Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia
Abstract
:1. Introduction
2. DRG Sensory Neurons in the Pathogenesis of Diabetic Polyneuropathy
3. Molecules That Impact Signal Transduction Pathways: Insulin, GLP-1, PTEN, HSP27, RAGE, CWC22, and DUSP1
4. Targeting Key Players in Post-Transcriptional Regulation: miRNA and lncRNA
5. Nuclear Bodies and Sensory Neurodegeneration in Diabetes
6. Therapeutic Strategies: Future Prospects of DRG-Targeting Gene Delivery
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 9782930229980. [Google Scholar]
- Brown, M.J.; Asbury, A.K. Diabetic Neuropathy. Ann. Neurol. 1984, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Zochodne, D.W. Diabetic Neuropathies: Features and Mechanisms. Brain Pathol. 1999, 9, 369–391. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Boulton, A.J.M.; Feldman, E.L.; Marcus, R.L.; Mizokami-Stout, K.; Singleton, J.R.; Ziegler, D. Diagnosis and Treatment of Painful Diabetic Neuropathy. ADA Clin. Compend. Ser. 2022, 2022, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Boulton, A.J.M.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, R.; Smith, D.; Franklin, G.; Gronseth, G.; Pignone, M.; David, W.S.; Armon, C.; Perkins, B.A.; Bril, V.; Rae-Grant, A.; et al. Oral and Topical Treatment of Painful Diabetic Polyneuropathy: Practice Guideline Update Summary: Report of the AAN Guideline Subcommittee. Neurology 2022, 98, 31–43. [Google Scholar] [CrossRef]
- Wiernsperger, N.F. Oxidative Stress as a Therapeutic Target in Diabetes: Revisiting the Controversy. Diabetes Metab. 2003, 29, 579–585. [Google Scholar] [CrossRef]
- Hotta, N.; Akanuma, Y.; Kawamori, R.; Matsuoka, K.; Oka, Y.; Shichiri, M.; Toyota, T.; Nakashima, M.; Yoshimura, I.; Sakamoto, N.; et al. Long-Term Clinical Effects of Epalrestat, an Aldose Reductase Inhibitor, on Diabetic Peripheral Neuropathy: The 3-Year, Multicenter, Comparative Aldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care 2006, 29, 1538–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalk, C.; Benstead, T.J.; Moore, F. Aldose Reductase Inhibitors for the Treatment of Diabetic Polyneuropathy. Cochrane Database Syst. Rev. 2007, 2007, CD004572. [Google Scholar] [CrossRef] [PubMed]
- Yorek, M.A. Vascular Impairment of Epineurial Arterioles of the Sciatic Nerve: Implications for Diabetic Peripheral Neuropathy. Rev. Diabet. Stud. 2015, 12, 13–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zochodne, D.W. Nerve and Ganglion Blood Flow in Diabetes: An Appraisal. Int. Rev. Neurobiol. 2002, 50, 161–202. [Google Scholar]
- Gonçalves, N.P.; Vægter, C.B.; Andersen, H.; Østergaard, L.; Calcutt, N.A.; Jensen, T.S. Schwann Cell Interactions with Axons and Microvessels in Diabetic Neuropathy. Nat. Rev. Neurol. 2017, 13, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic Neuropathy. Nat. Rev. Dis. Primers 2019, 5, 42. [Google Scholar] [CrossRef]
- Scott, J.N.; Clark, A.W.; Zochodne, D.W. Neurofilament and Tubulin Gene Expression in Progressive Experimental Diabetes. Failure of Synthesis and Export by Sensory Neurons. Brain 1999, 122, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- Zochodne, D.W.; Verge, V.M.; Cheng, C.; Sun, H.; Johnston, J. Does Diabetes Target Ganglion Neurones? Progressive Sensory Neurone Involvement in Long-Term Experimental Diabetes. Brain 2001, 124, 2319–2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Singh, V.; Krishnan, A.; Koshy, K.; Martinez, J.A.; Cheng, C.; Almquist, C.; Zochodne, D.W. Regeneration of Diabetic Axons Is Enhanced by Selective Knockdown of the PTEN Gene. Brain 2014, 137, 1051–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Kobayashi, M.; Martinez, J.A.; Ng, H.; Moser, J.J.; Wang, X.; Singh, V.; Pharm, M.; Fritzler, M.J.; Zochodne, D.W. Evidence for Epigenetic Regulation of Gene Expression and Function in Chronic Experimental Diabetic Neuropathy. J. Neuropathol. Exp. Neurol. 2015, 74, 804–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, M.; Zochodne, D.W. Diabetic Neuropathy and the Sensory Neuron: New Aspects of Pathogenesis and Their Treatment Implications. J. Diabetes Investig. 2018, 9, 1239–1254. [Google Scholar] [CrossRef]
