Revising the Landscape of Cytokine-Induced Killer Cell Therapy in Lung Cancer: Focus on Immune Checkpoint Inhibitors
Abstract
:1. Introduction
2. CIK Cells as a Realistic Option in Cancer Immunotherapy
3. CIK Cells Combined with PD-1/PD-L1 in Lung Cancer
4. CIK Cells Combined with CTLA-4 in Lung Cancer
5. CIK Cells and Rational to Investigate Other Immune Checkpoint Inhibitors
6. DC/CIK Cells and Lung Cancer Clinical Spectrum
7. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esposito, G.; Palumbo, G.; Carillio, G.; Manzo, A.; Montanino, A.; Sforza, V.; Costanzo, R.; Sandomenico, C.; La Manna, C.; Martucci, N.; et al. Immunotherapy in Small Cell Lung Cancer. Cancers 2020, 12, 2522. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr.; Wu, Y.-L.; Paz-Ares, L. Lung Cancer: Current Therapies and New Targeted Treatments. Lancet 2017, 389, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Dhakar, R.; Dakal, T.C.; Sharma, A. Genetic Determinants of Lung Cancer: Understanding the Oncogenic Potential of Somatic Missense Mutations. Genomics 2022, 114, 110401. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Qi, W.; Luo, Z.; Zeng, Q.; Huang, Y.; Wang, Y.; Sharma, A.; Schmidt-Wolf, I.G.H.; Liao, F. Role of 18F-FDG PET/CT in Patients Affected by Pulmonary Primary Lymphoma. Front. Oncol. 2022, 12, 973109. [Google Scholar] [CrossRef] [PubMed]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative Approaches for Cancer Treatment: Current Perspectives and New Challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef]
- Xia, L.; Liu, Y.; Wang, Y. PD-1/PD-L1 Blockade Therapy in Advanced Non-Small-Cell Lung Cancer: Current Status and Future Directions. Oncologist 2019, 24, S31–S41. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Li, D.; Zhu, X. Cancer Immunotherapy: Pros, Cons and Beyond. Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef]
- Chen, D.; Sha, H.; Hu, T.; Dong, S.; Zhang, J.; Liu, S.; Cao, H.; Ma, R.; Wu, Y.; Jing, C.; et al. Cytokine-Induced Killer Cells as a Feasible Adoptive Immunotherapy for the Treatment of Lung Cancer. Cell Death Dis. 2018, 9, 366. [Google Scholar] [CrossRef]
- Liu, S.; Meng, Y.; Liu, L.; Lv, Y.; Yu, W.; Liu, T.; Wang, L.; Mu, D.; Zhou, Q.; Liu, M.; et al. CD4+ T Cells Are Required to Improve the Efficacy of CIK Therapy in Non-Small Cell Lung Cancer. Cell Death Dis. 2022, 13, 441. [Google Scholar] [CrossRef]
- Hui, Z.; Zhang, X.; Ren, B.; Li, R.; Ren, X. Rapid Response of Advanced Squamous Non-Small Cell Lung Cancer with Thrombocytopenia after First-Line Treatment with Pembrolizumab Plus Autologous Cytokine-Induced Killer Cells. Front. Immunol. 2015, 6, 633. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, X.; Till, B.; Sun, M.; Li, X.; Gao, Q. Combination of Cytokine-Induced Killer Cells and Programmed Cell Death-1 Blockade Works Synergistically to Enhance Therapeutic Efficacy in Metastatic Renal Cell Carcinoma and Non-Small Cell Lung Cancer. Front. Immunol. 2018, 9, 1513. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhou, Y.; Shang, Y.; Zhang, Y.; Xu, B.; Fu, X.; Guo, J.; Yang, Y.; Zhang, F.; Zhou, M.; et al. Sintilimab Maintenance Therapy Post First-Line Cytokine-Induced Killer Cells plus Chemotherapy for Extensive-Stage Small Cell Lung Cancer. Front. Oncol. 2022, 12, 852885. