Prediction and Verification of Curcumin as a Potential Drug for Inhibition of PDCoV Replication in LLC-PK1 Cells
Abstract
:1. Introduction
2. Results
2.1. Intersection Target of Curcumaelongae Rhizoma and Diarrhea
2.2. PPI Analysis, GeneOntology Function and KEGG Signal Pathway Enrichment Analysis of Common Targets
2.3. Network Construction of CTPD and Analysis
2.4. Molecular Docking Analysis
2.5. Curcumin Inhibits PDCoV Replication
2.6. Pretreatment Curcumin Inhibits PDCoV Replication
2.7. PDCoV Suppressed Poly (I:C) Induced IFN-β Production through RIG-I Pathway
2.8. Curcumin Inhibited RIG-I Pathway Induced by PDCoV
3. Discussion
4. Materials and Methods
4.1. Identification of Curcumaelongae Rhizoma Compounds
4.2. Diarrhea-Related Targets Screening
4.3. Intersecting Target Identification
4.4. Protein-Protein Interaction (PPI) and Enrichment Analysis
4.5. Network Construction
4.6. Molecular Docking Assessment
4.7. Cells and Viruses
4.8. Cytotoxicity Assay
4.9. Crystal Violet Staining
4.10. Antiviral Activity Assay
4.11. RNA Extraction and Reverse Transcriptase Quantitative PCR
4.12. Western Blot
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, G.; Zhai, S.L.; Zhou, X.; Chen, T.B.; Niu, J.W.; Xie, Y.S.; Si, G.B.; Cong, F.; Chen, R.A.; He, D.S. Phylogeography and evolutionary dynamics analysis of porcine delta-coronavirus with host expansion to humans. Transbound. Emerg. Dis. 2022, 69, e1670–e1681. [Google Scholar] [CrossRef]
- Yuce, M.; Filiztekin, E.; Ozkaya, K.G. COVID-19 diagnosis -A review of current methods. Biosens. Bioelectron. 2021, 172, 112752. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, L.; Meng, Z.; Su, X.; Jia, C.; Qiao, X.; Pan, S.; Chen, Y.; Cheng, Y.; Zhu, M. Visual Detection of COVID-19 from Materials Aspect. Adv. Fiber Mater. 2022, 4, 1304–1333. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Vlasova, A.N.; Kenney, S.P.; Saif, L.J. Emerging and re-emerging coronaviruses in pigs. Curr. Opin. Virol. 2019, 34, 39–49. [Google Scholar] [CrossRef]
- He, W.T.; Ji, X.; He, W.; Dellicour, S.; Wang, S.; Li, G.; Zhang, L.; Gilbert, M.; Zhu, H.; Xing, G.; et al. Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus. Mol. Biol. Evol. 2020, 37, 2641–2654. [Google Scholar] [CrossRef]
- Hsueh, F.C.; Hsu, F.Y.; Chen, Y.H.; Shih, H.C.; Lin, W.H.; Yang, C.Y.; Lin, C.F.; Chiou, M.T.; Lin, C.N. Phylogenetic classification of global porcine deltacoronavirus (pdcov) reference strains and molecular characterization of pdcov in taiwan. Viruses 2021, 13, 1337. [Google Scholar] [CrossRef] [PubMed]
- Koonpaew, S.; Teeravechyan, S.; Frantz, P.N.; Chailangkarn, T.; Jongkaewwattana, A. PEDV and PDCoV Pathogenesis: The Interplay Between Host Innate Immune Responses and Porcine Enteric Coronaviruses. Front. Vet. Sci. 2019, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Zhou, Y.; Mu, Y.; Liu, Z.; Hou, S.; Xiong, Y.; Fang, L.; Ge, C.; Wei, Y.; Zhang, X.; et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. Elife. 2020, 9, e57132. [Google Scholar] [CrossRef]
