Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin
Abstract
:1. Introduction
2. Results
2.1. The Selection and Characterisation of Resistant S. maltophilia and Chryseobacterium spp. from the Soil
2.2. Functional Gene Library Construction and Evaluation
2.3. Selection of Resistant Clones
2.4. Identification of ARGs from S. maltophilia Functional Gene Library
2.5. Identification of ARGs from the Chryseobacterium spp. Functional Gene Library
2.6. Purification and Kinetic Parameters of IND-17 and CHM β-Lactamases
3. Discussion
4. Materials and Methods
4.1. The Bacteria and Plasmids Used in This Study
4.2. Genomic Library Preparation and Characterisation
4.3. Selection and Characterisation of Resistant Library Clones
4.4. Determination of Minimal Inhibitory Concentration (MIC)
4.5. Plasmid Construction
4.6. Purification of CHM and IND-17 β-Lactamases
4.7. CHM and IND-17 β-Lactamases Kinetic Activity Evaluation
4.8. Bioinformatic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nesme, J.; Simonet, P. The Soil Resistome: A Critical Review on Antibiotic Resistance Origins, Ecology and Dissemination Potential in Telluric Bacteria. Environ. Microbiol. 2015, 17, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. The Antibiotic Resistome: The Nexus of Chemical and Genetic Diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef]
- Forsberg, K.J.; Reyes, A.; Wang, B.; Selleck, E.M.; Sommer, M.O.A.; Dantas, G. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science 2012, 337, 1107–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, M.; Chu, L.M. Fate of Antibiotics in Soil and Their Uptake by Edible Crops. Sci. Total Environ. 2017, 599–600, 500–512. [Google Scholar] [CrossRef]
- Martinez, J.L. The Role of Natural Environments in the Evolution of Resistance Traits in Pathogenic Bacteria. Proc. Biol. Sci. 2009, 276, 2521–2530. [Google Scholar] [CrossRef] [Green Version]
- Finley, R.L.; Collignon, P.; Larsson, D.G.J.; McEwen, S.A.; Li, X.-Z.; Gaze, W.H.; Reid-Smith, R.; Timinouni, M.; Graham, D.W.; Topp, E. The Scourge of Antibiotic Resistance: The Important Role of the Environment. Clin. Infect. Dis. 2013, 57, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Brooke, J.S. Stenotrophomonas maltophilia: An Emerging Global Opportunistic Pathogen. Clin. Microbiol. Rev. 2012, 25, 2–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; He, T.; Shen, Z.; Wu, C. Antimicrobial Resistance in Stenotrophomonas spp. Microbiol. Spectr. 2018, 6, 409–423. [Google Scholar] [CrossRef]
- Esposito, S.; Russo, E.; De Simone, G.; Gioia, R.; Noviello, S.; Vitolo, M.; Rega, M.R.; Massari, A.; Posteraro, L. Transient Bacteraemia Due to Chryseobacterium indologenes in an Immunocompetent Patient: A Case Report and Literature Review. J. Chemother. 2015, 27, 324–329. [Google Scholar] [CrossRef]
- Kirby, J.T.; Sader, H.S.; Walsh, T.R.; Jones, R.N. Antimicrobial Susceptibility and Epidemiology of a Worldwide Collection of Chryseobacterium spp.: Report from the SENTRY Antimicrobial Surveillance Program (1997–2001). J. Clin. Microbiol. 2004, 42, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Narciso-da-Rocha, C.; Manaia, C.M. Multidrug Resistance Phenotypes Are Widespread over Different Bacterial Taxonomic Groups Thriving in Surface Water. Sci. Total Environ. 2016, 563–564, 1–9. [Google Scholar] [CrossRef]