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sharma, A.; Wu, X.; Weiher, H.; Skowasch, D.; Essler, M.; Schmidt-Wolf, I.G.H. A Combination of Cytokine-Induced Killer Cells With PD-1 Blockade and ALK Inhibitor Showed Substantial Intrinsic Variability Across Non-Small Cell Lung Cancer Cell Lines. Front. Oncol. 2022, 12, 713476. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Mu, D.; Liu, T.; Zhang, H.; Zhang, J.; Li, S.; Wang, R.; Du, W.; Hui, Z.; Zhang, X.; et al. Autologous Cytokine-Induced Killer (CIK) Cells Enhance the Clinical Response to PD-1 Blocking Antibodies in Patients with Advanced Non-Small Cell Lung Cancer: A Preliminary Study. Thorac. Cancer 2021, 12, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Geng, G.; Yu, X.; Xu, Z.; Guo, J.; Liu, H.; Li, N.; Li, Z.; Li, Y.; Dai, X.; et al. LINC01140 Promotes the Progression and Tumor Immune Escape in Lung Cancer by Sponging Multiple MicroRNAs. J. Immunother. Cancer 2021, 9, e002746. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Meng, Y.; Liu, L.; Lv, Y.; Wei, F.; Yu, W.; Wang, L.; Zhang, X.; Ren, X.; Sun, Q. Rational Pemetrexed Combined with CIK Therapy plus Anti-PD-1 MAbs Administration Sequence Will Effectively Promote the Efficacy of CIK Therapy in Non-Small Cell Lung Cancer. Cancer Gene Ther. 2022, 30, 277–287. [Google Scholar] [CrossRef]
- Zhao, L.; Han, L.; Zhang, Y.; Li, T.; Yang, Y.; Li, W.; Shang, Y.; Lin, H.; Gao, Q. Combination of PD-1 Blockade and RetroNectin(®)-Activated Cytokine-Induced Killer in Preheavily Treated Non-Small-Cell Lung Cancer: A Retrospective Study. Immunotherapy 2018, 10, 1315–1323. [Google Scholar] [CrossRef]
- Chen, C.-L.; Pan, Q.-Z.; Weng, D.-S.; Xie, C.-M.; Zhao, J.-J.; Chen, M.-S.; Peng, R.-Q.; Li, D.-D.; Wang, Y.; Tang, Y.; et al. Safety and Activity of PD-1 Blockade-Activated DC-CIK Cells in Patients with Advanced Solid Tumors. Oncoimmunology 2018, 7, e1417721. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yu, J.P.; Cao, S.; Wei, F.; Zhang, P.; An, X.M.; Huang, Z.T.; Ren, X.B. CD4+ CD25+ regulatory T cells decreased the antitumor activity of cytokine-induced killer (CIK) cells of lung cancer patients. Clin Immunol. 2007, 27, 317–326. [Google Scholar] [CrossRef]
- Rui, T.; Cheng, X.; Wu, H.; Wang, F.; Ye, Z.; Wu, G. Lentiviral Delivery of CTLA-4 ShRNA Improves the Expansion of Cytokine-Induced Killer Cells and Enhances Cytotoxic Activity In Vitro. Oncol. Lett. 2018, 15, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Chen, Q.; Chen, H.; Wang, L.; Zhang, J. Enhanced Inhibitory Effect of DC-CIK Cells on Lung Adenocarcinoma via Anti-Tim-3 Antibody and Antiprogrammed Cell Death-1 Antibody and Possible Mechanism. Evid. Based. Complement. Alternat. Med. 2022, 2022, 4097576. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Schmidt-Wolf, I.G.H. 30 Years of CIK Cell Therapy: Recapitulating the Key Breakthroughs and Future Perspective. J. Exp. Clin. Cancer Res. 2021, 40, 388. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Wolf, I.G.; Negrin, R.S.; Kiem, H.P.; Blume, K.G.; Weissman, I.L.; Schmidt-Wolf, I.G.; Negrin, R.S.; Kiem, H.P.; Blume, K.G.; Weissman, I.L. Use of a SCID Mouse/Human Lymphoma Model to Evaluate Cytokine-Induced Killer Cells with Potent Antitumor Cell Activity. J. Exp. Med. 1991, 174, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Mi, Y.; Guo, N.; Xu, H.; Xu, L.; Gou, X.; Jin, W.; Levy, E.M. Cytokine-Induced Killer Cells as Pharmacological Tools for Cancer Immunotherapy. Front. Immunol. 2017, 8, 774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Schmidt-Wolf, I.G.H. Ten-Year Update of the International Registry on Cytokine-Induced Killer Cells in Cancer Immunotherapy. J. Cell. Physiol. 2020, 235, 9291–9303. [Google Scholar] [CrossRef]
