KBr, cm−): 3287, 3237 (νN-H), 2920, 2875 (νC-H), 1642 (νC = N), 1598, 1570, 1472 (νC = C), 1341, 1163 (νS = O), 1292 (νC-N), 1100 (νC-O), 754 (δ C-H).
3.3. Equipment and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Tian Ng, A.W.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The Repertoire of Mutational Signatures in Human Cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, D.; Mahendiratta, S.; Kaur, H.; Medhi, B. Futuristic Approach to Cancer Treatment. Gene 2021, 805, 145906. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer Statistics, 2014. CA Cancer J. Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo, M.O.; Kavan, P.; Miller, W.H.; Panasci, L.; Assouline, S.; Johnson, N.; Cohen, V.; Patenaude, F.; Pollak, M.; Jagoe, R.T.; et al. Systemic Cancer Therapy: Achievements and Challenges That Lie Ahead. Front. Pharmacol. 2013, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent Advances (2015–2016) in Anticancer Hybrids. Eur. J. Med. Chem. 2017, 142, 179–212. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, R.; Gao, J. Novel Anticancer Drugs Approved in 2020. Drug Discov. Ther. 2021, 15, 44–47. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Q.; Cao, J.; Gao, Y.; Han, S.; Liang, Y.; Zhang, T.; Song, Y.; Sun, Y. Recent Progress of Graphene Oxide-Based Multifunctional Nanomaterials for Cancer Treatment. Cancer Nanotechnol. 2021, 12, 18. [Google Scholar] [CrossRef]
- Wani, I.A.; Ahmad, T.; Khosla, A. Recent Advances in Anticancer and Antimicrobial Activity of Silver Nanoparticles Synthesized Using Phytochemicals and Organic Polymers. Nanotechnology 2021, 32, 462001. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Najafpour-Darzi, G. Manganese Ferrite (MnFe2O4) Nanoparticles: From Synthesis to Application-A Review. J. Ind. Eng. Chem. 2021, 103, 292–304. [Google Scholar] [CrossRef]
- Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the Targeted Anticancer Drug Discovery. Future Med. Chem. 2019, 11, 1929–1952. [Google Scholar] [CrossRef]
- Luo, G.; Ma, Y.; Liang, X.; Xie, G.; Luo, Y.; Zha, D.; Wang, S.; Yu, L.; Zheng, X.; Wu, W.; et al. Design, Synthesis and Antitumor Evaluation of Novel 5-Methylpyrazolo[1,5-a]Pyrimidine Derivatives as Potential c-Met Inhibitors. Bioorg. Chem. 2020, 104, 104356. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Synthetic and Medicinal Perspective of Fused-Thiazoles as Anticancer Agents. Anticancer Agents Med. Chem. 2021, 21, 1379–1402. [Google Scholar] [CrossRef] [PubMed]
- Grover, P.; Bhardwaj, M.; Kapoor, G.; Mehta, L.; Ghai, R.; Nagarajan, K. Advances on Quinazoline Based Congeners for Anticancer Potential. Curr. Org. Chem. 2021, 25, 695–723. [Google Scholar] [CrossRef]
- Abbas, N.; Swamy, P.M.G.; Dhiwar, P.; Patel, S.; Giles, D. Development of Fused and Substituted Pyrimidine Derivatives as Potent Anticancer Agents (A Review). Pharm. Chem. J. 2021, 54, 1215–1226. [Google Scholar] [CrossRef]
- Zheng, B.-D.; Ye, J.; Zhang, X.-Q.; Zhang, N.; Xiao, M.-T. Recent Advances in Supramolecular Activatable Phthalocyanine-Based Photosensitizers for Anti-Cancer Therapy. Coord. Chem. Rev. 2021, 447, 214155. [Google Scholar] [CrossRef]