- Crossman, L.C.; Gould, V.C.; Dow, J.M.; Vernikos, G.S.; Okazaki, A.; Sebaihia, M.; Saunders, D.; Arrowsmith, C.; Carver, T.; Peters, N. The Complete Genome, Comparative and Functional Analysis of Stenotrophomonas maltophilia Reveals an Organism Heavily Shielded by Drug Resistance Determinants. Genome Biology 2008, 9, R74. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.B.; Hernandez, A.; Martinez, J.L. Stenotrophomonas maltophilia Drug Resistance. Future Microbiol. 2009, 4, 655–660. [Google Scholar] [CrossRef]
- Bellais, S.; Poirel, L.; Leotard, S.; Naas, T.; Nordmann, P. Genetic Diversity of Carbapenem-Hydrolyzing Metallo-Beta-Lactamases from Chryseobacterium (Flavobacterium) Indologenes. Antimicrob. Agents Chemother. 2000, 44, 3028–3034. [Google Scholar] [CrossRef] [Green Version]
- Michel, C.; Matte-Tailliez, O.; Kerouault, B.; Bernardet, J.-F. Resistance Pattern and Assessment of Phenicol Agents’ Minimum Inhibitory Concentration in Multiple Drug Resistant Chryseobacterium Isolates from Fish and Aquatic Habitats. J. Appl. Microbiol. 2005, 99, 323–332. [Google Scholar] [CrossRef]
- Armalytė, J.; Skerniškytė, J.; Bakienė, E.; Krasauskas, R.; Šiugždinienė, R.; Kareivienė, V.; Kerzienė, S.; Klimienė, I.; Sužiedėlienė, E.; Ružauskas, M. Microbial Diversity and Antimicrobial Resistance Profile in Microbiota from Soils of Conventional and Organic Farming Systems. Front. Microbiol. 2019, 10, 892. [Google Scholar] [CrossRef]
- Kim, S.H.; Jeong, H.S.; Kim, Y.H.; Song, S.A.; Lee, J.Y.; Oh, S.H.; Kim, H.R.; Lee, J.N.; Kho, W.-G.; Shin, J.H. Evaluation of DNA Extraction Methods and Their Clinical Application for Direct Detection of Causative Bacteria in Continuous Ambulatory Peritoneal Dialysis Culture Fluids from Patients with Peritonitis by Using Broad-Range PCR. Ann. Lab. Med. 2012, 32, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Seidman, J.G. Construction of Recombinant DNA Libraries. Curr. Protoc. Mol. Biol. 2010, 90, 5.0.1–5.0.3. [Google Scholar] [CrossRef]
- Okazaki, A.; Avison, M.B. Aph(3′)-IIc, an Aminoglycoside Resistance Determinant from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2007, 51, 359–360. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside Modifying Enzymes. Drug Resist. Updat. 2010, 13, 151–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazodier, P.; Cossart, P.; Giraud, E.; Gasser, F. Completion of the Nucleotide Sequence of the Central Region of Tn5 Confirms the Presence of Three Resistance Genes. Nucleic Acids Res. 1985, 13, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galleni, M.; Lamotte-Brasseur, J.; Rossolini, G.M.; Spencer, J.; Dideberg, O.; Frère, J.-M. The Metallo-β-Lactamase Working Group Standard Numbering Scheme for Class B β-Lactamases. Antimicrob. Agents Chemother. 2001, 45, 660–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, Y.; Takashio, N.; Wachino, J.; Yamagata, Y.; Arakawa, Y.; Matsuda, K.; Kurosaki, H. Structure of Metallo-β-Lactamase IND-7 from a Chryseobacterium indologenes Clinical Isolate at 1.65-Å Resolution. J. Biochem. 2010, 147, 905–915. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [Green Version]
- Zeba, B.; De Luca, F.; Dubus, A.; Delmarcelle, M.; Simporé, J.; Nacoulma, O.G.; Rossolini, G.M.; Frère, J.-M.; Docquier, J.-D. IND-6, a Highly Divergent IND-Type Metallo-β-Lactamase from Chryseobacterium indologenes Strain 597 Isolated in Burkina Faso. Antimicrob. Agents Chemother. 2009, 53, 4320–4326. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.E.; Livermore, D.M.; Hooper, D.C.; Hope, W.W. Metallo-β-Lactamases: Structure, Function, Epidemiology, Treatment Options, and the Development Pipeline. Antimicrob. Agents Chemother. 2020, 64, e00397-20. [Google Scholar] [CrossRef]