- Schmeel, L.C.; Schmeel, F.C.; Coch, C.; Schmidt-Wolf, I.G.H. Cytokine-Induced Killer (CIK) Cells in Cancer Immunotherapy: Report of the International Registry on CIK Cells (IRCC). J. Cancer Res. Clin. Oncol. 2015, 141, 839–849. [Google Scholar] [CrossRef]
- Giraudo, L.; Gammaitoni, L.; Cangemi, M.; Rotolo, R.; Aglietta, M.; Sangiolo, D. Cytokine-Induced Killer Cells as Immunotherapy for Solid Tumors: Current Evidence and Perspectives. Immunotherapy 2015, 7, 999–1010. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.-H.; Lim, Y.-S.; Yeon, J.E.; Song, T.-J.; Yu, S.J.; Gwak, G.-Y.; Kim, K.M.; Kim, Y.J.; Lee, J.W.; et al. Adjuvant Immunotherapy with Autologous Cytokine-Induced Killer Cells for Hepatocellular Carcinoma. Gastroenterology 2015, 148, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, J.; Wei, F.; Wang, K.; Sun, Q.; Yang, F.; Jin, H.; Zheng, Y.; Zhao, H.; Wang, L.; et al. Profiling the Dynamic Expression of Checkpoint Molecules on Cytokine-Induced Killer Cells from Non-Small-Cell Lung Cancer Patients. Oncotarget 2016, 7, 43604–43615. [Google Scholar] [CrossRef]
- Zhou, L.; Xiong, Y.; Wang, Y.; Meng, Y.; Zhang, W.; Shen, M.; Zhang, X.; Li, S.; Ren, B.; Li, R.; et al. A Phase IB Trial of Autologous Cytokine-Induced Killer Cells in Combination with Sintilimab, Monoclonal Antibody Against Programmed Cell Death-1, plus Chemotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2022, 23, 709–719. [Google Scholar] [CrossRef]
- Kou, F.; Wu, L.; Zhu, Y.; Li, B.; Huang, Z.; Ren, X.; Yang, L. Somatic Copy Number Alteration Predicts Clinical Benefit of Lung Adenocarcinoma Patients Treated with Cytokine-Induced Killer plus Chemotherapy. Cancer Gene Ther. 2022, 29, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, F.; Sun, Q.; Zeng, Z.; Liu, M.; Yu, W.; Zhang, P.; Yu, J.; Yang, L.; Zhang, X.; et al. The Prognostic Landscape of Genes and Infiltrating Immune Cells in Cytokine Induced Killer Cell Treated-Lung Squamous Cell Carcinoma and Adenocarcinoma. Cancer Biol. Med. 2021, 18, 1134–1147. [Google Scholar] [CrossRef]
- Ribas, A.; Shin, D.S.; Zaretsky, J.; Frederiksen, J.; Cornish, A.; Avramis, E.; Seja, E.; Kivork, C.; Siebert, J.; Kaplan-Lefko, P.; et al. PD-1 Blockade Expands Intratumoral Memory T Cells. Cancer Immunol. Res. 2016, 4, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.; Lin, F.; Geng, R.; Ge, X.; Tang, W.; Chang, J.; Wu, Z.; Liu, X.; Lin, Y.; Zhang, Z.; et al. Implication of Combined PD-L1/PD-1 Blockade with Cytokine-Induced Killer Cells as a Synergistic Immunotherapy for Gastrointestinal Cancer. Oncotarget 2016, 7, 10332–10344. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Y.; Feng, F.; Chen, C.; Zeng, H.; Wen, S.; Xu, X.; He, J.; Li, J. Programmed Cell Death Protein-1/Programmed Death-Ligand 1 Blockade Enhances the Antitumor Efficacy of Adoptive Cell Therapy against Non-Small Cell Lung Cancer. J. Thorac. Dis. 2018, 10, 6711–6721. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Wang, L.; Han, J.; Li, F.; Shen, C.; Li, H.; Huang, L.; Zhao, X.; Yue, D.; et al. Pseudomonas Aeruginosa-Mannose Sensitive Hemagglutinin Injection Treated Cytokine-Induced Killer Cells Combined with Chemotherapy in the Treatment of Malignancies. Int. Immunopharmacol. 2017, 51, 57–65. [Google Scholar] [CrossRef]
