The Magic of Proteases: From a Procoagulant and Anticoagulant Factor V to an Equitable Treatment of Its Inherited Deficiency
Abstract
:1. Proteases
1.1. Proteostasis
1.2. New Insights into Proteases, Biology, and Biomedicine
2. Hemostasis and Its Regulation
The Homeostasis of Hemostasis
3. Coagulopathies: Dysregulation of Hemostasis
Factor V Deficiency
4. The New Pharmacology of Blood Coagulation: Alterations in Protease Activity
5. Factor V, a Procoagulant and Anticoagulant Protein
6. The Treatment of FV Deficiency: Bioethical Aspects of Health Equity
6.1. Bioethics and Health Equity
6.2. From Costs to Equity
6.3. The Clinical Value Chain of Factor V Deficiency
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanman, L.E.; Bogyo, M. Activity-based profiling of proteases. Annu. Rev. Biochem. 2014, 83, 249–273. [Google Scholar] [CrossRef] [Green Version]
- Gurumallesh, P.; Alagu, K.; Ramakrishnan, B.; Muthusamy, S. A systematic reconsideration on proteases. Int. J. Biol. Macromol. 2019, 128, 254–267. [Google Scholar] [CrossRef]
- Kolak, M.; Gorecka, J.; Radon-Pokracka, M.; Piasecki, M.; Cierniak, A.; Micek, A.; Horbaczewska, A.; Jaworowski, A.; Huras, H. ICTP concentration in cervical-vaginal fluid as a potential marker of membrane collagen degradation before labor. Ginekol. Pol. 2023. [Google Scholar] [CrossRef]
- Elsworth, B.; Keroack, C.; Rezvani, Y.; Paul, A.; Barazorda, K.; Tennessen, J.; Sack, S.; Moreira, C.; Gubbels, M.J.; Meyers, M.; et al. Babesia divergens egress from host cells is orchestrated by essential and druggable kinases and proteases. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Nagel, B.; Dellweg, H.; Gierasch, L.M. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure Appl. Chem. 1992, 64, 143–168. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, N.D.; Barrett, A.J.; Bateman, A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2012, 40, D343–D350. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [Green Version]
- Helbig, A.O.; Tholey, A. Exopeptidase Assisted N- and C-Terminal Proteome Sequencing. Anal. Chem. 2020, 92, 5023–5032. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Li, X.; Wang, D.; Zhao, B.; Shi, Y.; Huang, A. Discovery of specific antioxidant peptide from Chinese Dahe black pig and hybrid pig dry-cured hams based on peptidomics strategy. Food Res. Int. 2023, 166, 112610. [Google Scholar] [CrossRef]
- Klaips, C.L.; Jayaraj, G.G.; Hartl, F.U. Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 2018, 217, 51–63. [Google Scholar] [CrossRef]
- Hipp, M.S.; Kasturi, P.; Hartl, F.U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019, 20, 421–435. [Google Scholar] [CrossRef]
- Ratnikov, B.I.; Cieplak, P.; Remacle, A.G.; Nguyen, E.; Smith, J.W. Quantitative profiling of protease specificity. PLoS Comput. Biol. 2021, 17, e1008101. [Google Scholar] [CrossRef]
- Guo, N.; Huang, C.; Qiao, J.; Li, Y.; Wang, Y.; Xia, A.; Zhang, G.; Fang, Z.; You, J.; Li, L. Discovery of 3-phenyl-1,2,4-oxadiazole derivatives as a new class of SARS-CoV-2 main protease inhibitors. Bioorg. Med. Chem. Lett. 2023, 86, 129238. [Google Scholar] [CrossRef] [PubMed]
- Bond, J.S. Proteases: History, discovery, and roles in health and disease. J. Biol. Chem. 2019, 294, 1643–1651. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Herrmann, J.; Murthy, S.; Peters, K.; Gerard, S.E.; Nia, H.T.; Lutchen, K.R.; Suki, B. A Personalized Spring Network Representation of Emphysematous Lungs From CT Images. Front. Netw. Physiol. 2022, 2, 828157. [Google Scholar] [CrossRef] [PubMed]