- Yang, Y.L.; Liu, J.; Wang, T.Y.; Chen, M.; Wang, G.; Yang, Y.B.; Geng, X.; Sun, M.X.; Meng, F.; Tang, Y.D.; et al. Aminopeptidase N Is an Entry Co-factor Triggering Porcine Deltacoronavirus Entry via an Endocytotic Pathway. J. Virol. 2021, 95, e0094421. [Google Scholar] [CrossRef]
- Li, W.; Hulswit, R.J.G.; Kenney, S.P.; Widjaja, I.; Jung, K.; Alhamo, M.A.; van Dieren, B.; van Kuppeveld, F.J.M.; Saif, L.J.; Bosch, B.J. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc. Natl. Acad. Sci. USA. 2018, 115, E5135–E5143. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Liu, X.; Sun, Y.; Zeng, W.; Li, Y.; Zhao, F.; Wu, K.; Fan, S.; Zhao, M.; Chen, J.; et al. Swine Enteric Coronavirus: Diverse Pathogen-Host Interactions. Int. J. Mol. Sci. 2022, 23, 3953. [Google Scholar] [CrossRef]
- Thoresen, D.; Wang, W.; Galls, D.; Guo, R.; Xu, L.; Pyle, A.M. The molecular mechanism of RIG-I activation and signaling. Immunol. Rev. 2021, 304, 154–168. [Google Scholar]
- Dhillon, B.; Aleithan, F.; Abdul-Sater, Z.; Abdul-Sater, A.A. The Evolving Role of TRAFs in Mediating Inflammatory Responses. Front. Immunol. 2019, 10, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhong, C.; Wang, Q.; Chen, W.; Yuan, Y. Curcumin is an APE1 redox inhibitor and exhibits an antiviral activity against KSHV replication and pathogenesis. Antivir. Res. 2019, 167, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.S.; Chen, T.H.; Weng, L.; Huang, L.; Lai, D.; Weng, C.F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed. Pharmacother. 2021, 141, 111888. [Google Scholar] [CrossRef]
- Baikerikar, S. Curcumin and Natural Derivatives Inhibit Ebola Viral Proteins: An In silico Approach. Pharmacogn. Res. 2017, 9, S15–S22. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, S.; Han, C.; Wang, L.; Zheng, Q.; Wang, S.; Huang, Y.; Wei, S.; Qin, Q. Curcumin inhibits Singapore grouper iridovirus infection through multiple antiviral mechanisms. Aquaculture 2022. [Google Scholar] [CrossRef]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Rashidzadeh, H.; Danafar, H.; Rahimi, H.; Mozafari, F.; Salehiabar, M.; Rahmati, M.A.; Rahamooz-Haghighi, S.; Mousazadeh, N.; Mohammadi, A.; Ertas, Y.N.; et al. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): Diagnosis, treatment, therapy and future perspectives. Nanomedicine 2021, 16, 497–516. [Google Scholar] [CrossRef]
- Sadeghi, N.; Mansoori, A.; Shayesteh, A.; Hashemi, S.J. The effect of curcumin supplementation on clinical outcomes and inflammatory markers in patients with ulcerative colitis. Phytother. Res. 2020, 34, 1123–1133. [Google Scholar] [CrossRef]
- Du, H.; Dong, X.; Zhang, J.J.; Cao, Y.Y.; Akdis, M.; Huang, P.Q.; Chen, H.W.; Li, Y.; Liu, G.H.; Akdis, C.A.; et al. Clinical characteristics of 182 pediatric COVID-19 patients with different severities and allergic status. Allergy 2021, 76, 510–532. [Google Scholar] [CrossRef]
- Kim, K.; He, Y.; Jinno, C.; Kovanda, L.; Li, X.; Song, M.; Liu, Y. Trace amounts of antibiotic exacerbated diarrhea and systemic inflammation of weaned pigs infected with a pathogenic Escherichia coli. J. Anim. Sci. 2021, 99. [Google Scholar] [CrossRef]