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- Boussiotis, V.A.; Chatterjee, P.; Li, L. Biochemical Signaling of PD-1 on T Cells and Its Functional Implications. Cancer J. 2014, 20, 265–271. [Google Scholar] [CrossRef]
- Marinelli, O.; Annibali, D.; Morelli, M.B.; Zeppa, L.; Tuyaerts, S.; Aguzzi, C.; Amantini, C.; Maggi, F.; Ferretti, B.; Santoni, G.; et al. Biological Function of PD-L2 and Correlation With Overall Survival in Type II Endometrial Cancer. Front. Oncol. 2020, 10, 538064. [Google Scholar] [CrossRef]
- Yearley, J.H.; Gibson, C.; Yu, N.; Moon, C.; Murphy, E.; Juco, J.; Lunceford, J.; Cheng, J.; Chow, L.Q.M.; Seiwert, T.Y.; et al. PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer. Clin. Cancer Res. 2017, 23, 3158–3167. [Google Scholar] [CrossRef] [Green Version]
- Larsen, T.V.; Hussmann, D.; Nielsen, A.L. PD-L1 and PD-L2 Expression Correlated Genes in Non-Small-Cell Lung Cancer. Cancer Commun. 2019, 39, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moini, J.; Badolato, C.; Ahangari, R. Chapter 22-Immunotherapy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 489–504. ISBN 978-0-12-822187-7. [Google Scholar]
- Wang, W.; Wang, X.; Yang, W.; Zhong, K.; He, N.; Li, X.; Pang, Y.; Lu, Z.; Liu, A.; Lu, X. A CTLA-4 Blocking Strategy Based on Nanoboby in Dendritic Cell-Stimulated Cytokine-Induced Killer Cells Enhances Their Anti-Tumor Effects. BMC Cancer 2021, 21, 1029. [Google Scholar] [CrossRef] [PubMed]
- Dehno, M.N.; Li, Y.; Weiher, H.; Schmidt-Wolf, I.G.H. Increase in Efficacy of Checkpoint Inhibition by Cytokine-Induced-Killer Cells as a Combination Immunotherapy for Renal Cancer. Int. J. Mol. Sci. 2020, 21, 3078. [Google Scholar] [CrossRef]
- Stojanovic, A.; Fiegler, N.; Cerwenka, A. CTLA-4 Is Expressed by Activated Mouse NK Cells and Inhibits NK Cell IFN- γ Production in Response to Mature Dendritic Cells. J. Immunol. 2022, 192, 4184–4191. [Google Scholar] [CrossRef] [Green Version]
- Poh, S.L.; Linn, Y.C. Immune Checkpoint Inhibitors Enhance Cytotoxicity of Cytokine-Induced Killer Cells against Human Myeloid Leukaemic Blasts. Cancer Immunol. Immunother. 2016, 65, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Contardi, E.; Palmisano, G.L.; Tazzari, P.L.; Martelli, A.M.; Falà, F.; Fabbi, M.; Kato, T.; Lucarelli, E.; Donati, D.; Polito, L.; et al. CTLA-4 Is Constitutively Expressed on Tumor Cells and Can Trigger Apoptosis upon Ligand Interaction. Int. J. Cancer 2005, 117, 538–550. [Google Scholar] [CrossRef]
- Santoni, G.; Amantini, C.; Morelli, M.B.; Tomassoni, D.; Santoni, M.; Marinelli, O.; Nabissi, M.; Cardinali, C.; Paolucci, V.; Torniai, M.; et al. High CTLA-4 Expression Correlates with Poor Prognosis in Thymoma Patients. Oncotarget 2018, 9, 16665–16677. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Dutta, P.; Liu, J.; Sabri, N.; Song, Y.; Li, W.X.; Li, J. Tumour Cell-Intrinsic CTLA4 Regulates PD-L1 Expression in Non-Small Cell Lung Cancer. J. Cell. Mol. Med. 2019, 23, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Puri, S.; Shafique, M. Combination Checkpoint Inhibitors for Treatment of Non-Small-Cell Lung Cancer: An Update on Dual Anti-CTLA-4 and Anti-PD-1/PD-L1 Therapies. Drugs Context 2020, 9, 2019-9-2. