Tough Bioplastics from Babassu Oil-Based Acrylic Monomer, Hemicellulose Xylan, and Carnauba Wax
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of PBBM-X
2.2. Thermal Transitions of Materials
2.3. Thermo-Mechanical Properties of the Materials
2.4. Thermal Transitions of PBBM-X/CW Blends
2.5. Thermo-Mechanical Properties of PBBM-X/CW Blends
2.6. Mechanical Properties of the Bioplastics
2.7. Moisture Barrier Properties
3. Experimental
3.1. Materials
3.2. Babassu Oil-Based Acrylic Monomer Synthesis
3.3. Babassu Oil-Based Acrylic Monomer Characterization
3.4. Free Radical Polymerization of Babassu Oil-Based Acrylic Monomer
3.5. Maleinization of Xylan
3.6. Grafted Copolymerization of Maleinized Xylan and BBM
3.7. Characterization of Xylan-g-BBM Copolymers and Copolymer/Carnauba Wax Mixtures
3.8. Moisture Barrier Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Qi, P.; Rostagno, M.; Feteha, A.; Miller, S.A. The quest for high glass transition temperature bioplastics. J. Mater. Chem. A 2018, 6, 9298–9331. [Google Scholar] [CrossRef]
- Plastics—The Facts 2020; Plastics Europe: Brussels, B. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/ (accessed on 15 January 2023).
- Lemonick, S. Chemical solutions for a chemical problem. Chem. Eng. News 2018, 96, 26–29. [Google Scholar] [CrossRef]
- Shen, L.; Haufe, J.; Patel, M.K. Product Overview and Market Projection of Emerging Biobased Plastics; Report No.: NWS-E-2009-32; Utrecht University: Utrecht, The Netherlands, 2009; pp. 1–243. [Google Scholar]
- Ebnesajjad, S. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications; William Andrew: Norwich, NY, USA, 2012; p. 462. [Google Scholar]
- Rosseto, M.; Krein, D.D.; Balbé, N.P.; Dettmer, A. Starch–gelatin film as an alternative to the use of plastics in agriculture: A review. J. Sci. Food Agric. 2019, 99, 6671–6679. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y. Molecular, Structural, and Material Design of Bio-Based Polymers. Polym. J. 2009, 41, 797–807. [Google Scholar] [CrossRef]
- Mecking, S. Polyethylene-like materials from plant oils. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190266. [Google Scholar] [CrossRef]
- Van Beilen, J.B.; Poirier, Y. Plants as factories for bioplastics and other novel biomaterials. In Plant Biotechnology and Agriculture; Academic Press: Cambridge, MA, USA, 2012; pp. 481–494. [Google Scholar]
- Nakajima, H.; Kimura, Y. General introduction: Overview of the current development of biobased polymers. In Bio-Based Polymers; Kimura, Y., Ed.; CMC Publishing Co., Ltd.: Tokyo, Japan, 2013; pp. 1–23. [Google Scholar]
- Papageorgiou, G. Thinking Green: Sustainable Polymers from Renewable Resources. Polymers 2018, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Caillol, S. Special Issue “Natural Polymers and Biopolymers II”. Molecules 2020, 26, 112. [Google Scholar] [CrossRef]
- Sharmin, E.; Zafar, F.; Akram, D.; Alam, M.; Ahmad, S. Recent advances in vegetable oils based environment friendly coatings: A review. Ind. Crops Prod. 2015, 76, 215–229. [Google Scholar] [CrossRef]
- Tarnavchyk, I.; Popadyuk, A.; Popadyuk, N.; Voronov, A. Synthesis and Free Radical Copolymerization of a Vinyl Monomer from Soybean Oil. ACS Sustain. Chem. Eng. 2015, 3, 1618–1622. [Google Scholar] [CrossRef]
- Demchuk, Z.; Shevchuk, O.; Tarnavchyk, I.; Kirianchuk, V.; Kohut, A.; Voronov, S.; Voronov, A. Free Radical Polymerization Behavior of the Vinyl Monomers from Plant Oil Triglycerides. ACS Sustain. Chem. Eng. 2016, 4, 6974–6980. [Google Scholar] [CrossRef]