- Wöhner, B.; Li, W.; Hey, S.; Drobny, A.; Werny, L.; Becker-Pauly, C.; Lucius, R.; Zunke, F.; Linder, S.; Arnold, P. Proteolysis of CD44 at the cell surface controls a downstream protease network. Front. Mol. Biosci. 2023, 10, 1026810. [Google Scholar] [CrossRef] [PubMed]
- Chee, Y.L. Coagulation. J. R. Coll. Physicians Edinb. 2014, 44, 42–45. [Google Scholar] [CrossRef]
- Winter, W.E.; Flax, S.D.; Harris, N.S. Coagulation Testing in the Core Laboratory. Lab. Med. 2017, 48, 295–313. [Google Scholar] [CrossRef]
- Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth. 2014, 58, 515–523. [Google Scholar] [CrossRef]
- Caspers, M.; Holle, J.F.; Limper, U.; Fröhlich, M.; Bouillon, B. Global Coagulation Testing in Acute Care Medicine: Back to Bedside? Hamostaseologie 2022, 42, 400–408. [Google Scholar] [CrossRef]
- De Souza, D.A.; Salu, B.R.; Nogueira, R.S.; de Carvalho Neto, J.C.S.; Maffei, F.H.A.; Oliva, M.L.V. Peptides Derived from a Plant Protease Inhibitor of the Coagulation Contact System Decrease Arterial Thrombus Formation in a Murine Model, without Impairing Hemostatic Parameters. J. Clin. Med. 2023, 12, 1810. [Google Scholar] [CrossRef]
- Karbowska, M.; Kaminski, T.W.; Znorko, B.; Domaniewski, T.; Misztal, T.; Rusak, T.; Pryczynicz, A.; Guzinska-Ustymowicz, K.; Pawlak, K.; Pawlak, D. Indoxyl Sulfate Promotes Arterial Thrombosis in Rat Model via Increased Levels of Complex TF/VII, PAI-1, Platelet Activation as Well as Decreased Contents of SIRT1 and SIRT3. Front. Physiol. 2018, 9, 1623. [Google Scholar] [CrossRef] [Green Version]
- Tantiwong, C.; Dunster, J.L.; Cavill, R.; Tomlinson, M.G.; Wierling, C.; Heemskerk, J.W.M.; Gibbins, J.M. An agent-based approach for modelling and simulation of glycoprotein VI receptor diffusion, localisation and dimerisation in platelet lipid rafts. Sci. Rep. 2023, 13, 3906. [Google Scholar] [CrossRef]
- Lasne, D.; Jude, B.; Susen, S. From normal to pathological hemostasis. Can. J. Anesth. Can. Anesth. 2006, 53, S2–S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NaveenKumar, S.K.; Hemshekhar, M.; Sharathbabu, B.N.; Kemparaju, K.; Mugesh, G.; Girish, K.S. Platelet activation and ferroptosis mediated NETosis drives heme induced pulmonary thrombosis. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 166688. [Google Scholar] [CrossRef] [PubMed]
- Kaufmanova, J.; Stikarova, J.; Hlavackova, A.; Chrastinova, L.; Maly, M.; Suttnar, J.; Dyr, J.E. Fibrin Clot Formation under Oxidative Stress Conditions. Antioxidants 2021, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Konrath, S.; Mailer, R.K.; Beerens, M.; Englert, H.; Frye, M.; Kuta, P.; Preston, R.J.S.; Maas, C.; Butler, L.M.; Roest, M.; et al. Intrinsic coagulation pathway-mediated thrombin generation in mouse whole blood. Front. Cardiovasc. Med. 2022, 9, 1008410. [Google Scholar] [CrossRef]
- Liu, J.; Solanki, A.; White, M.J.V.; Hubbell, J.A.; Briquez, P.S. Therapeutic use of α2-antiplasmin as an antifibrinolytic and hemostatic agent in surgery and regenerative medicine. N.P.J. Regen. Med. 2022, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Cannon, W.B. Organization for physiological homeostasis. Physiol. Rev. 1929, 9, 399–431. [Google Scholar] [CrossRef]
- Cannon, W.B. The Wisdom of the Body; The Norton Library: New York, NY, USA, 1932. [Google Scholar]
- De Luca, L.A., Jr. A critique on the theory of homeostasis. Physiol. Behav. 2022, 247, 113712. [Google Scholar] [CrossRef]