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Li, K.; Ni, Y.; Liang, X.; Zhao, X. Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Front. Cell Dev. Biol. 2021, 9, 707198. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Ciuleanu, T.-E.; Pluzanski, A.; Lee, J.S.; Otterson, G.A.; Audigier-Valette, C.; Minenza, E.; Linardou, H.; Burgers, S.; Salman, P.; et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N. Engl. J. Med. 2018, 378, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Jure-Kunkel, M.; Masters, G.; Girit, E.; Dito, G.; Lee, F.; Hunt, J.T.; Humphrey, R.; Masters, M.J.G.; Hunt, J.T.; Humphrey, R. Synergy between Chemotherapeutic Agents and CTLA-4 Blockade in Preclinical Tumor Models. Cancer Immunol. Immunother. 2013, 62, 1533–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mankor, J.M.; Disselhorst, M.J.; Poncin, M.; Baas, P.; Aerts, J.G.J.V.; Vroman, H. Efficacy of Nivolumab and Ipilimumab in Patients with Malignant Pleural Mesothelioma Is Related to a Subtype of Effector Memory Cytotoxic T Cells: Translational Evidence from Two Clinical Trials. EBioMedicine 2020, 62, 103040. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Yang, H.; Wei, Y. Combined Induction with Anti-PD-1 and Anti-CTLA-4 Antibodies Provides Synergistic Antitumor Effects in DC-CIK Cells in Renal Carcinoma Cell Lines. Int. J. Clin. Exp. Pathol. 2019, 12, 123–132. [Google Scholar]
- Zhang, L.; Xu, Y.; Shen, J.; He, F.; Zhang, D.; Chen, Z.; Duan, Y.; Sun, J. Feasibility Study of DCs/CIKs Combined with Thoracic Radiotherapy for Patients with Locally Advanced or Metastatic Non-Small-Cell Lung Cancer. Radiat. Oncol. 2016, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.P.; Xu, Y.H.; Zhou, J.; Pan, X.F. A Clinical Study Evaluating Dendritic and Cytokine-Induced Killer Cells Combined with Concurrent Radiochemotherapy for Stage IIIB Non-Small Cell Lung Cancer. Genet. Mol. Res. 2015, 14, 10228–10235. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Yu, J.; Cao, S.; Wei, F.; Zhang, W.; Han, Y.; Ren, X.-B. Dendritic Cell-Activated Cytokine-Induced Killer Cells Enhance the Anti-Tumor Effect of Chemotherapy on Non-Small Cell Lung Cancer in Patients after Surgery. Cytotherapy 2009, 11, 1076–1083. [Google Scholar] [CrossRef]
- Zhao, P.; Bu, X.; Wei, X.; Sun, W.; Xie, X.; Li, C.; Guo, Q.; Zhu, D.; Wei, X.; Gao, D. Dendritic Cell Immunotherapy Combined with Cytokine-Induced Killer Cells Promotes Skewing toward Th2 Cytokine Profile in Patients with Metastatic Non-Small Cell Lung Cancer. Int. Immunopharmacol. 2015, 25, 450–456. [Google Scholar] [CrossRef]
- Song, H.; Liu, S.; Zhao, Z.; Sun, W.; Wei, X.; Ma, X.; Zhao, P.; Gao, D. Increased Cycles of DC/CIK Immunotherapy Decreases Frequency of Tregs in Patients with Resected NSCLC. Int. Immunopharmacol. 2017, 52, 197–202. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Sun, Z.; Li, J.; Zhu, H.; Li, J.; Pang, Y. Dendritic Cell Vaccine and Cytokine-Induced Killer Cell Therapy for the Treatment of Advanced Non-Small Cell Lung Cancer. Oncol. Lett. 2016, 11, 2605–2610. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse Effects of Immune-Checkpoint Inhibitors: Epidemiology, Management and Surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Nebhan, C.A.; Moslehi, J.J.; Balko, J.M. Immune-Checkpoint Inhibitors: Long-Term Implications of Toxicity. Nat. Rev. Clin. Oncol. 2022, 19, 254–267. [Google Scholar] [CrossRef]