- Demchuk, Z.; Kohut, A.; Voronov, S.; Voronov, A. Versatile platform for controlling properties of plant oil-based latex polymer networks. ACS Sustain. Chem. Eng. 2018, 6, 2780–2786. [Google Scholar] [CrossRef]
- Demchuk, Z.; Li, W.S.J.; Eshete, H.; Caillol, S.; Voronov, A. Synergistic Effects of Cardanol- and High Oleic Soybean Oil Vinyl Monomers in Miniemulsion Polymers. ACS Sustain. Chem. Eng. 2019, 7, 9613–9621. [Google Scholar] [CrossRef]
- Simões, A.; Ramos, L.; Freitas, L.; Santos, J.C.; Zanin, G.M.; De Castro, H.F. Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE) in a solvent-free system. Biofuel Res. J. 2015, 2, 242–247. [Google Scholar] [CrossRef]
- Bauer, L.C.; Santos, L.S.; Sampaio, K.A.; Ferrão, S.P.B.; da Costa Ilhéu Fontan, R.; Minim, L.A.; Veloso, C.M.; Bonomo, R.C.F. Physicochemical and thermal characterization of babassu oils (Orbignya phalerata Mart.) obtained by different extraction methods. Food Res. Int. 2020, 137, 109474. [Google Scholar] [CrossRef]
- Greenberg, S.A.; Alfrey, T. Side Chain Crystallization of n-Alkyl Polymethacrylates and Polyacrylates1. J. Am. Chem. Soc. 1954, 76, 6280–6285. [Google Scholar] [CrossRef]
- Wiley, R.H.; Brauer, G.M. Refractometric determination of second-order transition temperatures in polymers. III. Acrylates and methacrylates. J. Polym. Sci. 1948, 3, 647–651. [Google Scholar] [CrossRef]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Beg, Q.K.; Kapoor, M.; Mahajan, L.; Hoondal, G.S. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 2001, 56, 326–338. [Google Scholar] [CrossRef]
- Polizeli, M.; Rizzatti, A.C.S.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Milanovic, J.; Manojlovic, V.; Levic, S.; Rajic, N.; Nedovic, V.; Bugarski, B. Microencapsulation of Flavors in Carnauba Wax. Sensors 2010, 10, 901–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Freitas, C.A.S.; de Sousa, P.H.M.; Soares, D.J.; da Silva, J.Y.G.; Benjamin, S.R.; Guedes, M.I.F. Carnauba wax uses in food—A review. Food Chem. 2019, 291, 38–48. [Google Scholar] [CrossRef]
- Lim, J.; Hwang, H.-S.; Lee, S. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties. Appl. Biol. Chem. 2017, 60, 17–22. [Google Scholar] [CrossRef]
- Despond, S.; Espuche, E.; Cartier, N.; Domard, A. Barrier properties of paper–chitosan and paper–chitosan–carnauba wax films. J. Appl. Polym. Sci. 2005, 98, 704–710. [Google Scholar] [CrossRef]
- Dos Santos, F.K.G.; Silva, K.N.D.O.; Xavier, T.D.N.; Leite, R.H.D.L.; Aroucha, E.M.M. Effect of the Addition of Carnauba Wax on Physicochemical Properties of Chitosan Films. Mater. Res. 2017, 20, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Kohut, A.; Voronov, S.; Demchuk, Z.; Kirianchuk, V.; Kingsley, K.; Shevchuk, O.; Caillol, S.; Voronov, A. Non-Conventional Features of Plant Oil-Based Acrylic Monomers in Emulsion Polymerization. Molecules 2020, 25, 2990. [Google Scholar] [CrossRef]
- Peng, X.-W.; Ren, J.-L.; Sun, R.-C. Homogeneous Esterification of Xylan-Rich Hemicelluloses with Maleic Anhydride in Ionic Liquid. Biomacromolecules 2010, 11, 3519–3524. [Google Scholar] [CrossRef]
- Iyer, K.S.; Luzinov, I. Effect of Macromolecular Anchoring Layer Thickness and Molecular Weight on Polymer Grafting. Macromolecules 2004, 37, 9538–9545. [Google Scholar] [CrossRef]
- Hiemenz, P.C.; Lodge, T. Polymer Chemistry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; p. 587. [Google Scholar]