- Gudeta, D.D.; Bortolaia, V.; Amos, G.; Wellington, E.M.H.; Brandt, K.K.; Poirel, L.; Nielsen, J.B.; Westh, H.; Guardabassi, L. The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance. Antimicrob. Agents Chemother. 2016, 60, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.-M.A.; Chu, K.; Palaniappan, K.; Ratner, A.; Huang, J.; Huntemann, M.; Hajek, P.; Ritter, S.J.; Webb, C.; Wu, D.; et al. The IMG/M Data Management and Analysis System v.7: Content Updates and New Features. Nucleic Acids Res. 2023, 51, D723–D732. [Google Scholar] [CrossRef]
- Berglund, F.; Johnning, A.; Larsson, D.G.J.; Kristiansson, E. An Updated Phylogeny of the Metallo-β-Lactamases. J. Antimicrob. Chemother. 2021, 76, 117–123. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a New Metallo-β-Lactamase Gene, BlaNDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella Pneumoniae Sequence Type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Martinez, J.L. Friends or Foes: Can We Make a Distinction between Beneficial and Harmful Strains of the Stenotrophomonas maltophilia Complex? Front. Microbiol. 2015, 6, 241. [Google Scholar] [CrossRef]
- Mwanza, E.P.; Hugo, A.; Charimba, G.; Hugo, C.J. Pathogenic Potential and Control of Chryseobacterium Species from Clinical, Fish, Food and Environmental Sources. Microorganisms 2022, 10, 895. [Google Scholar] [CrossRef]
- Chen, F.-L.; Wang, G.-C.; Teng, S.-O.; Ou, T.-Y.; Yu, F.-L.; Lee, W.-S. Clinical and Epidemiological Features of Chryseobacterium indologenes Infections: Analysis of 215 Cases. J. Microbiol. Immunol. Infect. 2013, 46, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Friedman, N.D.; Temkin, E.; Carmeli, Y. The Negative Impact of Antibiotic Resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef]
- Barlow, G. Clinical Challenges in Antimicrobial Resistance. Nat. Microbiol. 2018, 3, 258–260. [Google Scholar] [CrossRef]
- Sanz-García, F.; Gil-Gil, T.; Laborda, P.; Ochoa-Sánchez, L.E.; Martínez, J.L.; Hernando-Amado, S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int. J. Mol. Sci. 2021, 22, 8080. [Google Scholar] [CrossRef]
- Mb, S. Antibiotic Resistance in the Opportunistic Pathogen Stenotrophomonas maltophilia. Front. Microbiol. 2015, 6, 658. [Google Scholar] [CrossRef] [Green Version]
- Gil-Gil, T.; Martínez, J.L.; Blanco, P. Mechanisms of Antimicrobial Resistance in Stenotrophomonas maltophilia: A Review of Current Knowledge. Expert Rev. Anti-Infect. Ther. 2020, 18, 335–347. [Google Scholar] [CrossRef]
- McCutcheon, J.G.; Dennis, J.J. The Potential of Phage Therapy against the Emerging Opportunistic Pathogen Stenotrophomonas maltophilia. Viruses 2021, 13, 1057. [Google Scholar] [CrossRef]
- Youenou, B.; Favre-Bonté, S.; Bodilis, J.; Brothier, E.; Dubost, A.; Muller, D.; Nazaret, S. Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles. Genome Biol. Evol. 2015, 7, 2484–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deredjian, A.; Alliot, N.; Blanchard, L.; Brothier, E.; Anane, M.; Cambier, P.; Jolivet, C.; Khelil, M.N.; Nazaret, S.; Saby, N.; et al. Occurrence of Stenotrophomonas maltophilia in Agricultural Soils and Antibiotic Resistance Properties. Res. Microbiol. 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, W.; Cui, Q.; Niu, W.; Li, H.; Zhao, X.; Wei, X.; Wang, X.; Huang, S.; Dong, D.; et al. Prevalence and Detection of Stenotrophomonas maltophilia Carrying Metallo-β-Lactamase BlaL1 in Beijing, China. Front. Microbiol. 2014, 5, 692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, T.R.; MacGowan, A.P.; Bennett, P.M. Sequence Analysis and Enzyme Kinetics of the L2 Serine Beta-Lactamase from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 1997, 41, 1460–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, T.R.; Hall, L.; Assinder, S.J.; Nichols, W.W.; Cartwright, S.J.; MacGowan, A.P.; Bennett, P.M. Sequence Analysis of the L1 Metallo-β-Lactamase from Xanthomonas Maltophilia. Biochim. Biophys. Acta (BBA)-Gene Struct. Expr. 1994, 1218, 199–201. [Google Scholar] [CrossRef]