- Hall, B.E.; Macdonald, E.; Cassidy, M.; Yun, S.; Sapio, M.R.; Ray, P.; Doty, M.; Nara, P.; Burton, M.D.; Shiers, S.; et al. Transcriptomic Analysis of Human Sensory Neurons in Painful Diabetic Neuropathy Reveals Inflammation and Neuronal Loss. Sci. Rep. 2022, 12, 4729. [Google Scholar] [CrossRef]
- Frazier, W.A.; Angeletti, R.H.; Bradshaw, R. a Nerve Growth Factor and Insulin. Science 1972, 176, 482–488. [Google Scholar] [CrossRef]
- Brussee, V.; Cunningham, F.A.; Zochodne, D.W. Direct Insulin Signalling of Neurons Reverses Diabetic Neuropathy. Diabetes 2004, 53, 1824–1830. [Google Scholar] [CrossRef] [Green Version]
- Singhal, A.; Cheng, C.; Sun, H.; Zochodne, D.W. Near Nerve Local Insulin Prevents Conduction Slowing in Experimental Diabetes. Brain Res. 1997, 763, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Aghanoori, M.R.; Smith, D.R.; Roy Chowdhury, S.; Sabbir, M.G.; Calcutt, N.A.; Fernyhough, P. Insulin Prevents Aberrant Mitochondrial Phenotype in Sensory Neurons of Type 1 Diabetic Rats. Exp. Neurol. 2017, 297, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Kan, M.; Martinez, J.A.; Zochodne, D.W. Local Insulin and the Rapid Regrowth of Diabetic Epidermal Axons. Neurobiol. Dis. 2011, 43, 414–421. [Google Scholar] [CrossRef]
- Grote, C.W.; Groover, A.L.; Ryals, J.M.; Geiger, P.C.; Feldman, E.L.; Wright, D.E. Peripheral Nervous System Insulin Resistance in Ob/Ob Mice. Acta Neuropathol. Commun. 2013, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Kan, M.; Guo, G.; Singh, B.; Singh, V.; Zochodne, D.W. Glucagon-Like Peptide 1, Insulin, Sensory Neurons, and Diabetic Neuropathy. J. Neuropathol. Exp. Neurol. 2012, 71, 494–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himeno, T.; Kamiya, H.; Naruse, K.; Harada, N.; Ozaki, N.; Seino, Y.; Shibata, T.; Kondo, M.; Kato, J.; Okawa, T.; et al. Beneficial Effects of Exendin-4 on Experimental Polyneuropathy in Diabetic Mice. Diabetes 2011, 60, 2397–2406. [Google Scholar] [CrossRef] [Green Version]
- Jolivalt, C.G.; Fineman, M.; Deacon, C.F.; Carr, R.D.; Calcutt, N.A. GLP-1 Signals via ERK in Peripheral Nerve and Prevents Nerve Dysfunction in Diabetic Mice. Diabetes Obes. Metab. 2011, 13, 990–1000. [Google Scholar] [CrossRef] [Green Version]
- Christie, K.J.; Webber, C.A.; Martinez, J.A.; Singh, B.; Zochodne, D.W. PTEN Inhibition to Facilitate Intrinsic Regenerative Outgrowth of Adult Peripheral Axons. J. Neurosci. 2010, 30, 9306–9315. [Google Scholar] [CrossRef]
- Korngut, L.; Ma, C.H.E.; Martinez, J.A.; Toth, C.C.; Guo, G.F.; Singh, V.; Woolf, C.J.; Zochodne, D.W. Overexpression of Human HSP27 Protects Sensory Neurons from Diabetes. Neurobiol. Dis. 2012, 47, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Costigan, M.; Mannion, R.J.; Kendall, G.; Lewis, S.E.; Campagna, J.A.; Coggeshall, R.E.; Meridith-Middleton, J.; Tate, S.; Woolf, C.J. Heat Shock Protein 27: Developmental Regulation and Expression after Peripheral Nerve Injury. J. Neurosci. 1998, 18, 5891–5900. [Google Scholar] [CrossRef] [Green Version]
- Benn, S.C.; Perrelet, D.; Kato, A.C.; Scholz, J.; Decosterd, I.; Mannion, R.J.; Bakowska, J.C.; Woolf, C.J. Hsp27 Upregulation and Phosphorylation Is Required for Injured Sensory and Motor Neuron Survival. Neuron 2002, 36, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, S.E.; Mannion, R.J.; White, F.A.; Coggeshall, R.E.; Beggs, S.; Costigan, M.; Martin, J.L.; Dillmann, W.H.; Woolf, C.J. A Role for HSP27 in Sensory Neuron Survival. J. Neurosci. 1999, 19, 8945–8953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.H.E.; Omura, T.; Cobos, E.J.; Latremoliere, A.; Ghasemlou, N.; Brenner, G.J.; Van Veen, E.; Barrett, L.; Sawada, T.; Gao, F.; et al. Accelerating Axonal Growth Promotes Motor Recovery after Peripheral Nerve Injury in Mice. J. Clin. Invest. 2011, 121, 4332–4347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, A.; Smith, D.R.; Tessler, L.; Mateo, A.R.; Martens, C.; Schartner, E.; Van der Ploeg, R.; Toth, C.; Zochodne, D.W.; Fernyhough, P. Receptor for Advanced Glycation End-Products (RAGE) Activates Divergent Signaling Pathways to Augment Neurite Outgrowth of Adult Sensory Neurons. Exp. Neurol. 2013, 249, 149–159. [Google Scholar] [CrossRef]