- Palalioglu, R.M.; Erbiyik, H.I. Evaluation of maternal serum SERPINC1, E-selectin, P-selectin, RBP4 and PP13 levels in pregnancies complicated with preeclampsia. J. Matern. Fetal Neonatal Med. 2023, 36, 2183472. [Google Scholar] [CrossRef]
- Miyazawa, K.; Fogelson, A.L.; Leiderman, K. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys. J. 2023, 122, 99–113. [Google Scholar] [CrossRef]
- Finsterer, J. Hereditary Protein S Deficiency and Activated Protein C Resistance Manifesting With Recurrent Thrombosis and Stroke. Cureus 2023, 15, e34012. [Google Scholar] [CrossRef]
- Gill, J.; Sharma, A. Structural and genomic analysis of single nucleotide polymorphisms in human host factor endothelial protein C receptor (EPCR) reveals complex interplay with malaria parasites. Infect. Genet. Evol. 2023, 110, 105413. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Hung, M.L.; Hetz, C. Proteostasis and resilience: On the interphase between individual’s and intracellular stress. Trends Endocrinol. Metab. 2022, 33, 305–317. [Google Scholar] [CrossRef]
- Al-Koussa, H.; AlZaim, I.; El-Sabban, M.E. Pathophysiology of Coagulation and Emerging Roles for Extracellular Vesicles in Coagulation Cascades and Disorders. J. Clin. Med. 2022, 11, 4932. [Google Scholar] [CrossRef]
- Das, K.; Keshava, S.; Ansari, S.A.; Kondreddy, V.; Esmon, C.T.; Griffin, J.H.; Pendurthi, U.R.; Rao, L.V.M. Factor VIIa induces extracellular vesicles from the endothelium: A potential mechanism for its hemostatic effect. Blood 2021, 137, 3428–3442. [Google Scholar] [CrossRef]
- Georgatzakou, H.T.; Fortis, S.P.; Papageorgiou, E.G.; Antonelou, M.H.; Kriebardis, A.G. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules 2022, 12, 803. [Google Scholar] [CrossRef]
- Soares, J.P.M.; Gonçalves, D.A.; de Sousa, R.X.; Mouro, M.G.; Higa, E.M.S.; Sperandio, L.P.; Vitoriano, C.M.; Rosa, E.B.S.; Santos, F.O.D.; de Queiroz, G.N.; et al. Disruption of Redox Homeostasis by Alterations in Nitric Oxide Synthase Activity and Tetrahydrobiopterin along with Melanoma Progression. Int. J. Mol. Sci. 2022, 23, 5979. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Han, L.; Li, J.; Chen, C. Acquired coagulation dysfunction resulting from vitamin K-dependent coagulation factor deficiency associated with rheumatoid arthritis: A case report. World J. Clin. Cases 2022, 10, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Van Cott, E.M.; Khor, B.; Zehnder, J.L. Factor V Leiden. Am. J. Hematol. 2016, 91, 46–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguengang Wakap, S.; Lambert, D.M.; Olry, A.; Rodwell, C.; Gueydan, C.; Lanneau, V.; Murphy, D.; Le Cam, Y.; Rath, A. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur. J. Hum. Genet. 2020, 28, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tambuyzer, E.; Vandendriessche, B.; Austin, C.P.; Brooks, P.J.; Larsson, K.; Miller Needleman, K.I.; Valentine, J.; Davies, K.; Groft, S.C.; Preti, R.; et al. Therapies for rare diseases: Therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 2020, 19, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Pogue, R.E.; Cavalcanti, D.P.; Shanker, S.; Andrade, R.V.; Aguiar, L.R.; de Carvalho, J.L.; Costa, F.F. Rare genetic diseases: Update on diagnosis, treatment and online resources. Drug Discov. Today 2018, 23, 187–195. [Google Scholar] [CrossRef]