- Mangalagiu, I. Recent Achievements in the Chemistry of 1,2-Diazines. Curr. Org. Chem. 2011, 15, 730–752. [Google Scholar] [CrossRef]
- Amariucai-Mantu, D.; Mangalagiu, V.; Danac, R.; Mangalagiu, I.I. Microwave Assisted Reactions of Azaheterocycles Formedicinal Chemistry Applications. Molecules 2020, 25, 716. [Google Scholar] [CrossRef] [Green Version]
- Lungu, C.N.; Bratanovici, B.I.; Grigore, M.M.; Antoci, V.; Mangalagiu, I.I. Hybrid Imidazole-Pyridine Derivatives: An Approach to Novel Anticancer DNA Intercalators. Curr. Med. Chem. 2020, 27, 154–169. [Google Scholar] [CrossRef]
- Jones, G.R.N. Cancer Therapy: Phenothiazines in an Unexpected Role. Tumori. J. 1985, 71, 563–569. [Google Scholar] [CrossRef]
- Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Recent Progress in Biological Activities of Synthesized Phenothiazines. Eur. J. Med. Chem. 2011, 46, 3179–3189. [Google Scholar] [CrossRef]
- Varga, B.; Csonka, Á.; Csonka, A.; Molnar, J.; Amaral, L.; Spengler, G. Possible Biological and Clinical Applications of Phenothiazines. Anticancer Res. 2017, 37, 5983–5993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otręba, M.; Kośmider, L. In Vitro Anticancer Activity of Fluphenazine, Perphenazine and Prochlorperazine. A Review. J. Appl. Toxicol. 2021, 41, 82–94. [Google Scholar] [CrossRef]
- Sudeshna, G.; Parimal, K. Multiple Non-Psychiatric Effects of Phenothiazines: A Review. Eur. J. Pharmacol. 2010, 648, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Padnya, P.L.; Khadieva, A.I.; Stoikov, I.I. Current Achievements and Perspectives in Synthesis and Applications of 3,7-Disubstituted Phenothiazines as Methylene Blue Analogues. Dye. Pigment. 2022, 208, 110806. [Google Scholar] [CrossRef]
- Sachdeva, T.; Low, M.L.; Mai, C.; Cheong, S.L.; Liew, Y.K.; Milton, M.D. Design, Synthesis and Characterisation of Novel Phenothiazine-Based Triazolopyridine Derivatives: Evaluation of Anti-Breast Cancer Activity on Human Breast Carcinoma. ChemistrySelect 2019, 4, 12701–12707. [Google Scholar] [CrossRef]
- Abuhaie, C.-M.; Ghinet, A.; Farce, A.; Dubois, J.; Gautret, P.; Rigo, B.; Belei, D.; Bîcu, E. Synthesis and Biological Evaluation of a New Series of Phenothiazine-Containing Protein Farnesyltransferase Inhibitors. Eur. J. Med. Chem. 2013, 59, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Posso, M.C.; Domingues, F.C.; Ferreira, S.; Silvestre, S. Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. Molecules 2022, 27, 276. [Google Scholar] [CrossRef]
- Banerjee, S.S.; Aher, N.; Patil, R.; Khandare, J. Poly(Ethylene Glycol)-Prodrug Conjugates: Concept, Design, and Applications. J. Drug Deliv. 2012, 2012, 103973. [Google Scholar] [CrossRef] [Green Version]
- Cibotaru, S.; Nastasa, V.; Sandu, A.-I.; Bostanaru, A.-C.; Mares, M.; Marin, L. Pegylation of Phenothiazine—A Synthetic Route towards Potent Anticancer Drugs. J. Adv. Res. 2022, 37, 279–290. [Google Scholar] [CrossRef]
- Baciu-Atudosie, L.; Ghinet, A.; Farce, A.; Dubois, J.; Belei, D.; Bîcu, E. Synthesis and Biological Evaluation of New Phenothiazine Derivatives Bearing a Pyrazole Unit as Protein Farnesyltransferase Inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 6896–6902. [Google Scholar] [CrossRef]