- Rong, L.L.; Trojaborg, W.; Qu, W.; Kostov, K.; Yan, S.D.; Gooch, C.; Szabolcs, M.; Hays, A.P.; Schmidt, A.M. Antagonism of RAGE Suppresses Peripheral Nerve Regeneration. FASEB J. 2004, 18, 1812–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Hoz, C.L.; Cheng, C.; Fernyhough, P.; Zochodne, D.W. A Model of Chronic Diabetic Polyneuropathy: Benefits from Intranasal Insulin Are Modified by Sex and RAGE Deletion. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E407–E419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, I.; Haque, N.; Fiorini, F.; Barrandon, C.; Tomasetto, C.; Blanchette, M.; Le Hir, H. Human CWC22 Escorts the Helicase EIF4AIII to Spliceosomes and Promotes Exon Junction Complex Assembly. Nat. Struct. Mol. Biol. 2012, 19, 983–990. [Google Scholar] [CrossRef]
- Steckelberg, A.L.; Boehm, V.; Gromadzka, A.M.; Gehring, N.H. CWC22 Connects Pre-MRNA Splicing and Exon Junction Complex Assembly. Cell Rep. 2012, 2, 454–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steckelberg, A.-L.; Altmueller, J.; Dieterich, C.; Gehring, N.H. CWC22-Dependent Pre-MRNA Splicing and EIF4A3 Binding Enables Global Deposition of Exon Junction Complexes. Nucleic Acids Res. 2015, 43, 4687–4700. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Chandrasekhar, A.; Cheng, C.; Martinez, J.A.; Ng, H.; de la Hoz, C.; Zochodne, D.W. Diabetic Polyneuropathy, Sensory Neurons, Nuclear Structure and Spliceosome Alterations: A Role for CWC22. Dis. Model Mech. 2017, 10, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, A.; Komirishetty, P.; Areti, A.; Krishnan, A.; Zochodne, D.W. Dual Specificity Phosphatases Support Axon Plasticity and Viability. Mol. Neurobiol. 2021, 58, 391–407. [Google Scholar] [CrossRef]
- Li, H.; Shen, L.; Ma, C.; Huang, Y. Differential Expression of MiRNAs in the Nervous System of a Rat Model of Bilateral Sciatic Nerve Chronic Constriction Injury. Int. J. Mol. Med. 2013, 32, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyashita, A.; Kobayashi, M.; Ishibashi, S.; Nagata, T.; Chandrasekhar, A.; Zochodne, D.W.; Yokota, T. The Role of Long Noncoding RNA MALAT1 in Diabetic Polyneuropathy and the Impact of Its Silencing in the Dorsal Root Ganglion by a DNA/RNA Heteroduplex Oligonucleotide. Diabetes 2022, 71, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Ji, T.F.; Luo, Q.; Yu, J.L. Long Non-Coding RNA H19 Induces Hippocampal Neuronal Apoptosis via Wnt Signaling in a Streptozotocin-Induced Rat Model of Diabetes Mellitus. Oncotarget 2017, 8, 64827–64839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajabinejad, M.; Asadi, G.; Ranjbar, S.; Varmaziar, F.R.; Karimi, M.; Salari, F.; Karaji, A.G.; Rezaiemanesh, A.; Hezarkhani, L.A. The MALAT1-H19/MiR-19b-3p Axis Can Be a Fingerprint for Diabetic Neuropathy. Immunol. Lett. 2022, 245, 69–78. [Google Scholar] [CrossRef]
- Liu, C.; Tao, J.; Wu, H.; Yang, Y.; Chen, Q.; Deng, Z.; Liu, J.; Xu, C. Effects of LncRNA BC168687 SiRNA on Diabetic Neuropathic Pain Mediated by P2X7 Receptor on SGCs in DRG of Rats. Biomed. Res. Int. 2017, 2017, 7831251. [Google Scholar] [PubMed] [Green Version]
- Liu, C.; Li, C.; Deng, Z.; Du, E.; Xu, C. Long Non-Coding RNA BC168687 Is Involved in TRPV1-Mediated Diabetic Neuropathic Pain in Rats. Neuroscience 2018, 374, 214–222. [Google Scholar] [CrossRef]