- Rick, M.E.; Walsh, C.E.; Key, N.S. Congenital bleeding disorders. Hematol. Am. Soc. Hematol. Educ. Programm. 2003, 2003, 559–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.L. Congenital bleeding disorders. Curr. Probl. Pediatr. Adolesc. Health Care 2005, 35, 38–62. [Google Scholar] [CrossRef]
- Bhat, R.; Cabey, W. Evaluation and Management of Congenital Bleeding Disorders. Hematol. Oncol. Clin. N. Am. 2017, 31, 1105–1122. [Google Scholar] [CrossRef]
- Batsuli, G.; Kouides, P. Rare Coagulation Factor Deficiencies (Factors VII, X, V, and II). Hematol. Oncol. Clin. N. Am. 2021, 35, 1181–1196. [Google Scholar] [CrossRef]
- Tabibian, S.; Shiravand, Y.; Shams, M.; Safa, M.; Gholami, M.S.; Heydari, F.; Ahmadi, A.; Rashidpanah, J.; Dorgalaleh, A. A Comprehensive Overview of Coagulation Factor V and Congenital Factor V Deficiency. Semin. Thromb. Hemost. 2019, 45, 523–543. [Google Scholar] [CrossRef]
- Tabibian, S.; Dorgalaleh, A.; Camire, R.M. Congenital Factor V Deficiency. In Congenital Bleeding Disorders; Dorgalaleh, A., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff (HGMD). Available online: http://www.hgmd.cf.ac.uk/ac/index.php (accessed on 24 February 2023).
- Cripe, L.D.; Moore, K.D.; Kane, W.H. Structure of the gene for human coagulation factor V. Biochemistry 1992, 31, 3777–3785. [Google Scholar] [CrossRef]
- Bos, M.H.A.; Camire, R.M. Blood coagulation factors V and VIII: Molecular Mechanisms of Procofactor Activation. J. Coagul. Disord. 2010, 2, 19–27. [Google Scholar]
- Wei, Y.; He, Y.; Guo, X. Clinical Phenotype and Genetic Analysis of Twins With Congenital Coagulation Factor V Deficiency. J. Pediatr. Hematol. Oncol. 2022, 44, e482–e486. [Google Scholar] [CrossRef]
- Naderi, M.; Tabibian, S.; Alizadeh, S.; Hosseini, S.; Zaker, F.; Bamedi, T.; Shamsizadeh, M.; Dorgalaleh, A. Congenital factor V deficiency: Comparison of the severity of clinical presentations among patients with rare bleeding disorders. Acta Haematol. 2015, 133, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Acharya, S.S. Management of rare coagulation disorders in 2018. Transfus. Apher. Sci. 2018, 57, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Nasr, S.; Shapiro, A.D. Therapeutic and technological advancements in haemophilia care: Quantum leaps forward. Haemophilia 2022, 28, 77–92. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Library of Medicine. A Trial Evaluating Efficacy and Safety of Prophylactic Administration of Concizumab in Patients With Severe Haemophilia A Without Inhibitors (explorer™5). ClinicalTrials.gov Identifier: NCT03196297. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03196297?term=Concizumab&draw=2&rank=5 (accessed on 24 February 2023).
- U.S. National Library of Medicine. A Study of Marstacimab to Compare Prefilled Pen (PFP) Device to Prefilled Syringe (PFS) Device. ClinicalTrials.gov Identifier: NCT04832139. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04832139?term=Marstacimab&draw=2&rank=1 (accessed on 24 February 2023).
- Rezaie, A.R.; Giri, H. Anticoagulant and signaling functions of antithrombin. J. Thromb. Haemost. 2020, 18, 3142–3153. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Library of Medicine. Long-term Safety and Efficacy Study of Fitusiran in Patients with Hemophilia A or B, with or without Inhibitory Antibodies to Factor VIII or IX (ATLAS-OLE). ClinicalTrials.gov Identifier: NCT03754790. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03754790?term=Fitusiran&draw=2&rank=3 (accessed on 24 February 2023).