- Belei, D.; Dumea, C.; Samson, A.; Farce, A.; Dubois, J.; Bîcu, E.; Ghinet, A. New Farnesyltransferase Inhibitors in the Phenothiazine Series. Bioorg. Med. Chem. Lett. 2012, 22, 4517–4522. [Google Scholar] [CrossRef]
- Gupta, S.; Tyagi, R.; Parmar, V.S.; Sharma, S.K.; Haag, R. Polyether Based Amphiphiles for Delivery of Active Components. Polymer (Guildf) 2012, 53, 3053–3078. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Nayak, B.; Dey, R.K. PEGylation in Anti-Cancer Therapy: An Overview. Asian J. Pharm. Sci. 2016, 11, 337–348. [Google Scholar] [CrossRef] [Green Version]
- casini, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. Sulfonamides and Sulfonylated Derivatives as Anticancer Agents. Curr. Cancer Drug Targets 2002, 2, 55–75. [Google Scholar] [CrossRef] [PubMed]
- Danish, M.; Raza, M.A.; Khalid, H.; Iftikhar, U.; Arshad, M.N. New Metal Complexes of Sulfonamide: Synthesis, Characterization, In-vitro Anticancer, Anticholinesterase, Antioxidant, and Antibacterial Studies. Appl. Organomet. Chem. 2021, 35, e6033. [Google Scholar] [CrossRef]
- Mikuš, P.; Krajčiová, D.; Mikulová, M.; Horváth, B.; Pecher, D.; Garaj, V.; Bua, S.; Angeli, A.; Supuran, C.T. Novel Sulfonamides Incorporating 1,3,5-Triazine and Amino Acid Structural Motifs as Inhibitors of the Physiological Carbonic Anhydrase Isozymes I, II and IV and Tumor-Associated Isozyme IX. Bioorg. Chem. 2018, 81, 241–252. [Google Scholar] [CrossRef]
- El-Mekabaty, A.; Awad, H.M. Convenient Synthesis of Novel Sulfonamide Derivatives as Promising Anticancer Agents. J. Heterocycl. Chem. 2020, 57, 1123–1132. [Google Scholar] [CrossRef]
- Garaj, V.; Puccetti, L.; Fasolis, G.; Winum, J.-Y.; Montero, J.-L.; Scozzafava, A.; Vullo, D.; Innocenti, A.; Supuran, C.T. Carbonic Anhydrase Inhibitors: Synthesis and Inhibition of Cytosolic/Tumor-Associated Carbonic Anhydrase Isozymes I, II, and IX with Sulfonamides Incorporating 1,2,4-Triazine Moieties. Bioorg Med. Chem. Lett. 2004, 14, 5427–5433. [Google Scholar] [CrossRef]
- Supuran, C.T. Indisulam: An Anticancer Sulfonamide in Clinical Development. Expert Opin. Investig. Drugs 2003, 12, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Cibotaru, S.; Sandu, A.-I.; Belei, D.; Marin, L. Water Soluble PEGylated Phenothiazines as Valuable Building Blocks for Bio-Materials. Mater. Sci. Eng. C 2020, 116, 111216. [Google Scholar] [CrossRef]
- Zabulica, A.; Balan, M.; Belei, D.; Sava, M.; Simionescu, B.C.; Marin, L. Novel Luminescent Phenothiazine-Based Schiff Bases with Tuned Morphology. Synthesis, Structure, Photophysical and Thermotropic Characterization. Dyes Pigments 2013, 96, 686–698. [Google Scholar] [CrossRef]
- Bejan, A.; Shova, S.; Damaceanu, M.-D.; Simionescu, B.C.; Marin, L. Structure-Directed Functional Properties of Phenothiazine Brominated Dyes: Morphology and Photophysical and Electrochemical Properties. Cryst. Growth Des. 2016, 16, 3716–3730. [Google Scholar] [CrossRef]
- Kovaříček, P.; Lehn, J.-M. Merging Constitutional and Motional Covalent Dynamics in Reversible Imine Formation and Exchange Processes. J. Am. Chem. Soc. 2012, 134, 9446–9455. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Du, P.; Liu, P. PH-Responsive Intramolecular FRET-Based Self-Tracking Polymer Prodrug Nanoparticles for Real-Time Tumor Intracellular Drug Release Monitoring and Imaging. Int. J. Pharm. 2020, 588, 119723. [Google Scholar] [CrossRef]