- Rossen, J.W.; Bouma, J.; Raatgeep, R.H.; Buller, H.A.; Einerhand, A.W. Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step. J. Virol. 2004, 78, 9721–9730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.H.; Zhang, Y.F.; Yuan, Y.X.; Han, L.; Zhang, G.P.; Hu, H. Isolation, characterization and transcriptome analysis of porcine deltacoronavirus strain HNZK-02 from Henan Province, China. Mol. Immunol. 2021, 134, 86–99. [Google Scholar] [CrossRef]
- Wu, S.; Rao, G.; Wang, R.; Pang, Q.; Zhang, X.; Huang, R.; Li, T.; Tang, Z.; Hu, L. The neuroprotective effect of curcumin against ATO triggered neurotoxicity through Nrf2 and NF-kappaB signaling pathway in the brain of ducks. Ecotoxicol. Environ. Saf. 2021, 228, 112965. [Google Scholar] [CrossRef] [PubMed]
- Silva de Sa, I.; Peron, A.P.; Leimann, F.V.; Bressan, G.N.; Krum, B.N.; Fachinetto, R.; Pinela, J.; Calhelha, R.C.; Barreiro, M.F.; Ferreira, I.; et al. In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food Chem. Toxicol. 2019, 125, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, T.; Jin, Y.; Lam, S.; Su, Z.; Hall, B.J.; Xiang, Y.T. International Research Collaboration During the Pandemic. Network analysis of depressive symptoms in Hong Kong residents during the COVID-19 pandemic. Transl. Psychiatry 2021, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- Mrityunjaya, M.; Pavithra, V.; Neelam, R.; Janhavi, P.; Halami, P.M.; Ravindra, P.V. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front. Immunol. 2020, 11, 570122. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, H.; Abdolmohammadi-Vahid, S.; Danshina, S.; Ziya Gencer, M.; Ammari, A.; Sadeghi, A.; Roshangar, L.; Aslani, S.; Esmaeilzadeh, A.; Ghaebi, M.; et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 2020, 89, 107088. [Google Scholar] [CrossRef]
- Ailioaie, L.M.; Litscher, G. Curcumin and Photobiomodulation in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020, 21, 7150. [Google Scholar] [CrossRef]
- Vitali, D.; Bagri, P.; Wessels, J.M.; Arora, M.; Ganugula, R.; Parikh, A.; Mandur, T.; Felker, A.; Garg, S.; Kumar, M.; et al. Curcumin Can Decrease Tissue Inflammation and the Severity of HSV-2 Infection in the Female Reproductive Mucosa. Int. J. Mol. Sci. 2020, 21, 337. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Hu, J.H.; Liang, X.D.; Chen, J.; Liu, C.C.; Liu, Y.Y.; Cheng, Y.; Go, Y.Y.; Zhou, B. Curcumin inhibits classical swine fever virus replication by interfering with lipid metabolism. Vet. Microbiol. 2021, 259, 109152. [Google Scholar] [CrossRef]
- Onomoto, K.; Onoguchi, K.; Yoneyama, M. Regulation of RIG-I-like receptor-mediated signaling: Interaction between host and viral factors. Cell Mol. Immunol. 2021, 18, 539–555. [Google Scholar] [CrossRef]
- Rehwinkel, J.; Gack, M.U. RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat. Rev. Immunol. 2020, 20, 537–551. [Google Scholar] [CrossRef]