- Polderdijk, S.G.I.; Huntington, J.A. Identification of serpins specific for activated protein C using a lysate-based screening assay. Sci. Rep. 2018, 8, 8793. [Google Scholar] [CrossRef] [Green Version]
- U.S. National Library of Medicine. The Safety and Tolerability of SerpinPC in Healthy Men and in Men with Severe Blood Disorders (Haemophilia A and B). ClinicalTrials.gov Identifier: NCT04073498. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04073498?term=SerpinPC&draw=2&rank=1 (accessed on 24 February 2023).
- Al Yaarubi, R.; Al Rawahi, B.; Al Lawati, H. Protein C deficiency presenting as an acute infero-posterior ST elevation myocardial infarction in a young man; A case report and focused literature review. Thromb. Res. 2020, 192, 109–112. [Google Scholar] [CrossRef]
- Gupta, A.; Tun, A.M.; Gupta, K.; Tuma, F. Protein S Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Trivedi, R.; Nagarajaram, H.A. Intrinsically Disordered Proteins: An Overview. Int. J. Mol. Sci. 2022, 23, 14050. [Google Scholar] [CrossRef]
- Zhou, H.X.; Pang, X.; Lu, C. Rate constants and mechanisms of intrinsically disordered proteins binding to structured targets. Phys. Chem. Chem. Phys. 2012, 14, 10466–10476. [Google Scholar] [CrossRef] [Green Version]
- Keragala, C.B.; Medcalf, R.L. Plasminogen: An enigmatic zymogen. Blood 2021, 137, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Huntington, J.A. Slow thrombin is zymogen-like. J. Thromb. Haemost. 2009, 7 (Suppl. 1), 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhagen, M.J.A.; van Heerde, W.L.; van der Bom, J.G.; Beckers, E.A.M.; Blijlevens, N.M.A.; Coppens, M.; Gouw, S.C.; Jansen, J.H.; Leebeek, F.W.G.; van Vulpen, L.F.D.; et al. In patients with hemophilia, a decreased thrombin generation profile is associated with a severe bleeding phenotype. Res. Pract. Thromb. Haemost. 2023, 7, 100062. [Google Scholar] [CrossRef] [PubMed]
- Nicolaes, G.A.F.; Dahlbäck, B. Factor V and thrombotic disease: Description of a janus-faced protein. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Shimonishi, N.; Ogiwara, K.; Yoshida, J.; Horie, K.; Nakajima, Y.; Furukawa, S.; Takeyama, M.; Nogami, K. Impaired factor V-related anticoagulant mechanisms and deep vein thrombosis associated with A2086D and W1920R mutations. Blood Adv. 2023, bloodadvances.2022008918. [Google Scholar] [CrossRef] [PubMed]
- Cramer, T.J.; Gale, A.J. The anticoagulant function of coagulation factor V. Thromb. Haemost. 2012, 107, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Santamaria, S.; Reglińska-Matveyev, N.; Gierula, M.; Camire, R.M.; Crawley, J.T.B.; Lane, D.A.; Ahnström, J. Factor V has an anticoagulant cofactor activity that targets the early phase of coagulation. J. Biol. Chem. 2017, 292, 9335–9344. [Google Scholar] [CrossRef] [Green Version]
- Dahlbäck, B. Blood coagulation. Lancet 2000, 355, 1627–1632. [Google Scholar] [CrossRef]
- Peyvandi, F.; Duga, S.; Akhavan, S.; Mannucci, P.M. Rare coagulation deficiencies. Haemophilia 2002, 8, 308–321. [Google Scholar] [CrossRef]
- Ruben, E.A.; Rau, M.J.; Fitzpatrick, J.; Di Cera, E. Cryo-EM structures of human coagulation factors V and Va. Blood 2021, 137, 3137–3144. [Google Scholar] [CrossRef]
- Stoilova-Mcphie, S.; Parmenter, C.D.J.; Segers, K.; Villoutreix, B.O.; Nicolaes, G.A.F. Defining the structure of membrane-bound human blood coagulation factor Va: Defining the structure of human blood coagulation factor Va. J. Thromb. Haemost. 2007, 6, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Velappan, N.; Close, D.; Hung, L.W.; Naranjo, L.; Hemez, C.; DeVore, N.; McCullough, D.K.; Lillo, A.M.; Waldo, G.S.; Bradbury, A.R.M. Construction, characterization and crystal structure of a fluorescent single-chain FV chimera. Protein Eng. Des. Sel. 2021, 34, gzaa029. [Google Scholar] [CrossRef]