- Wang, S.; Xu, H.; Zou, L.; Xie, J.; Wu, H.; Wu, B.; Yi, Z.; Lv, Q.; Zhang, X.; Ying, M.; et al. LncRNA Uc.48+ Is Involved in Diabetic Neuropathic Pain Mediated by the P2X3 Receptor in the Dorsal Root Ganglia. Purinergic Signal 2016, 12, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Zou, L.; Xie, J.; Wu, H.; Wu, B.; Zhu, G.; Lv, Q.; Zhang, X.; Liu, S.; Li, G.; et al. LncRNA NONRATT021972 SiRNA Decreases Diabetic Neuropathic Pain Mediated by the P2X3 Receptor in Dorsal Root Ganglia. Mol. Neurobiol. 2017, 54, 511–523. [Google Scholar] [CrossRef]
- Sima, A.A.F.; Bouchier, M.; Christensen, H. Axonal Atrophy in Sensory Nerves of the Diabetic BB-Wistar Rat: A Possible Early Correlate of Human Diabetic Neuropathy. Ann. Neurol. 1983, 13, 264–272. [Google Scholar] [CrossRef]
- Raff, M.C.; Whitmore, A.V.; Finn, J.T. Neurodegeneration. Science 2002, 296, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; O’Leary, D.D.M. Axon Retraction and Degeneration in Development and Disease. Annu. Rev. Neurosci. 2005, 28, 127–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliaferro, P.; Burke, R.E. Retrograde Axonal Degeneration in Parkinson Disease. J. Park. Dis. 2016, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zochodne, D.W.; Ho, L.T. Unique Microvascular Characteristics of the Dorsal Root Ganglion in the Rat. Brain Res. 1991, 559, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Abram, S.E.; Yi, J.; Fuchs, A.; Hogan, Q.H. Permeability of Injured and Intact Peripheral Nerves and Dorsal Root Ganglia. Anesthesiology 2006, 105, 146–153. [Google Scholar] [CrossRef]
- Jimenez-Andrade, J.M.; Herrera, M.B.; Ghilardi, J.R.; Vardanyan, M.; Melemedjian, O.K.; Mantyh, P.W. Vascularization of the Dorsal Root Ganglia and Peripheral Nerve of the Mouse: Implications for Chemical-Induced Peripheral Sensory Neuropathies. Mol. Pain. 2008, 4, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapunar, D.; Kostic, S.; Banozic, A.; Puljak, L. Dorsal Root Ganglion-A Potential New Therapeutic Target for Neuropathic Pain. J. Pain. Res. 2012, 5, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laser, H.; Conforti, L.; Morreale, G.; Mack, T.G.; Heyer, M.; Haley, J.E.; Wishart, T.M.; Beirowski, B.; Walker, S.A.; Haase, G.; et al. The Slow Wallerian Degeneration Protein, WldS, Binds Directly to VCP/P97 and Partially Redistributes It within the Nucleus. Mol. Biol. Cell 2006, 17, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Coleman, M.P.; Freeman, M.R. Wallerian Degeneration, WldS, and Nmnat. Annu. Rev. Neurosci. 2010, 33, 245–267. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.S.; Ren, Y.; Zhang, M.; Cao, J.Q.; Yang, Q.; Li, X.Y.; Bai, H.; Jiang, L.; Jiang, Q.; He, Z.G.; et al. WldS Protects against Peripheral Neuropathy and Retinopathy in an Experimental Model of Diabetes in Mice. Diabetologia 2011, 54, 2440–2450. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, N.P.; Vægter, C.B.; Pallesen, L.T. Peripheral Glial Cells in the Development of Diabetic Neuropathy. Front. Neurol. 2018, 9, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludvigson, M.A.; Sorenson, R.L. Immunohistochemical Localization of Aldose Reductase I. Enzyme Purification and Antibody Preparation-Localization in Peripheral Nerve, Artery, and Testis. Diabetes 1980, 29, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Mizisin, A.P.; Powell, H.C. Schwann Cell Injury Is Attenuated by Aldose Reductase Inhibition in Galactose Intoxication-PubMed. J. Neuropathol. Exp. Neurol. 1993, 52, 78–86. [Google Scholar] [CrossRef]
- Yagihashi, S.; Kamijo, M.; Ido, Y.; Mirrlees, D.J. Effects of Long-Term Aldose Reductase Inhibition on Development of Experimental Diabetic Neuropathy Ultrastructural and Morphometric Studies of Sural Nerve in Streptozocin-Induced Diabetic Rats. Diabetes 1990, 39, 690–696. [Google Scholar] [CrossRef]
- Sugimoto, K.; Murakawa, Y.; Sima, A.A.F. Expression and Localization of Insulin Receptor in Rat Dorsal Root Ganglion and Spinal Cord. J. Peripher. Nerv. Syst. 2002, 7, 44–53. [Google Scholar] [CrossRef]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef] [Green Version]