- Nassu, R.T.; Guaraldo Gonçalves, L.A. Determination of melting point of vegetable oils and fats by differential scanning calorimetry (DSC) technique. Grasas Aceites 1999, 50, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Sperling, L.H. Introduction to Physical Polymer Science, 4th ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006; p. 845. [Google Scholar]
- Fried, J.R. Polymer Science and Technology, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2014; pp. 1–3. [Google Scholar]
- Wei, L.; Caliskan, T.D.; Tu, S.; Choudhury, C.K.; Kuksenok, O.; Luzinov, I. Highly Oil-Repellent Thermoplastic Boundaries via Surface Delivery of CF3 Groups by Molecular Bottlebrush Additives. ACS Appl. Mater. Interfaces 2020, 12, 38626–38637. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, R.; Malucelli, G.; Lombardi, V.; Priola, A.; Siracusa, V.; Tonelli, C.; Di Meo, A. Surface Properties of Methacrylic Copolymers Containing a Perfluoropolyether Structure. Polymer 2001, 42, 2299–2305. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Nelson, A.; Vitale, A.; Bernardi, E. Ultra-thin Films Based on Random Copolymers Containing Perfluoropolyether Side Chains. Thin Solid Films 2012, 520, 5627–5632. [Google Scholar] [CrossRef]
- Krupers, M.; Slangen, P.-J.; Möller, M. Synthesis and Properties of Polymers Based on Oligo(hexafluoropropene oxide) Containing Methacrylates and Copolymers with Methyl Methacrylate. Macromolecules 1998, 31, 2552–2558. [Google Scholar] [CrossRef]
- Pelras, T.; Mahon, C.S.; Müllner, M. Synthesis and Applications of Compartmentalised Molecular Polymer Brushes. Angew. Chem. Int. Ed. 2018, 57, 6982–6994. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.D.; Choudhury, C.K.; Luzinov, I.; Kuksenok, O. Recent advances towards applications of molecular bottlebrushes and their conjugates. Curr. Opin. Solid State Mat. Sci. 2019, 23, 50–61. [Google Scholar] [CrossRef]
- Daniel, W.F.M.; Burdyńska, J.; Vatankhah-Varnoosfaderani, M.; Matyjaszewski, K.; Paturej, J.; Rubinstein, M.; Dobrynin, A.V.; Sheiko, S.S. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 2016, 15, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Kunamaneni, S.; Buzza, D.M.A.; Read, D.J.; Parker, D.; Kenwright, A.M.; Feast, W.J.; Larsen, A.L. Entanglement Transition of Randomly Branched Polymers in the Hyperbranched Class. Macromolecules 2006, 39, 6720–6736. [Google Scholar] [CrossRef]
- Lusignan, C.P.; Mourey, T.H.; Wilson, J.C.; Colby, R.H. Viscoelasticity of randomly branched polymers in the critical percolation class. Phys. Rev. E 1995, 52, 6271–6280. [Google Scholar] [CrossRef]
- Colby, R.H.; Gillmor, J.R.; Rubinstein, M. Dynamics of near-critical polymer gels. Phys. Rev. E 1993, 48, 3712–3716. [Google Scholar] [CrossRef]
- Lusignan, C.P.; Mourey, T.H.; Wilson, J.C.; Colby, R.H. Viscoelasticity of randomly branched polymers in the vulcanization class. Phys. Rev. E 1999, 60, 5657–5669. [Google Scholar] [CrossRef] [PubMed]
- Mohagheghian, I.; McShane, G.J.; Stronge, W.J. Impact perforation of monolithic polyethylene plates: Projectile nose shape dependence. Int. J. Impact Eng. 2015, 80, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Salakhov, I.I.; Shaidullin, N.M.; Chalykh, A.E.; Matsko, M.A.; Shapagin, A.V.; Batyrshin, A.Z.; Shandryuk, G.A.; Nifant’Ev, I.E. Low-Temperature Mechanical Properties of High-Density and Low-Density Polyethylene and Their Blends. Polymers 2021, 13, 1821. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.-Z. Predictions of Storage Modulus of Glass Bead-Filled Low-Density-Polyethylene Composites. Mater. Sci. Appl. 2010, 1, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Van Krevelen, D.W. Properties of Polymers: Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 2000; p. 875. [Google Scholar]