- Nicodemo, A.C.; Paez, J.I.G. Antimicrobial Therapy for Stenotrophomonas maltophilia Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 229–237. [Google Scholar] [CrossRef]
- Flores-Treviño, S.; Gutiérrez-Ferman, J.L.; Morfín-Otero, R.; Rodríguez-Noriega, E.; Estrada-Rivadeneyra, D.; Rivas-Morales, C.; Llaca-Díaz, J.M.; Camacho-Ortíz, A.; Mendoza-Olazarán, S.; Garza-González, E. Stenotrophomonas maltophilia in Mexico: Antimicrobial Resistance, Biofilm Formation and Clonal Diversity. J. Med. Microbiol. 2014, 63, 1524–1530. [Google Scholar] [CrossRef]
- Okazaki, A.; Avison, M.B. Induction of L1 and L2 Beta-Lactamase Production in Stenotrophomonas maltophilia Is Dependent on an AmpR-Type Regulator. Antimicrob. Agents Chemother. 2008, 52, 1525–1528. [Google Scholar] [CrossRef] [Green Version]
- Avison, M.B.; Higgins, C.S.; Ford, P.J.; von Heldreich, C.J.; Walsh, T.R.; Bennett, P.M. Differential Regulation of L1 and L2 β-Lactamase Expression in Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 2002, 49, 387–389. [Google Scholar] [CrossRef] [Green Version]
- Parte, A.C. LPSN—List of Prokaryotic Names with Standing in Nomenclature (Bacterio.Net), 20 Years On. Int. J. Syst. Evol. Microbiol. 2018, 68, 1825–1829. [Google Scholar] [CrossRef]
- Parajuli, R.; Limbu, T.; Chaudhary, R.; Gautam, K.; Dahal, P. Phenotypical Detection of β-Lactamases in a Multidrug-Resistant and Extensively Drug-Resistant Chryseobacterium Indologens: A Rare Human Pathogen with Special References to Risk Factor. Microbiol. Insights 2023, 16, 11786361221150756. [Google Scholar] [CrossRef]
- Chou, D.-W.; Wu, S.-L.; Lee, C.-T.; Tai, F.-T.; Yu, W.-L. Clinical Characteristics, Antimicrobial Susceptibilities, and Outcomes of Patients with Chryseobacterium indologenes Bacteremia in an Intensive Care Unit. Jpn. J. Infect. Dis. 2011, 64, 520–524. [Google Scholar] [CrossRef]
- Damas, M.S.F.; Ferreira, R.L.; Campanini, E.B.; Soares, G.G.; Campos, L.C.; Laprega, P.M.; Soares da Costa, A.; Freire, C.C.d.M.; Pitondo-Silva, A.; Cerdeira, L.T.; et al. Whole Genome Sequencing of the Multidrug-Resistant Chryseobacterium indologenes Isolated from a Patient in Brazil. Front. Med. 2022, 9, 931379. [Google Scholar] [CrossRef]
- Glibota, N.; Grande Burgos, M.J.; Gálvez, A.; Ortega, E. Copper Tolerance and Antibiotic Resistance in Soil Bacteria from Olive Tree Agricultural Fields Routinely Treated with Copper Compounds. J. Sci. Food Agric. 2019, 99, 4677–4685. [Google Scholar] [CrossRef]
- Popowska, M.; Rzeczycka, M.; Miernik, A.; Krawczyk-Balska, A.; Walsh, F.; Duffy, B. Influence of Soil Use on Prevalence of Tetracycline, Streptomycin, and Erythromycin Resistance and Associated Resistance Genes. Antimicrob. Agents Chemother. 2012, 56, 1434–1443. [Google Scholar] [CrossRef] [Green Version]
- Glibota, N.; Grande, M.J.; Galvez, A.; Ortega, E. Genetic Determinants for Metal Tolerance and Antimicrobial Resistance Detected in Bacteria Isolated from Soils of Olive Tree Farms. Antibiotics 2020, 9, 476. [Google Scholar] [CrossRef]
- Sullivan, B.A.; Gentry, T.; Karthikeyan, R. Characterization of Tetracycline-Resistant Bacteria in an Urbanizing Subtropical Watershed. J. Appl. Microbiol. 2013, 115, 774–785. [Google Scholar] [CrossRef]