- Cibotaru, S.; Nicolescu, A.; Marin, L. Dynamic PEGylated Phenothiazine Imines; Synthesis, Photophysical Behavior and Reversible Luminescence Switching in Response to External Stimuli. J. Photochem. Photobiol. A Chem. 2023, 435, 114282. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Zhang, L.-M.; Luo, G.; Zhang, S.; Chen, H.; Zhou, J. Synthesis and Biological Evaluation of Novel Podophyllotoxin Analogs as Antitumor Agents. J. Asian Nat. Prod. Res. 2014, 16, 527–534. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, X.; Cheng, C.; Yu, W.; Yi, P. Metabolism of Amino Acids in Cancer. Front. Cell Dev. Biol. 2021, 8, 603837. [Google Scholar] [CrossRef]
- Engwa, G.A.; Ayuk, E.L.; Igbojekwe, B.U.; Unaegbu, M. Potential Antioxidant Activity of New Tetracyclic and Pentacyclic Nonlinear Phenothiazine Derivatives. Biochem. Res. Int. 2016, 2016, 9896575. [Google Scholar] [CrossRef] [Green Version]
- Zhelev, Z.; Ohba, H.; Bakalova, R.; Hadjimitova, V.; Ishikawa, M.; Shinohara, Y.; Baba, Y. Phenothiazines Suppress Proliferation and Induce Apoptosis in Cultured Leukemic Cells without Any Influence on the Viability of Normal Lymphocytes. Cancer Chemother. Pharmacol. 2004, 53, 267–275. [Google Scholar] [CrossRef]
- Seredenina, T.; Chiriano, G.; Filippova, A.; Nayernia, Z.; Mahiout, Z.; Fioraso-Cartier, L.; Plastre, O.; Scapozza, L.; Krause, K.-H.; Jaquet, V. A Subset of N-Substituted Phenothiazines Inhibits NADPH Oxidases. Free Radic. Biol. Med. 2015, 86, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Chio, I.I.C.; Tuveson, D.A. ROS in Cancer: The Burning Question. Trends Mol. Med. 2017, 23, 411–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juarez-Moreno, K.; Ayala, M.; Vazquez-Duhalt, R. Antioxidant Capacity of Poly(Ethylene Glycol) (PEG) as Protection Mechanism Against Hydrogen Peroxide Inactivation of Peroxidases. Appl. Biochem. Biotechnol. 2015, 177, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Jasril, J.; Ikhtiarudin, I.; Nurulita, Y.; Nurisma. Microwave-Assisted Synthesis and Antioxidant Activity of an Imine, (E)-1-(3-Bromobenzylidene)-2-Phenylhydrazine. In AIP Conference Proceedings; AIP Publishing LLC: Long Island, NY, USA, 2020; Volume 2242, p. 040041. [Google Scholar]
- Turin-Moleavin; Fifere; Lungoci; Rosca; Coroaba; Peptanariu; Pasca; Bostanaru; Mares; Pinteala In Vitro and In Vivo Antioxidant Activity of the New Magnetic-Cerium Oxide Nanoconjugates. Nanomaterials 2019, 9, 1565. [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Huang, L.; Wang, Y.; Mei, L.; Fan, R.; He, M.; Wang, C.; Tong, A.; Chen, H.; Guo, G. Stereocomplexed Electrospun Nanofibers Containing Poly (Lactic Acid) Modified Quaternized Chitosan for Wound Healing. Carbohydr. Polym. 2020, 247, 116754. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef]
- Voronova, O.; Zhuravkov, S.; Korotkova, E.; Artamonov, A.; Plotnikov, E. Antioxidant Properties of New Phenothiazine Derivatives. Antioxidants 2022, 11, 1371. [Google Scholar] [CrossRef]