- Likai, J.; Shasha, L.; Wenxian, Z.; Jingjiao, M.; Jianhe, S.; Hengan, W.; Yaxian, Y. Porcine Deltacoronavirus Nucleocapsid Protein Suppressed IFN-beta Production by Interfering Porcine RIG-I dsRNA-Binding and K63-Linked Polyubiquitination. Front. Immunol. 2019, 10, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Fang, L.; Wang, D.; Yang, Y.; Chen, J.; Ye, X.; Foda, M.F.; Xiao, S. Porcine deltacoronavirus nsp5 inhibits interferon-beta production through the cleavage of NEMO. Virology 2017, 502, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Runfeng, L.; Yunlong, H.; Jicheng, H.; Weiqi, P.; Qinhai, M.; Yongxia, S.; Chufang, L.; Jin, Z.; Zhenhua, J.; Haiming, J.; et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res. 2020, 156, 104761. [Google Scholar] [CrossRef]
- Gogada, R.; Amadori, M.; Zhang, H.; Jones, A.; Verone, A.; Pitarresi, J.; Jandhyam, S.; Prabhu, V.; Black, J.D.; Chandra, D. Curcumin induces Apaf-1-dependent, p21-mediated caspase activation and apoptosis. Cell Cycle 2011, 10, 4128–4137. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Gu, L.; Su, Y.; Wang, Q.; Zhao, Y.; Chen, X.; Deng, H.; Li, W.; Wang, G.; Li, K. Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-kappaB pathways. Int. Immunopharmacol. 2018, 54, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Hesari, A.; Ghasemi, F.; Salarinia, R.; Biglari, H.; Tabar Molla Hassan, A.; Abdoli, V.; Mirzaei, H. Effects of curcumin on NF-kappaB, AP-1, and Wnt/beta-catenin signaling pathway in hepatitis B virus infection. J. Cell Biochem. 2018, 119, 7898–7904. [Google Scholar] [CrossRef]
- Tomita, M.; Kawakami, H.; Uchihara, J.N.; Okudaira, T.; Masuda, M.; Takasu, N.; Matsuda, T.; Ohta, T.; Tanaka, Y.; Ohshiro, K.; et al. Curcumin (diferuloylmethane) inhibits constitutive active NF-kappaB, leading to suppression of cell growth of human T-cell leukemia virus type I-infected T-cell lines and primary adult T-cell leukemia cells. Int. J. Cancer 2006, 118, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Ge, X.; Wang, J.; Wei, Z.; Feng, W.H.; Wang, J. Ergosterol peroxide exhibits antiviral and immunomodulatory abilities against porcine deltacoronavirus (PDCoV) via suppression of NF-kappaB and p38/MAPK signaling pathways in vitro. Int. Immunopharmacol. 2021, 93, 107317. [Google Scholar] [CrossRef] [PubMed]
No. | Uniprot ID | Gene Symbol | Gene Name |
---|---|---|---|
1 | P60568 | IL2 | Interleukin-2 |
2 | P08235 | IL6 | Interleukin-6 |
3 | P35354 | NR3C2 | Mineralocorticoid receptor |
4 | P35348 | SLC6A4 | Sodium-dependent serotonin transporter |
5 | P06276 | PIK3CG | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit, gamma isoform |
6 | P31645 | BCHE | Cholinesterase |
7 | P48736 | PTGS2 | Prostaglandin G/H synthase 2 |
8 | P05231 | ADRA1A | Alpha-1A adrenergic receptor |
No. | Pathway | Count | Percentage % | p Value |
---|---|---|---|---|
1 | Chagas disease (American trypanosomiasis) | 3 | 37.5 | 0.003263933 |
2 | TNF signaling pathway | 3 | 37.5 | 0.00345185 |
3 | Measles | 3 | 37.5 | 0.005289047 |
4 | Jak-STAT signaling pathway | 3 | 37.5 | 0.006261011 |
5 | HTLV-I infection | 3 | 37.5 | 0.018462521 |
6 | Graft-versus-host disease | 2 | 25 | 0.028450473 |