- Saleem, H.G.M.; Seers, C.A.; Sabri, A.N.; Reynolds, E.C. Dental Plaque Bacteria with Reduced Susceptibility to Chlorhexidine Are Multidrug Resistant. BMC Microbiol. 2016, 16, 214. [Google Scholar] [CrossRef] [Green Version]
- Verner-Jeffreys, D.W.; Brazier, T.; Perez, R.Y.; Ryder, D.; Card, R.M.; Welch, T.J.; Hoare, R.; Ngo, T.; McLaren, N.; Ellis, R.; et al. Detection of the Florfenicol Resistance Gene FloR in Chryseobacterium Isolates from Rainbow Trout. Exception to the General Rule? FEMS Microbiol. Ecol. 2017, 93, fix015. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.-Y.; Yang, C.-H.; Lai, C.-H.; Huang, Y.-H.; Lin, J.-N. Genomic Features, Comparative Genomic Analysis, and Antimicrobial Susceptibility Patterns of Chryseobacterium Arthrosphaerae Strain ED882-96 Isolated in Taiwan. Genes 2019, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.; Owen, C.; Kirby, L. Activation of a Cryptic Streptomycin-resistance Gene in the Bacteroides Erm Transposon, Tn4551. Mol. Microbiol. 1992, 6, 2287–2297. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Nagata, M.; Ishimine, N.; Kawasaki, K.; Yamauchi, K.; Hidaka, E.; Kasuga, E.; Horiuchi, K.; Oana, K.; Kawakami, Y.; et al. Characterization of CIA-1, an Ambler Class A Extended-Spectrum β-Lactamase from Chryseobacterium Indologenes. Antimicrob. Agents Chemother. 2012, 56, 588–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellais, S.; Naas, T.; Nordmann, P. Molecular and Biochemical Characterization of Ambler Class A Extended-Spectrum β-Lactamase CGA-1 from Chryseobacterium Gleum. Antimicrob. Agents Chemother. 2002, 46, 966–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berglund, F.; Marathe, N.P.; Österlund, T.; Bengtsson-Palme, J.; Kotsakis, S.; Flach, C.-F.; Larsson, D.G.J.; Kristiansson, E. Identification of 76 Novel B1 Metallo-β-Lactamases through Large-Scale Screening of Genomic and Metagenomic Data. Microbiome 2017, 5, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimkaitė, L.; Armalytė, J.; Skerniškytė, J.; Sužiedėlienė, E. The Toxin-Antitoxin Systems of the Opportunistic Pathogen Stenotrophomonas maltophilia of Environmental and Clinical Origin. Toxins 2020, 12, 635. [Google Scholar] [CrossRef]
- Warren, D.J. Preparation of Highly Efficient Electrocompetent Escherichia Coli Using Glycerol/Mannitol Density Step Centrifugation. Anal. Biochem. 2011, 413, 206–207. [Google Scholar] [CrossRef]
- Lezin, G.; Kosaka, Y.; Yost, H.J.; Kuehn, M.R.; Brunelli, L. A One-Step Miniprep for the Isolation of Plasmid DNA and Lambda Phage Particles. PLoS ONE 2011, 6, e23457. [Google Scholar] [CrossRef] [Green Version]
- Clarke, L.; Carbon, J. A Colony Bank Containing Synthetic Col El Hybrid Plasmids Representative of the Entire E. Coli Genome. Cell 1976, 9, 91–99. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Krasauskas, R.; Labeikytė, D.; Markuckas, A.; Povilonis, J.; Armalytė, J.; Plančiūnienė, R.; Kavaliauskas, P.; Sužiedėlienė, E. Purification and Characterization of a New β-Lactamase OXA-205 from Pseudomonas Aeruginosa. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 52. [Google Scholar] [CrossRef] [Green Version]
Library | Number of Clones | Average Insert Size (kb ± Standard Deviation) | Total DNA (Mb) |
---|---|---|---|
S. maltophilia | |||
S_malt_pBLU_2 | 9.6 × 104 | 3.7 ± 1.5 | 355 |
Chryseobacterium spp. | |||
C_sp_pBLU_1 | 1.1 × 104 | 4.8 ± 2.2 | 53 |
C_sp_pBLU_2 | 1.4 × 104 | 4.2 ± 0.6 | 59 |