- Hemmings, B.A.; Restuccia, D.F. PI3K-PKB/Akt Pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011189. [Google Scholar] [CrossRef] [Green Version]
- Eldar-Finkelman, H.; Krebs, E.G. Phosphorylation of Insulin Receptor Substrate 1 by Glycogen Synthase Kinase 3 Impairs Insulin Action. Proc. Natl. Acad. Sci. USA 1997, 94, 9660–9664. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Xu, Y.; McLaughlin, T.; Singh, V.; Martinez, J.A.; Krishnan, A.; Zochodne, D.W. Resistance to Trophic Neurite Outgrowth of Sensory Neurons Exposed to Insulin. J. Neurochem. 2012, 121, 263–276. [Google Scholar] [CrossRef]
- Campbell, J.E.; Drucker, D.J. Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metab. 2013, 17, 819–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, A.; Duraikannu, A.; Zochodne, D.W. Releasing “brakes” to Nerve Regeneration: Intrinsic Molecular Targets. Eur. J. Neurosci. 2016, 43, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Zochodne, D.W. Neurons and Tumor Suppressors. ACS Chem. Neurosci. 2014, 5, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Stambolic, V.; Suzuki, A.; De la Pompa, J.L.; Brothers, G.M.; Mirtsos, C.; Sasaki, T.; Ruland, J.; Penninger, J.M.; Siderovski, D.P.; Mak, T.W. Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN. Cell 1998, 95, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, B.D.; Hodakoski, C.; Barrows, D.; Mense, S.M.; Parsons, R.E. PTEN Function: The Long and the Short of It. Trends Biochem. Sci. 2014, 39, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalhoub, N.; Baker, S.J. PTEN and the PI3-Kinase Pathway in Cancer. Annu. Rev. Pathol. 2009, 4, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Cully, M.; You, H.; Levine, A.J.; Mak, T.W. Beyond PTEN Mutations: The PI3K Pathway as an Integrator of Multiple Inputs during Tumorigenesis. Nat. Rev. Cancer 2006, 6, 184–192. [Google Scholar] [CrossRef]
- Luikart, B.W.; Schnell, E.; Washburn, E.K.; Bensen, A.L.; Tovar, K.R.; Westbrook, G.L. Pten Knockdown in Vivo Increases Excitatory Drive onto Dentate Granule Cells. J. Neurosci. 2011, 31, 4345–4354. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Lu, Y.; Lee, J.K.; Samara, R.; Willenberg, R.; Sears-Kraxberger, I.; Tedeschi, A.; Park, K.K.; Jin, D.; Cai, B.; et al. PTEN Deletion Enhances the Regenerative Ability of Adult Corticospinal Neurons. Nat. Neurosci. 2010, 13, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Park, K.K.; Liu, K.; Hu, Y.; Smith, P.D.; Wang, C.; Cai, B.; Xu, B.; Connolly, L.; Kramvis, I.; Sahin, Z.H.M. Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/MTOR Pathway. Science 2008, 322, 963–966. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Park, K.K.; Belin, S.; Wang, D.; Lu, T.; Chen, G.; Zhang, K.; Yeung, C.; Feng, G.; Yankner, B.A.; et al. Sustained Axon Regeneration Induced by Co-Deletion of PTEN and SOCS3. Nature 2011, 480, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Little, D.; Valori, C.F.; Mutsaers, C.A.; Bennett, E.J.; Wyles, M.; Sharrack, B.; Shaw, P.J.; Gillingwater, T.H.; Azzouz, M.; Ning, K. PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy. Mol. Ther. 2015, 23, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, R.; Yan, S.F.; Schmidt, A.M. Receptor for AGE (RAGE): Signaling Mechanisms in the Pathogenesis of Diabetes and Its Complications. Ann. N. Y. Acad. Sci. 2011, 1243, 88–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, R.; Vannucci, S.J.; Du Yan, S.S.; Herold, K.; Yan, S.F.; Schmidt, A.M. Advanced Glycation End Products and RAGE: A Common Thread in Aging, Diabetes, Neurodegeneration, and Inflammation. Glycobiology 2005, 15, 16R–28R. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitchiaya, S.; Mourao, M.D.A.; Jalihal, A.P.; Xiao, L.; Jiang, X.; Chinnaiyan, A.M.; Schnell, S.; Walter, N.G. Dynamic Recruitment of Single RNAs to Processing Bodies Depends on RNA Functionality. Mol. Cell 2019, 74, 521–533. [Google Scholar] [CrossRef]