7 | PI3K-Akt signaling pathway | 3 | 37.5 | 0.032893784 |
8 | Aldosterone-regulated sodium reabsorption | 2 | 25 | 0.033550087 |
9 | Intestinal immune network for IgA production | 2 | 25 | 0.040314858 |
10 | Pathways in cancer | 3 | 37.5 | 0.041894111 |
11 | Regulation of lipolysis in adipocytes | 2 | 25 | 0.047878013 |
12 | VEGF signaling pathway | 2 | 25 | 0.052058258 |
13 | Inflammatory bowel disease (IBD) | 2 | 25 | 0.054559056 |
14 | Small cell lung cancer | 2 | 25 | 0.071911173 |
15 | HIF-1 signaling pathway | 2 | 25 | 0.080893927 |
16 | T cell receptor signaling pathway | 2 | 25 | 0.084142366 |
17 | Toll-like receptor signaling pathway | 2 | 25 | 0.088997082 |
18 | Amoebiasis | 2 | 25 | 0.088997082 |
19 | Insulin resistance | 2 | 25 | 0.090610547 |
20 | Serotonergic synapse | 2 | 25 | 0.093026279 |
Receptor | IL2 | IL6 | NR3C2 | SLC6A4 | PIK3CG | BCHE | PTGS2 | ADRA1A |
---|---|---|---|---|---|---|---|---|
Binding Energy (KJ/mol) | −19.0 | −25.1 | −26.4 | −15.0 | −17.5 | −30.1 | −27.2 | −14.4 |
Cell Line | Compound | CC50 | PDCoV | |
---|---|---|---|---|
EC50 | SI | |||
LLC-PK1 | Curcumin | 408 (μM) | 5.979 (μM) | 68.23 |
Primers Name | Direction a | Sequence (5′→3′) |
---|---|---|
PDCoV-N | F | CGCTTAACTCCGCCATCAA |
R | TCTGGTGTAACGCAGCCAGTA | |
IRF7 | F | CTCACCTGCGGTTAACACCT |
R | TTGAAGCCTGGGCCTTCTCC | |
IRF3 | F | GGTGTCTGGCTCAGGAAAGT |
R | AACCGGAAAGAAGCATTGCG | |
RIG-I | F | GGATGGTAGACAAAGGTGCAGA |
R | GGCTTCAGTGGGCTGTAAGT | |
IFN-α | F | CCACCTCAGCCAGGACAGAAG |
R | GATGGCATTGCAGCTGAGTAG | |
IFN-β | F | AGTGCATCCTCCAAATCGCT |
R | GCTCATGGAAAGAGCTGTGGT | |
GAPDH | F | ACATGGCCTCCAAGGAGTAAGA |
R | GATCGAGTTGGGGCTGTGACT | |
NR3C2 | F | TTCCTCGGCTCGCTTCGC |
R | CCAATGCACGTCACCCAACA | |
BCHE | F | AGTCCAATTTACAGGCTGGAG |
R | AAGGCTGTTACTGTGCCACC | |
PTGS2 | F | CTGGTGCCTGGTCTGATGAT |
R | TCAATCTGGAAGGCGTCAGG | |
IL-6 | F | GCAGTCACAGAACGAGTGGA |
R | CTCAGGCTGAACTGCAGGAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, X.; Zhang, J.; Shan, Q.; Zhu, Y.; Xu, C.; Wang, J. Prediction and Verification of Curcumin as a Potential Drug for Inhibition of PDCoV Replication in LLC-PK1 Cells. Int. J. Mol. Sci. 2023, 24, 5870. https://doi.org/10.3390/ijms24065870
Wang X, Wang X, Zhang J, Shan Q, Zhu Y, Xu C, Wang J. Prediction and Verification of Curcumin as a Potential Drug for Inhibition of PDCoV Replication in LLC-PK1 Cells. International Journal of Molecular Sciences. 2023; 24(6):5870. https://doi.org/10.3390/ijms24065870
Chicago/Turabian StyleWang, Xuefei, Xue Wang, Jialu Zhang, Qiang Shan, Yaohong Zhu, Chuang Xu, and Jiufeng Wang. 2023. "Prediction and Verification of Curcumin as a Potential Drug for Inhibition of PDCoV Replication in LLC-PK1 Cells" International Journal of Molecular Sciences 24, no. 6: 5870. https://doi.org/10.3390/ijms24065870
APA StyleWang, X., Wang, X., Zhang, J., Shan, Q., Zhu, Y., Xu, C., & Wang, J. (2023). Prediction and Verification of Curcumin as a Potential Drug for Inhibition of PDCoV Replication in LLC-PK1 Cells. International Journal of Molecular Sciences, 24(6), 5870. https://doi.org/10.3390/ijms24065870