Selection on Antibiotic (mg/L) | Clones Tested | No. of Resistant Clones | No. of Unique Resistant Groups | No. of Clones with Resistance Gene | Resistance Gene Detected | GenBank Accession Number |
---|---|---|---|---|---|---|
S. maltophilia gene library S_malt_pBLU_2/E. coli BL21(DE3) | ||||||
Kanamycin (20) | 1.2 × 106 | 98 | 3 | 98 * | aph(3′)-IIc aminoglycoside O-phosphotransferase gene | MK374278 |
Streptomycin (40) | 1.2 × 106 | 37 | 3 | 37 * | Putative aph(6) family aminoglycoside O-phosphotransferase gene | MK374279 |
Chryseobacterium spp. gene libraries C_sp_pBLU_1, C_sp_pBLU_2/E. coli BL21(DE3) | ||||||
Streptomycin (80) | 1.7 × 106 | 181 | 1 | 181 | Putative ant(6) aminoglycoside adenylyltransferase family gene | MK401903 |
Tetracycline (6) | 1.4 × 106 | 90 | 2 | 90 * | Tetracycline resistance MFS efflux pump gene | MK401905 |
Cefuroxime (16) | 7.4 × 105 | 127 | 2 | 125 | IND-like metallo-β-lactamase gene | MK401904 |
2 | Putative metallo-β-lactamase gene | MK401906 | ||||
Imipenem (0.5) | 3.0 × 106 | 17 | 1 | 17 | IND-like metallo-β-lactamase gene | MK401904 |
Gene Origin | ARG | Originally Isolated on Antibiotic | Ampicillin | Cefazolin | Cefuroxime | Ceftazidime | Ceftriaxone | Imipenem | Meropenem | Streptomycin | Kanamycin | Gentamicin |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. maltophilia | APH(3′)-II | Kanamycin | - | - | - | - | - | - | - | 6 | 100 | 3 |
S. maltophilia | aph(6) | Streptomycin | - | - | - | - | - | - | - | 100 | 3 | 3 |
Chryseobacterium spp. | IND-17 gene | Imipenem/ cefuroxime | >3200 | >64 | >256 | 5 | >64 | >256 | >256 | - | - | - |
Chryseobacterium spp. | CHM gene | Cefuroxime | 12 | >64 | >256 | 160 | >64 | 64 | >256 | - | - | - |
IND-17 | CHM | IND-6 a | NDM-1 b | IMP-1 b | VIM-1 b | |||||
---|---|---|---|---|---|---|---|---|---|---|
Antibiotic | KM | kcat | kcat/KM | KM | kcat | kcat/KM | kcat/KM | kcat/KM | kcat/KM | kcat/KM |
Nitrocefin | 152 ± 4.7 | 68 | 0.44 | 153 ± 10 | 74 | 0.48 | 2.67 | - | - | - |
Ampicillin | 470 ± 108 | 148 | 0.31 | NH | NH | NH | - | 0.66 | 0.48 | - |
Cefazolin | 38 ± 12 | 5.0 | 0.13 | 167 ± 27 | 126 | 0.75 | - | - | - | - |
Cefuroxime | 30 ± 5.8 | 8.3 | 0.27 | 76 ± 19 | 124 | 1.63 | 3.62 | 0.61 | 0.22 | 0.55 |
Ceftazidime | NH | NH | NH | 200 ± 41 | 3.9 | 0.02 | 0.27 | 0.03 | 0.18 | 0.9 |
Imipenem | 185 ± 19 | 48 | 0.26 | 389 ± 48 | 78 | 0.20 | 37 | 0.21 | 1.2 | 0.99 |
Meropenem | 258 ± 25 | 66 | 0.25 | 10 ± 2.0 | 9.8 | 0.96 | 0.17 | 0.25 | 0.12 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimkaitė, L.; Ragaišis, I.; Krasauskas, R.; Ružauskas, M.; Sužiedėlienė, E.; Armalytė, J. Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin. Int. J. Mol. Sci. 2023, 24, 6037. https://doi.org/10.3390/ijms24076037
Klimkaitė L, Ragaišis I, Krasauskas R, Ružauskas M, Sužiedėlienė E, Armalytė J. Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin. International Journal of Molecular Sciences. 2023; 24(7):6037. https://doi.org/10.3390/ijms24076037
Chicago/Turabian StyleKlimkaitė, Laurita, Ignas Ragaišis, Renatas Krasauskas, Modestas Ružauskas, Edita Sužiedėlienė, and Julija Armalytė. 2023. "Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin" International Journal of Molecular Sciences 24, no. 7: 6037. https://doi.org/10.3390/ijms24076037
APA StyleKlimkaitė, L., Ragaišis, I., Krasauskas, R., Ružauskas, M., Sužiedėlienė, E., & Armalytė, J. (2023). Novel Antibiotic Resistance Genes Identified by Functional Gene Library Screening in Stenotrophomonas maltophilia and Chryseobacterium spp. Bacteria of Soil Origin. International Journal of Molecular Sciences, 24(7), 6037. https://doi.org/10.3390/ijms24076037