- Naidoo, J.; Wang, X.; Woo, K.M.; Iyriboz, T.; Halpenny, D.; Cunningham, J.; Chaft, J.E.; Segal, N.H.; Callahan, M.K.; Lesokhin, A.M.; et al. Pneumonitis in Patients Treated with Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.X.; Quach, H.T.; Moodabigil, N.V.; Davis, E.J.; Sosman, J.A.; Dusetzina, S.B.; Johnson, D.B. Health Care Utilization and Steroid-Refractory Toxicities from Immune Checkpoint Inhibitors. Cancer 2020, 126, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, iv264–iv266. [Google Scholar] [CrossRef]
- Lam, K.C.; Goldszmid, R.S. Can Gut Microbes Predict Efficacy and Toxicity of Combined Immune Checkpoint Blockade? Cancer Cell 2021, 39, 1314–1316. [Google Scholar] [CrossRef]
- Ferrara, R.; Caramella, C.; Besse, B.; Champiat, S. Pseudoprogression in Non-Small Cell Lung Cancer upon Immunotherapy: Few Drops in the Ocean? J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2019, 14, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Gonugunta, A.S.; von Itzstein, M.S.; Gerber, D.E. Pseudoprogression in Advanced Non-Small Cell Lung Cancer Treated with Combination Chemoimmunotherapy: A Case Report. J. Med. Case Rep. 2022, 16, 289. [Google Scholar] [CrossRef]
- Leung, J.H.; Chang, C.-W.; Chan, A.L.F.; Lang, H.-C. Cost–Effectiveness of Immune Checkpoint Inhibitors in the Treatment of Non-Small-Cell Lung Cancer as a Second Line in Taiwan. Future. Oncol. 2022, 18, 859–870. [Google Scholar] [CrossRef]
- Ondhia, U.; Conter, H.J.; Owen, S.; Zhou, A.; Nam, J.; Singh, S.; Abdulla, A.; Chu, P.; Felizzi, F.; Paracha, N.; et al. Cost-Effectiveness of Second-Line Atezolizumab in Canada for Advanced Non-Small Cell Lung Cancer (NSCLC). J. Med. Econ. 2019, 22, 625–637. [Google Scholar] [CrossRef]
- Clegg, A.; Scott, D.A.; Sidhu, M.; Hewitson, P.; Waugh, N. A Rapid and Systematic Review of the Clinical Effectiveness and Cost-Effectiveness of Paclitaxel, Docetaxel, Gemcitabine and Vinorelbine in Non-Small-Cell Lung Cancer. Health Technol. Assess. 2001, 5, 1–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Xu, Y.; Wan, B.; Song, Y.; Zhan, P.; Hu, Y.; Zhang, Q.; Zhang, F.; Liu, H.; Li, T.; et al. The Clinicopathological and Prognostic Significance of PD-L1 Expression Assessed by Immunohistochemistry in Lung Cancer: A Meta-Analysis of 50 Studies with 11,383 Patients. Transl. Lung Cancer Res. 2019, 8, 429–449. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shi, F.; Zhou, Q.; Li, Y.; Wu, J.; Wang, R.; Song, Q. Prognostic Significance of PD-L1 in Advanced Non-Small Cell Lung Carcinoma. Medicine 2020, 99, e23172. [Google Scholar] [CrossRef] [PubMed]
Ref. | Clinical Trial | Phase | Tumor Entity | Treatment Regime | Pre-Treated | LC Patients (n) | Patients with CIK Therapy (n) | Status (for Registered Clinical Trials), Study Start Date | Median PFS/Month (CIK vs. Control) | Median OS/Month (CIK vs. Control) | ORR %(CIK vs. Control) | DCR Rate% | Adverse Effects |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[30] | NCT03987867 | I | AS & nS NSCLC | Auto CIK + SIN + chemo | No | 34 | 34 | Results published | 19.3 (all patients) | 20.3 * | 82.4 | 100 | Neutropenia, fatigue, nausea, leukopenia, thrombocytopenia, pneumonia, cardiomyopathy, dysphagia, rash, and cough. |