- Mcmahon, T.; van Zijl, P.C.M.; Gilad, A.A. MicroRNA-Dependent Localization of Targeted MRNAs to Mammalian P-Bodies. Nat. Cell Biol. 2015, 7, 719–723. [Google Scholar]
- Krützfeldt, J.; Poy, M.N.; Stoffel, M. Strategies to Determine the Biological Function of MicroRNAs. Nat. Genet. 2006, 38, S14–S19. [Google Scholar] [CrossRef] [PubMed]
- Pasquinelli, A.E. MicroRNAs and Their Targets: Recognition, Regulation and an Emerging Reciprocal Relationship. Nat. Rev. Genet. 2012, 13, 271–282. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Hartl, M.; Grunwald Kadow, I.C. New Roles for “Old” MicroRNAs in Nervous System Function and Disease. Front. Mol. Neurosci. 2013, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Roush, S.; Slack, F.J. The Let-7 Family of MicroRNAs. Trends Cell Biol. 2008, 18, 505–516. [Google Scholar] [CrossRef]
- Kapranov, P.; Churchill, G.A.; Holland, M.J.; Draghici, S.; Khatri, P.; Eklund, A.C.; Szallasi, Z.; Audic, S.; Claverie, J.M.; Dressman, D.; et al. RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription. Science 2007, 316, 1484–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rnas, L.; Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long Non-Coding RNAs: Insights into Functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar]
- Gutschner, T.; Hämmerle, M.; Diederichs, S. MALAT1-A Paradigm for Long Noncoding RNA Function in Cancer. J. Mol. Med. 2013, 91, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Bernard, D.; Prasanth, K.V.; Tripathi, V.; Colasse, S.; Nakamura, T.; Xuan, Z.; Zhang, M.Q.; Sedel, F.; Jourdren, L.; Coulpier, F.; et al. A Long Nuclear-Retained Non-Coding RNA Regulates Synaptogenesis by Modulating Gene Expression. EMBO J. 2010, 29, 3082–3093. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Feng, P.; Zhu, X.; He, S.; Duan, J.; Zhou, D. Long Non-Coding RNA Malat1 Promotes Neurite Outgrowth through Activation of ERK/MAPK Signalling Pathway in N2a Cells. J. Cell Mol. Med. 2016, 20, 2102–2110. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; et al. The Nuclear-Retained Noncoding RNA MALAT1 Regulates Alternative Splicing by Modulating SR Splicing Factor Phosphorylation. Mol. Cell 2010, 39, 925–938. [Google Scholar] [CrossRef] [Green Version]
- El Bassit, G.; Patel, R.S.; Carter, G.; Shibu, V.; Patel, A.A.; Song, S.; Murr, M.; Cooper, D.R.; Bickford, P.C.; Patel, N.A. MALAT1 in Human Adipose Stem Cells Modulates Survival and Alternative Splicing of PKCdII in HT22 Cells. Endocrinology 2017, 158, 183–195. [Google Scholar] [PubMed] [Green Version]
- Yao, J.; Wang, X.-Q.; Li, Y.-J.; Shan, K.; Yang, H.; Wang, Y.-N.-Z.; Yao, M.-D.; Liu, C.; Li, X.-M.; Shen, Y.; et al. Long Non-Coding RNA MALAT1 Regulates Retinal Neurodegeneration through CREB Signaling. EMBO Mol. Med. 2016, 8, 346–362. [Google Scholar] [CrossRef]
- Abdulle, L.E.; Hao, J.L.; Pant, O.P.; Liu, X.F.; Zhou, D.D.; Gao, Y.; Suwal, A.; Lu, C.W. MALAT1 as a Diagnostic and Therapeutic Target in Diabetes-Related Complications: A Promising Long-Noncoding RNA. Int. J. Med. Sci 2019, 16, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, R.; Kowluru, R.A. Long Noncoding RNA MALAT1 and Regulation of the Antioxidant Defense System in Diabetic Retinopathy. Diabetes 2021, 70, 227–239. [Google Scholar] [CrossRef]
- Luo, M.; Li, Z.; Wang, W.; Zeng, Y.; Liu, Z.; Qiu, J. Long Non-Coding RNA H19 Increases Bladder Cancer Metastasis by Associating with EZH2 and Inhibiting E-Cadherin Expression. Cancer Lett. 2013, 333, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Zochodne, D.W.; Verge, V.M.K.; Cheng, C.; Höke, A.; Höke, H.; Jolley, C.; Thomsen, K.; Rubin, I.; Lauritzen, M. Nitric Oxide Synthase Activity and Expression in Experimental Diabetic Neuropathy. J. Neuropathol. Exp. Neurol. 2000, 59, 798–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; Zhao, G.Q.; Cao, R.J.; Zhu, Z.H.; Li, K. LncRNA NONRATT021972 Was Associated with Neuropathic Pain Scoring in Patients with Type 2 Diabetes. Behav. Neurol. 2017, 2017, 2941297. [Google Scholar] [CrossRef]