- Adams, T.E.; Hockin, M.F.; Mann, K.G.; Everse, S.J. The crystal structure of activated protein C-inactivated bovine factor Va: Implications for cofactor function. Proc. Natl. Acad. Sci. USA 2004, 101, 8918–8923. [Google Scholar] [CrossRef] [Green Version]
- Bukys, M.A.; Blum, M.A.; Kim, P.Y.; Brufatto, N.; Nesheim, M.E.; Kalafatis, M. Incorporation of Factor Va into Prothrombinase Is Required for Coordinated Cleavage of Prothrombin by Factor Xa. J. Biol. Chem. 2005, 280, 27393–27401. [Google Scholar] [CrossRef] [Green Version]
- Autin, L.; Steen, M.; Dahlbäck, B.; Villoutreix, B.O. Proposed structural models of the prothrombinase (FXa-FVa) complex. Proteins 2006, 63, 440–450. [Google Scholar] [CrossRef]
- Hockin, M.F.; Cawthern, K.M.; Kalafatis, M.; Mann, K.G. A Model Describing the Inactivation of Factor Va by APC: Bond Cleavage, Fragment Dissociation, and Product Inhibition. Biochemistry 1999, 38, 6918–6934. [Google Scholar] [CrossRef] [PubMed]
- Sim, D.S.; Shukla, M.; Mallari, C.R.; Fernández, J.A.; Xu, X.; Schneider, D.; Bauzon, M.; Hermiston, T.W.; Mosnier, L.O. Selective Modulation of Activated Protein C Activities by a Non-Active Site Targeting Nanobody Library. Blood Adv. 2023, bloodadvances.2022008740. [Google Scholar] [CrossRef]
- Gruzdys, V.; Wang, L.; Wang, D.; Huang, R.; Sun, X.L. Investigation of cofactor activities of endothelial microparticle-thrombomodulin with liposomal surrogate. Biochem. Biophys. Res. Commun. 2023, 651, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Dahlbäck, B. Pro- and anticoagulant properties of factor V in pathogenesis of thrombosis and bleeding disorders. Int. J. Lab. Hemtol. 2016, 38 (Suppl. 1), 4–11. [Google Scholar] [CrossRef]
- Nogami, K.; Shinozawa, K.; Ogiwara, K.; Matsumoto, T.; Amano, K.; Fukutake, K.; Midori, S. Novel FV mutation (W1920R, FVNara) associated with serious deep vein thrombosis and more potent APC resistance relative to FVLeiden. Blood 2014, 123, 2420–2428. [Google Scholar] [CrossRef]
- van Doorn, P.; Rosing, J.; Duckers, C.; Hackeng, T.; Simioni, P.; Castoldi, E. Factor V Has Anticoagulant Activity in Plasma in the Presence of TFPIα: Difference between FV1 and FV2. Thromb. Haemost. 2018, 118, 1194–1202. [Google Scholar] [CrossRef] [Green Version]
- Dahlbäck, B. Natural anticoagulant discovery, the gift that keeps on giving: Finding FV-Short. J. Thromb. Haemost. 2023, S1538–S7836, 00095–00098. [Google Scholar] [CrossRef]
- Menegatti, M.; Peyvandi, F. Treatment of rare factor deficiencies other than hemophilia. Blood 2019, 133, 415–424. [Google Scholar] [CrossRef]
- Heger, A.; Svae, T.E.; Neisser-Svae, A.; Jordan, S.; Behizad, M.; Römisch, J. Biochemical quality of the pharmaceutically licensed plasma OctaplasLG® after implementation of a novel prion protein (PrP Sc) removal technology and reduction of the solvent/detergent (S/D) process time. Vox Sang. 2009, 97, 219–225. [Google Scholar] [CrossRef]