[12] | NCT03983759 | II | ES-SCLC | (Chemo + Auto CIK) as first line + SIN as second line | No | 13 | 13 | Results published | 5.5 | 11.8 | 76.9 | 100 | First line: anemia, thrombocytopenia, nausea, vomiting, leukopenia, rash, anorexia, and fatigue. Second line: increased aminotransferase. |
[14] | - | Retro | AS & nS NSCLC | Auto CIK + PEM or NIV | - | 7 | 7 | - | 9.7 vs. 1.3 | 21.7 vs. 28.4 | 42.86 vs. 9.09 | 57.14 vs. 45.45 | Combination= pneumonia and exfoliative dermatitis. PD-1 inhibitor alone= adrenal insufficiency and hypothyroidism. |
[17] | - | Retro | Advanced NSCLC | R-CIK + PEM or NIV | DT | 7 | 3 | - | TTP = 4.8 | Not reached | 28.6 | 85.7 | Fatigue, anorexia, leukopenia, fever, rash, and interstitial pneumonitis. |
[18] | - | I | ST include NSCLC | PEM-activated autologous DC-CIK cells | - | 3 | 3 | 5.4 † | 9 † | 0 | 33.3 | Observed in 64.5% of patients †: fever, chills, anemia, increased AST, increased ALT, decreased albumin, leukopenia, thrombocytopenia, vitiligo, and hypothyroidism. | |
- | NCT03190811 | Pros, I, II | ST include LC | Auto DC/CIK + PEM | Yes, ‡ | 100 | - | RNP, Sep 2016 | - | - | - | - | - |
- | NCT03282435 | Pros, I | NSCLC | Auto CIK + Anti PD-1 | - | 30 | - | RNP, Jan 2018 | - | - | - | - | - |
- | NCT04836728 | Pros, II | NSCLC | SIN + Chemo ± CIK cells | No | 156 | - | RNP, Apr 2021 | - | - | - | - | - |
- | NCT02886897 | Pros, I, II | SL include LC | Auto CIK + Anti PD-1 | No | 50 | - | RNP, Jul 2016 | - | - | - | - | - |
- | NCT03360630 | Pros, I, II | NSCLC | PEM ± Auto DC/CIK cells | Yes, ‡ | 60 | - | RNP, Nov 2016 | - | - | - | - | - |
- | NCT03815630 | Pros, Early I | ST | PEM + Auto DC/CIK cell | Yes, chemo | 100 | - | RNP, Feb 2019 | - | - | - | - | - |
Ref | Cell Setting | Immune Checkpoint | Type of Inhibitor/Modulator | Type of Cancer | Output |
---|---|---|---|---|---|
[16] (2022) | CIK cells | PD-1 | Anti-PD-1 + pemetrexed | A549, H1299 | High CIK cell efficacy in prior anti-PD-1 mAb-treated mice compared with treating mice after CIK cell infusion. |
[13] (2022) | CIK cells | PD-1 | NIV + crizotinib (ALK inhibitor) | NCI-H2228 (EML4-ALK) A549 (KRAS mutation) HCC-78 (ROS1 rearrangement) | Reduction of PD-1 surface expression after antibody usage; Higher IFN-γ secretion; Higher granzyme B in CD3+CD56+; Higher Fas-L expression on CIK cells; Lower non-specific cytotoxicity (an adverse effect) in combinational therapy. |
[9] (2022) | CD4- CIK cells | PD-1 | Anti PD-1 | A549 | Higher CD56+ CIK cell subpopulation; Lower PD-1+ TIM-3+ CIK cells; Higher IFN-γ+Gzm B+ cell population. |
[43] (2021) | DC-CIK cells | CTLA-4 of CIK cells | Nb36 nanobody | Hepatocellular carcinoma | Increased CTLA-4 expression during CIK cell generation; Higher proliferation and differentiation by CTLA-4 inhibition; Higher pro-inflammatory cytokine secretion by CTLA-4 inhibition; Higher survival rate by decreasing tumor growth in tumorized mice. |
[15] (2021) | CIK cells | PD-L1 | LINC01140 | Lung cancer | LINC01140 knockdown lung cancer treated with CIK cells in vivo compared with the control group: • Higher regression of tumor growth; • Higher IL-2, TNF-α, IFN-γ; • Higher CD3+CD56+ CIK cell population; In co-culturing of CIK and LINC01140 knockdown lung cancer cells compared with non-knockdown tumor cells: • Higher IFN-γ secretion; • Lowe tumor cell viability; • Lower apoptotic CIK cells; LINC01140 expression inhibits PDL-1 mRNA inhibition, which leads to tumor cell invasion and immune evasion. |