- Mao, Y.S.; Zhang, B.; Spector, D.L. Biogenesis and Function of Nuclear Bodies. Trends Genet. 2011, 27, 295–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulon, S.; Westman, B.J.; Hutten, S.; Boisvert, F.M.; Lamond, A.I. The Nucleolus under Stress. Mol. Cell 2010, 40, 216–227. [Google Scholar] [CrossRef]
- Strzelecka, M.; Oates, A.C.; Neugebauer, K.M. Dynamic Control of Cajal Body Number during Zebrafish Embryogenesis. Nucleus 2010, 1, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.-H.; Parker, R. Coil-in-to SnRNP Assembly and Cajal Bodies. Nat. Struct. Mol. Biol. 2010, 17, 391–393. [Google Scholar] [CrossRef]
- Strzelecka, M.; Trowitzsch, S.; Weber, G.; Lührmann, R.; Oates, A.C.; Neugebauer, K.M. Coilin-Dependent SnRNP Assembly Is Essential for Zebrafish Embryogenesis. Nat. Struct. Mol. Biol. 2010, 17, 403–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matera, A.G.; Wang, Z. A Day in the Life of the Spliceosome. Nat. Rev. Mol. Cell Biol. 2014, 15, 108–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, C.; Will, C.L.; Peng, J.; Makarov, E.M.; Kastner, B.; Lemm, I.; Urlaub, H.; Hartmuth, K.; Lührmann, R. Post-Transcriptional Spliceosomes Are Retained in Nuclear Speckles until Splicing Completion. Nat. Commun. 2012, 3, 994. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, V.; Song, D.Y.; Zong, X.; Shevtsov, S.P.; Hearn, S.; Fu, X.D.; Dundr, M.; Prasanth, K.V. SRSF1 Regulates the Assembly of Pre-MRNA Processing Factors in Nuclear Speckles. Mol. Biol. Cell 2012, 23, 3694–3706. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Hao, Q.; Prasanth, K.V. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends Genet. 2018, 34, 142–157. [Google Scholar] [CrossRef]
- Lefebvre, S.; Burlet, P.; Liu, Q.; Bertrandy, S.; Clermont, O.; Munnich, A.; Dreyfuss, G.; Melki, J. Correlation between Severity and SMN Protein Level in Spinal Muscular Atrophy. Nat. Genet. 1997, 16, 265–269. [Google Scholar] [CrossRef]
- Tsuiji, H.; Iguchi, Y.; Furuya, A.; Kataoka, A.; Hatsuta, H.; Atsuta, N.; Tanaka, F.; Hashizume, Y.; Akatsu, H.; Murayama, S.; et al. Spliceosome Integrity Is Defective in the Motor Neuron Diseases ALS and SMA. EMBO Mol. Med. 2013, 5, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.C.; Langer, R.; Wood, M.J.A. Advances in Oligonucleotide Drug Delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.K.W.; Chow, M.Y.T.; Zhang, Y.; Leung, S.W.S. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Nucleic Acids 2015, 4, e252. [Google Scholar] [CrossRef] [Green Version]
- Nishina, K.; Piao, W.; Yoshida-Tanaka, K.; Sujino, Y.; Nishina, T.; Yamamoto, T.; Nitta, K.; Yoshioka, K.; Kuwahara, H.; Yasuhara, H.; et al. DNA/RNA Heteroduplex Oligonucleotide for Highly Efficient Gene Silencing. Nat. Commun. 2015, 6, 7969. [Google Scholar] [CrossRef] [Green Version]
- Nagata, T.; Dwyer, C.A.; Yoshida-Tanaka, K.; Ihara, K.; Ohyagi, M.; Kaburagi, H.; Miyata, H.; Ebihara, S.; Yoshioka, K.; Ishii, T.; et al. Cholesterol-Functionalized DNA/RNA Heteroduplexes Cross the Blood–Brain Barrier and Knock down Genes in the Rodent CNS. Nat. Biotechnol. 2021, 39, 1529–1536. [Google Scholar] [CrossRef]
- Cao, Q.; Luo, S.; Yao, W.; Qu, Y.; Wang, N.; Hong, J.; Murayama, S.; Zhang, Z.; Chen, J.; Hashimoto, K.; et al. Suppression of abnormal α-synuclein expression by activation of BDNF transcription ameliorates Parkinson’s disease-like pathology. Mol. Nucleic Acids 2022, 29, 1–15. [Google Scholar] [CrossRef]
- Kaburagi, H.; Nagata, T.; Enomoto, M.; Hirai, T.; Ohyagi, M.; Ihara, K.; Yoshida-Tanaka, K.; Ebihara, S.; Asada, K.; Yokoyama, H.; et al. Systemic DNA/RNA Heteroduplex Oligonucleotide Administration for Regulating the Gene Expression of Dorsal Root Ganglion and Sciatic Nerve. Mol. Nucleic Acids 2022, 28, 910–919. [Google Scholar] [CrossRef]