- Ehrenstein, G.W. Polymeric Materials: Structure, Properties, Applications; Hanser Gardner Publications: Munich, Germany; Cincinnati, OH, USA, 2001; p. 278. [Google Scholar]
- Men, Y.; Rieger, J.; Strobl, G. Role of the Entangled Amorphous Network in Tensile Deformation of Semicrystalline Polymers. Phys. Rev. Lett. 2003, 91, 095502. [Google Scholar] [CrossRef] [PubMed]
- Termonia, Y.; Smith, P. Kinetic model for tensile deformation of polymers. Macromolecules 1987, 20, 835–838. [Google Scholar] [CrossRef]
- Qian, R. The concept of cohesional entanglement. Macromol. Symp. 1997, 124, 15–26. [Google Scholar] [CrossRef]
- Marsh, K.; Bugusu, B. Food Packaging: Roles, Materials, and Environmental Issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef]
- Jagadish, R.S.; Raj, B.; Asha, M.R. Blending of low-density polyethylene with vanillin for improved barrier and aroma-releasing properties in food packaging. J. Appl. Polym. Sci. 2009, 113, 3732–3741. [Google Scholar] [CrossRef]
- Pawelec, W.; Tirri, T.; Aubert, M.; Häggblom, E.; Lehikoinen, T.; Skåtar, R.; Pfaendner, R.; Wilén, C.-E. Toward halogen-free flame resistant polyethylene extrusion coated paper facings. Prog. Org. Coat. 2015, 78, 67–72. [Google Scholar] [CrossRef]
- Lahtinen, K.; Kuusipalo, J. Statistical prediction model for water vapor barrier of extrusion-coated paper. Tappi J. 2008, 7, 8–15. [Google Scholar]
- Available online: https://www.chemsrc.com/en/cas/8015-86-9_1198975.html (accessed on 18 January 2023).
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Odian, G.G. Principles of Polymerization; Wiley-Interscience: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ravishankar, K.; Shelly, K.M.; Desingh, R.P.; Subramaniyam, R.; Narayanan, A.; Dhamodharan, R. Green, Solid-State Synthesis of Maleated Chitosan and Ionotropic Gelation with Chitosan. ACS Sustain. Chem. Eng. 2018, 6, 15191–15200. [Google Scholar] [CrossRef]
- Kujawa, J.; Rynkowska, E.; Fatyeyeva, K.; Knozowska, K.; Wolan, A.; Dzieszkowski, K.; Li, G.; Kujawski, W. Preparation and Characterization of Cellulose Acetate Propionate Films Functionalized with Reactive Ionic Liquids. Polymers 2019, 11, 1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polunin, Y.; Kirianchuk, V.; Mhesn, N.; Wei, L.; Minko, S.; Luzinov, I.; Voronov, A. Tough Bioplastics from Babassu Oil-Based Acrylic Monomer, Hemicellulose Xylan, and Carnauba Wax. Int. J. Mol. Sci. 2023, 24, 6103. https://doi.org/10.3390/ijms24076103
Polunin Y, Kirianchuk V, Mhesn N, Wei L, Minko S, Luzinov I, Voronov A. Tough Bioplastics from Babassu Oil-Based Acrylic Monomer, Hemicellulose Xylan, and Carnauba Wax. International Journal of Molecular Sciences. 2023; 24(7):6103. https://doi.org/10.3390/ijms24076103
Chicago/Turabian StylePolunin, Yehor, Vasylyna Kirianchuk, Najah Mhesn, Liying Wei, Sergiy Minko, Igor Luzinov, and Andriy Voronov. 2023. "Tough Bioplastics from Babassu Oil-Based Acrylic Monomer, Hemicellulose Xylan, and Carnauba Wax" International Journal of Molecular Sciences 24, no. 7: 6103. https://doi.org/10.3390/ijms24076103
APA StylePolunin, Y., Kirianchuk, V., Mhesn, N., Wei, L., Minko, S., Luzinov, I., & Voronov, A. (2023). Tough Bioplastics from Babassu Oil-Based Acrylic Monomer, Hemicellulose Xylan, and Carnauba Wax. International Journal of Molecular Sciences, 24(7), 6103. https://doi.org/10.3390/ijms24076103