[44] (2020) | CIK cells | CTLA-4 of CIK cells and cell lines, PD-1 | IPI | A-498 and Caki-2 renal cell lines | No differences in tumor cell viability by CTLA-4 inhibition; Higher CIK cell proliferation by CTLA-4 inhibition; No differences in CIK cell cytotoxicity by CTLA-4 inhibition; Higher IFN-γ secretion by CTLA-4 inhibition. |
[45] (2019) | DC-CIK cells | CTLA-4 of CIK cells, PD-1 | Anti CTLA-4 antibody | 786 and ACHN (renal cell cancer) | Anti-CTLA-4 acts weaker than anti-PD1; Higher proliferation and differentiation by CTLA-4 inhibition; Higher cytotoxicity by CTLA-4 inhibition; Higher CD62LlowCD44hi cells by CTLA-4 inhibition; Higher pro-inflammatory cytokine secretion (IFN-γ and TNF-α) and lower suppressor cytokines (IL-10) by CTLA-4 inhibition. |
[11] (2018) | Auto CIK cells | PD-1 | PEM | Squamous NSCLC (Case report) | After 185 days of treatment, the patient is still in remission; No adverse effect has been seen. |
[20] (2018) | CTLA-4 of CIK cells | shCTLA-4 lentiviral particles | A549 | Increased CTLA-4 expression during CIK cell generation; Higher proliferation by CTLA-4 inhibition; Higher proliferation by CTLA-4 inhibition. | |
[34] (2016) | CIK cells | PD-1, PDL-1 | Anti PD-1, Anti PDL-1 | Gastric cancer and colorectal cancer cell line | Higher PD-1/PDL-1 expression on CIK cells following co-culture with the MGC803 cell line; Higher CIK cell cytotoxicity toward tumor cells after combining with either anti-PD-1 or anti-PDL-1 in vivo and in vitro; Higher IFN-γ, CD107a, and NKG2D expression are accompanied by impaired CTLA-4 and LAG-3 signaling by inhibiting PD-1/PDL-1 binding on CIK cells. |
[46] (2016) | CIK cells | CTLA-4, KIR, LAG-3, PD-1, TIM-3 | IPI | ALL, AML, MM, and U937, Raji | No differences in CTLA-4 expression during CIK cell generation; Expression of CTLA-4 ligands on tumor cells; No differences in CIK cell cytotoxicity by CTLA-4 inhibition compared to KIR, LAG-3, PD-1, and TIM-3 blockade; No autologous reaction to blocking CTLA-4 CIK cells. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaseq, R.; Sharma, A.; Li, Y.; Schmidt-Wolf, I.G.H. Revising the Landscape of Cytokine-Induced Killer Cell Therapy in Lung Cancer: Focus on Immune Checkpoint Inhibitors. Int. J. Mol. Sci. 2023, 24, 5626. https://doi.org/10.3390/ijms24065626
Vaseq R, Sharma A, Li Y, Schmidt-Wolf IGH. Revising the Landscape of Cytokine-Induced Killer Cell Therapy in Lung Cancer: Focus on Immune Checkpoint Inhibitors. International Journal of Molecular Sciences. 2023; 24(6):5626. https://doi.org/10.3390/ijms24065626
Chicago/Turabian StyleVaseq, Rohulla, Amit Sharma, Yutao Li, and Ingo G. H. Schmidt-Wolf. 2023. "Revising the Landscape of Cytokine-Induced Killer Cell Therapy in Lung Cancer: Focus on Immune Checkpoint Inhibitors" International Journal of Molecular Sciences 24, no. 6: 5626. https://doi.org/10.3390/ijms24065626
APA StyleVaseq, R., Sharma, A., Li, Y., & Schmidt-Wolf, I. G. H. (2023). Revising the Landscape of Cytokine-Induced Killer Cell Therapy in Lung Cancer: Focus on Immune Checkpoint Inhibitors. International Journal of Molecular Sciences, 24(6), 5626. https://doi.org/10.3390/ijms24065626