- Setten, R.L.; Dowdy, S.F. DNA/RNA Heteroduplex Oligonucleotides: An Unanticipated Twist in the Delivery of ASOs. Mol. Nucleic Acids 2022, 29, 133–134. [Google Scholar] [CrossRef] [PubMed]
Therapeutic Candidates | Regulation in Diabetes | Neuronal Function Related to Pathophysiology of DPN | Reference | |
---|---|---|---|---|
PI3/pAkt pathway | Insulin | Deficiency/resistance | Insulin receptors are expressed in DRG neurons. Insulin deficiency or resistance may promote DPN via attenuation of PI3/pAkt signaling in DRG of DM mice. Insulin administration improved neuropathic deficits in DM mice | [20,21,22,23,24,25] |
GLP-1 | Deficiency | GLP-1R was expressed in DRG neurons. GLP-1 agonist enhanced neurite outgrowth in dissociated sensory neurons and improved neuropathic deficits in DM mice. | [26,27,28] | |
PTEN | Up-regulated | PTEN is a negative regulator of PI3/pAkt pathway. PTEN knockdown enhanced neurite outgrowth in dissociated sensory neurons and nerve regeneration in injured axon in DM mice. | [16,29] | |
HSP27 | Up-regulated | HSP27 is upregulated in neurons and promotes axonal growth after nerve injury. HSP27 overexpression protected against sensory dysfunction and nerve terminal loss in DM mice, possibly via Akt phosphorylation by HSP27. | [30,31,32,33,34] | |
RAGE | Up-regulated | RAGE activation promoted the outgrowth of dissociated sensory neurons in mice, and RAGE blockade inhibits nerve regeneration after injury, but showed incomplete neuroprotection in DM mice. | [35,36,37] | |
CWC22 | Up-regulated | CWC22 is an essential splicing factor. Its knockdown enhanced neurite outgrowth in dissociated sensory neurons and improved sensory nerve function in DM mice. | [17,38,39,40,41] | |
DUSP1 | Up-regulated | DUSP1 knockdown impaired outgrowth in dissociated sensory neurons and enhanced axon degeneration after nerve cut, but its neuroprotection in DM mice is still unknown. | [17,42] | |
miRNA | let-7i | Down-regulated | Exogeneous let 7i promoted neurite outgrowth in dissociated sensory neurons and its replenishment in DM mice improved neuropathic deficits. | [17] |
miR-341 | Up-regulated | miR-341 was upregulated in DRG of rats with constriction injury. Its knockdown improved sensory nerve functions in DM mice. miR-341 is only expressed in rodents. | [17,43] | |
lncRNA | MALAT1 | Up-regulated | MALAT1 knockdown induced a further exacerbation of neuropathic deficits along with loss of nuclear speckles in diabetic mice. | [44] |
H19 | Up-regulated | H19 overexpression induced neuronal apoptosis via Wnt signaling in DM rats. H19 expression was positively correlated with MALAT1 expression in blood samples of DPN patients. | [45,46] | |
BC168687 | Up-regulated | BC168687 knockdown alleviated hyperalgesia via inhibition of TRPV1 receptor, P2X7, cytokines and nitric oxide in DRG of DM rats. | [47,48] | |
uc.48+ | Up-regulated | Uc.48+/NONRATT021972 knockdown alleviates hyperalgesia associated with inhibition of the excitatory transmission via P2X3 receptor and reduced the level of TNF-α in DM rats. | [49,50] | |
NONRATT021972 | Up-regulated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyashita, A.; Kobayashi, M.; Yokota, T.; Zochodne, D.W. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. Int. J. Mol. Sci. 2023, 24, 5977. https://doi.org/10.3390/ijms24065977
Miyashita A, Kobayashi M, Yokota T, Zochodne DW. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. International Journal of Molecular Sciences. 2023; 24(6):5977. https://doi.org/10.3390/ijms24065977
Chicago/Turabian StyleMiyashita, Akiko, Masaki Kobayashi, Takanori Yokota, and Douglas W. Zochodne. 2023. "Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia" International Journal of Molecular Sciences 24, no. 6: 5977. https://doi.org/10.3390/ijms24065977
APA StyleMiyashita, A., Kobayashi, M., Yokota, T., & Zochodne, D. W. (2023). Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. International Journal of Molecular Sciences, 24(6), 5977. https://doi.org/10.3390/ijms24065977