- Caddeo, C.; Pucci, L.; Gabriele, M.; Carbone, C.; Fernàndez-Busquets, X.; Valenti, D.; Pons, R.; Vassallo, A.; Fadda, A.M.; Manconi, M. Stability, Biocompatibility and Antioxidant Activity of PEG-Modified Liposomes Containing Resveratrol. Int. J. Pharm. 2018, 538, 40–47. [Google Scholar] [CrossRef]
- Saito, Y.; Soga, T. Amino Acid Transporters as Emerging Therapeutic Targets in Cancer. Cancer Sci. 2021, 112, 2958–2965. [Google Scholar] [CrossRef]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino Acids in Cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef]
- Krasavin, M.; Kalinin, S.; Sharonova, T.; Supuran, C.T. Inhibitory Activity against Carbonic Anhydrase IX and XII as a Candidate Selection Criterion in the Development of New Anticancer Agents. J. Enzym. Inhib. Med. Chem. 2020, 35, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Ciaccia, M.; di Stefano, S. Mechanisms of Imine Exchange Reactions in Organic Solvents. Org. Biomol. Chem. 2015, 13, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Schaufelberger, F.; Seigel, K.; Ramström, O. Hydrogen-Bond Catalysis of Imine Exchange in Dynamic Covalent Systems. Chem.—A Eur. J. 2020, 26, 15581–15588. [Google Scholar] [CrossRef] [PubMed]
- Wessjohann, L.A.; Rivera, D.G.; León, F. Freezing Imine Exchange in Dynamic Combinatorial Libraries with Ugi Reactions: Versatile Access to Templated Macrocycles. Org. Lett. 2007, 9, 4733–4736. [Google Scholar] [CrossRef]
- Nagao, M.; Kichize, M.; Hoshino, Y.; Miura, Y. Influence of Monomer Structures for Polymeric Multivalent Ligands: Consideration of the Molecular Mobility of Glycopolymers. Biomacromolecules 2021, 22, 3119–3127. [Google Scholar] [CrossRef]
- Andreica, B.-I.; Ailincai, D.; Sandu, A.-I.; Marin, L. Amphiphilic Chitosan-g-Poly(Trimethylene Carbonate)—A New Approach for Biomaterials Design. Int. J. Biol. Macromol. 2021, 193, 414–424. [Google Scholar] [CrossRef]
- Turin-Moleavin, I.-A.; Doroftei, F.; Coroaba, A.; Peptanariu, D.; Pinteala, M.; Salic, A.; Barboiu, M. Dynamic Constitutional Frameworks (DCFs) as Nanovectors for Cellular Delivery of DNA. Org. Biomol. Chem. 2015, 13, 9005–9011. [Google Scholar] [CrossRef]
- Köse, D.A.; Necefoğlu, H. Synthesis and Characterization of Bis(Nicotinamide) m-Hydroxybenzoate Complexes of Co(II), Ni(II), Cu(II) and Zn(II). J. Therm. Anal. Calorim. 2008, 93, 509–514. [Google Scholar] [CrossRef]
- Nawar, N.; Hosny, N.M. Transition Metal Complexes of 2-Acetylpyridine o-Hydroxybenzoylhydrazone(APo-OHBH): Their Preparation, Characterisation and Antimicrobial Activity. Chem. Pharm. Bull. (Tokyo) 1999, 47, 944–949. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, R.; Khan, S. Effect of Reduced Graphene Oxide (RGO) on Structural, Optical, and Dielectric Properties of Mg(OH) 2 /RGO Nanocomposites. Adv. Powder Technol. 2017, 28, 2812–2819. [Google Scholar] [CrossRef]