- von Drygalski, A.; Bhat, V.; Gale, A.J.; Burnier, L.; Cramer, T.J.; Griffin, J.H.; Mosnier, L.O. An engineered factor Va prevents bleeding induced by anticoagulant wt activated protein C. PLoS ONE 2014, 9, e104304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, A.J.; Bhat, V.; Pellequer, J.L.; Griffin, J.H.; Mosnier, L.O.; Von Drygalski, A. Safety, Stability and Pharmacokinetic Properties of (super)Factor Va, a Novel Engineered Coagulation Factor V for Treatment of Severe Bleeding. Pharm. Res. 2016, 33, 1517–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, B.C.; Miyazawa, B.Y.; Esmon, C.T.; Cohen, M.J.; von Drygalski, A.; Mosnier, L.O. An engineered activated factor V for the prevention and treatment of acute traumatic coagulopathy and bleeding in mice. Blood Adv. 2022, 6, 959–969. [Google Scholar] [CrossRef]
- Smith, C.I.E.; Bergman, P.; Hagey, D.W. Estimating the number of diseases—The concept of rare, ultra-rare, and hyper-rare. iScience 2022, 25, 104698. [Google Scholar] [CrossRef] [PubMed]
- Boulware, L.E.; Corbie, G.; Aguilar-Gaxiola, S.; Wilkins, C.H.; Ruiz, R.; Vitale, A.; Egede, L.E. Combating Structural Inequities—Diversity, Equity, and Inclusion in Clinical and Translational Research. N. Engl. J. Med. 2022, 386, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Knepper, T.C.; McLeod, H.L. When will clinical trials finally reflect diversity? Nature 2018, 557, 157–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inherited Hemophilia, A. The Portal for Rare Diseases and Orphan Drugs (Orphanet). Available online: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Expert=98878&lng=EN (accessed on 24 February 2023).
- Congenital Factor V Deficiency. The Portal for Rare Diseases and Orphan Drugs (Orphanet). Available online: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=326 (accessed on 24 February 2023).
- Douglas, C.M.W.; Aith, F.; Boon, W.; Borba, M.D.N.; Doganova, L.; Grunebaum, S.; Hagendijk, R.; Lynd, L.; Mallard, A.; Mohamed, F.A.; et al. Social pharmaceutical innovation and alternative forms of research, development and deployment for drugs for rare diseases. Orphanet J. Rare Dis. 2022, 17, 344. [Google Scholar] [CrossRef] [PubMed]
- Sakate, R.; Kimura, T. Drug repositioning trends in rare and intractable diseases. Drug. Discov. Today 2022, 27, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Luque, J.; Mendes, I.; Gómez, B.; Morte, B.; López de Heredia, M.; Herreras, E.; Corrochano, V.; Bueren, J.; Gallano, P.; Artuch, R.; et al. CIBERER: Spanish national network for research on rare diseases: A highly productive collaborative initiative. Clin. Genet. 2022, 101, 481–493. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Pablo-Moreno, J.A.; Miguel-Batuecas, A.; de Sancha, M.; Liras, A. The Magic of Proteases: From a Procoagulant and Anticoagulant Factor V to an Equitable Treatment of Its Inherited Deficiency. Int. J. Mol. Sci. 2023, 24, 6243. https://doi.org/10.3390/ijms24076243
De Pablo-Moreno JA, Miguel-Batuecas A, de Sancha M, Liras A. The Magic of Proteases: From a Procoagulant and Anticoagulant Factor V to an Equitable Treatment of Its Inherited Deficiency. International Journal of Molecular Sciences. 2023; 24(7):6243. https://doi.org/10.3390/ijms24076243
Chicago/Turabian StyleDe Pablo-Moreno, Juan A., Andrea Miguel-Batuecas, María de Sancha, and Antonio Liras. 2023. "The Magic of Proteases: From a Procoagulant and Anticoagulant Factor V to an Equitable Treatment of Its Inherited Deficiency" International Journal of Molecular Sciences 24, no. 7: 6243. https://doi.org/10.3390/ijms24076243
APA StyleDe Pablo-Moreno, J. A., Miguel-Batuecas, A., de Sancha, M., & Liras, A. (2023). The Magic of Proteases: From a Procoagulant and Anticoagulant Factor V to an Equitable Treatment of Its Inherited Deficiency. International Journal of Molecular Sciences, 24(7), 6243. https://doi.org/10.3390/ijms24076243