- Jomová, K.; Hudecova, L.; Lauro, P.; Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Valko, M. A Switch between Antioxidant and Prooxidant Properties of the Phenolic Compounds Myricetin, Morin, 3′,4′-Dihydroxyflavone, Taxifolin and 4-Hydroxy-Coumarin in the Presence of Copper(II) Ions: A Spectroscopic, Absorption Titration and DNA Damage Study. Molecules 2019, 24, 4335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Morán, O.; Villarreal, M.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera Fagaroides Var. Fagaroides on Breast Cancer Cell Lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubbelboer, I.R.; Pavlovic, N.; Heindryckx, F.; Sjögren, E.; Lennernäs, H. Liver Cancer Cell Lines Treated with Doxorubicin under Normoxia and Hypoxia: Cell Viability and Oncologic Protein Profile. Cancers 2019, 11, 1024. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.M.; Saleh, E.; Alawadhi, H.; Harati, R.; Zimmermann, W.-H.; El-Awady, R. Inhibition of Exosome Release by Ketotifen Enhances Sensitivity of Cancer Cells to Doxorubicin. Cancer Biol. Ther. 2018, 19, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.-I.; Park, H.-K.; Lee, S.J.; Oh, J.-S.; Lee, S.-G.; Lee, H.C.; Hwan Kang, D. Enzyme-Responsive Doxorubicin Release from Dendrimer Nanoparticles for Anticancer Drug Delivery. Int. J. Nanomed. 2015, 5489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durand, N.; Simsir, M.; Signetti, L.; Labbal, F.; Ballotti, R.; Mus-Veteau, I. Methiothepin Increases Chemotherapy Efficacy against Resistant Melanoma Cells. Molecules 2021, 26, 1867. [Google Scholar] [CrossRef]
- Zych, D.; Slodek, A.; Krompiec, S.; Malarz, K.; Mrozek-Wilczkiewicz, A.; Musiol, R. 4′-Phenyl-2,2′:6′,2′′-Terpyridine Derivatives Containing 1-Substituted-2,3-Triazole Ring: Synthesis, Characterization and Anticancer Activity. ChemistrySelect 2018, 3, 7009–7017. [Google Scholar] [CrossRef]
- Yuan, F.; Qin, X.; Zhou, D.; Xiang, Q.-Y.; Wang, M.-T.; Zhang, Z.-R.; Huang, Y. In Vitro Cytotoxicity, in Vivo Biodistribution and Antitumor Activity of HPMA Copolymer–5-Fluorouracil Conjugates. Eur. J. Pharm. Biopharm. 2008, 70, 770–776. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Guo, J.-M.; Zhang, T.-T.; Lin, H.-J.; Qi, N.-S.; Li, Z.-G.; Zhou, J.-C.; Zhang, Z.-Z. Antiproliferative Phenothiazine Hybrids as Novel Apoptosis Inducers against MCF-7 Breast Cancer. Molecules 2018, 23, 1288. [Google Scholar] [CrossRef] [Green Version]
- Pangeni, R.; Choi, S.W.; Jeon, O.-C.; Byun, Y.; Park, J.W. Multiple Nanoemulsion System for an Oral Combinational Delivery of Oxaliplatin and 5-Fluorouracil: Preparation and in Vivo Evaluation. Int. J. Nanomed. 2016, Volume 11, 6379–6399. [Google Scholar] [CrossRef] [Green Version]
- Freitas, L.B.O.; Boaventura, M.A.D.; Santos, W.L.; Stehmann, J.R.; Junior, D.D.; Lopes, M.T.P.; Magalhães, T.F.F.; da Silva, D.L.; de Resende, M.A. Allelopathic, Cytotoxic and Antifungic Activities of New Dihydrophenanthrenes and Other Constituents of Leaves and Roots Extracts of Banisteriopsis Anisandra (Malpighiaceae). Phytochem. Lett. 2015, 12, 9–16. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, T.-Y.; Bai, W.-F.; Bai, C.-G. Design, Synthesis and Evaluation of Novel Phenothiazine Derivatives as Inhibitors of Breast Cancer Stem Cells. Eur. J. Med. Chem. 2019, 183, 111692. [Google Scholar] [CrossRef] [PubMed]
- Moise, I.-M.; Bîcu, E.; Farce, A.; Dubois, J.; Ghinet, A. Indolizine-Phenothiazine Hybrids as the First Dual Inhibitors of Tubulin Polymerization and Farnesyltransferase with Synergistic Antitumor Activity. Bioorg. Chem. 2020, 103, 104184. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-W.; Ko, H.-J.; Chou, C.-H.; Cheng, T.-S.; Cheng, H.-W.; Liang, Y.-H.; Lai, Y.-L.; Lin, C.-Y.; Wang, C.; Loh, J.-K.; et al. Thioridazine Enhances P62-Mediated Autophagy and Apoptosis Through Wnt/β-Catenin Signaling Pathway in Glioma Cells. Int. J. Mol. Sci. 2019, 20, 473. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Xia, Y.; Feng, Z.; Lin, W.; Xue, Q.; Jiang, J.; Yu, X.; Peng, C.; Luo, M.; Yang, Y.; et al. Repositioning Antipsychotic Fluphenazine Hydrochloride for Treating Triple Negative Breast Cancer with Brain Metastases and Lung Metastases. Am. J. Cancer Res. 2019, 9, 459–478. [Google Scholar] [PubMed]
- de Faria, P.A.; Bettanin, F.; Cunha, R.L.O.R.; Paredes-Gamero, E.J.; Homem-de-Mello, P.; Nantes, I.L.; Rodrigues, T. Cytotoxicity of Phenothiazine Derivatives Associated with Mitochondrial Dysfunction: A Structure-Activity Investigation. Toxicology 2015, 330, 44–54. [Google Scholar] [CrossRef]
- Ma, X.-H.; Liu, N.; Lu, J.-L.; Zhao, J.; Zhang, X.-J. Design, Synthesis and Antiproliferative Activity of Novel Phenothiazine-1,2,3-Triazole Analogues. J. Chem. Res. 2017, 41, 696–698. [Google Scholar] [CrossRef]
- Okumura, H.; Nakazawa, J.; Tsuganezawa, K.; Usui, T.; Osada, H.; Matsumoto, T.; Tanaka, A.; Yokoyama, S. Phenothiazine and Carbazole-Related Compounds Inhibit Mitotic Kinesin Eg5 and Trigger Apoptosis in Transformed Culture Cells. Toxicol. Lett. 2006, 166, 44–52. [Google Scholar] [CrossRef]
- Venkatesan, K.; Satyanarayana, V.S.V.; Sivakumar, A. Synthesis and Biological Evaluation of Novel Phenothiazine Derivatives as Potential Antitumor Agents. Polycycl. Aromat. Compd. 2023, 43, 850–859. [Google Scholar] [CrossRef]
- Gutierrez, A.; Pan, L.; Groen, R.W.J.; Baleydier, F.; Kentsis, A.; Marineau, J.; Grebliunaite, R.; Kozakewich, E.; Reed, C.; Pflumio, F.; et al. Phenothiazines Induce PP2A-Mediated Apoptosis in T Cell Acute Lymphoblastic Leukemia. J. Clin. Investig. 2014, 124, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Yang, Y.R.; Lee, S.K.; Kim, S.-H.; Kim, Y.-H.; Cha, J.-Y.; Oh, S.-W.; Ha, J.-R.; Ryu, S.H.; Suh, P.-G. Potential Inhibition of PDK1/Akt Signaling by Phenothiazines Suppresses Cancer Cell Proliferation and Survival. Ann. N. Y. Acad. Sci. 2008, 1138, 393–403. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cibotaru, S.; Sandu, A.-I.; Nicolescu, A.; Marin, L. Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship. Int. J. Mol. Sci. 2023, 24, 5449. https://doi.org/10.3390/ijms24065449
Cibotaru S, Sandu A-I, Nicolescu A, Marin L. Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship. International Journal of Molecular Sciences. 2023; 24(6):5449. https://doi.org/10.3390/ijms24065449
Chicago/Turabian StyleCibotaru, Sandu, Andreea-Isabela Sandu, Alina Nicolescu, and Luminita Marin. 2023. "Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship" International Journal of Molecular Sciences 24, no. 6: 5449. https://doi.org/10.3390/ijms24065449
APA StyleCibotaru, S., Sandu, A. -I., Nicolescu, A., & Marin, L. (2023). Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship. International Journal of Molecular Sciences, 24(6), 5449. https://doi.org/10.3390/ijms24065449