Peptidases: Role and Function in Health and Disease
Funding
Conflicts of Interest
References
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, 624. [Google Scholar] [CrossRef] [PubMed]
- Geiger, N.; Diesendorf, V.; Roll, V.; König, E.M.; Obernolte, H.; Sewald, K.; Breidenbach, J.; Pillaiyar, T.; Gütschow, M.; Müller, C.E.; et al. Cell type-specific anti-viral effects of novel SARS-CoV-2 Main protease inhibitors. Int. J. Mol. Sci. 2023, 24, 3972. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.F.R.; Goundry, A.; Morrot, A.; Grab, D.J.; Mottram, J.C.; Lima, A.P.C.A. Trypanosoma brucei rhodesiense inhibitor of cysteine peptidase (ICP) is required for virulence in mice and to attenuate the inflammatory response. Int. J. Mol. Sci. 2023, 24, 656. [Google Scholar] [CrossRef] [PubMed]
- Dvoryakova, E.A.; Vinokurov, K.S.; Tereshchenkova, V.F.; Dunaevsky, Y.E.; Belozersky, M.A.; Oppert, B.; Filippova, I.Y.; Elpidina, E.N. Primary digestive cathepsins L of Tribolium castaneum larvae: Proteomic identification, properties, comparison with human lysosomal cathepsin L. Insect Biochem. Mol. Biol. 2022, 140, 103679. [Google Scholar] [CrossRef] [PubMed]
- Dvoryakova, E.A.; Klimova, M.A.; Simonyan, T.R.; Dombrovsky, I.A.; Serebryakova, M.V.; Tereshchenkova, V.F.; Dunaevsky, Y.E.; Belozersky, M.A.; Filippova, I.Y.; Elpidina, E.N. Recombinant cathepsin L of Tribolium castaneum and its potential in the hydrolysis of immunogenic gliadin peptides. Int. J. Mol. Sci. 2023, 23, 7001. [Google Scholar] [CrossRef] [PubMed]
- Tereshchenkova, V.F.; Filippova, I.Y.; Goptar, I.A.; Dunaevsky, Y.E.; Belozersky, M.A.; Elpidina, E.N. Complex of proline-specific peptidases in the genome and gut transcriptomes of Tenebrionidae insects and their role in gliadin hydrolysis. Int. J. Mol. Sci. 2023, 24, 579. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, D.E.; Karlinsky, D.M.; Gordeeva, V.D.; Arapidi, G.P.; Britikova, E.V.; Britikov, V.V.; Nikolaeva, A.Y.; Boyko, K.M.; Timofeev, V.I.; Kuranova, I.P.; et al. Crystal structure of inhibitor-bound bacterial oligopeptidase B in the closed state: Similarity and difference between protozoan andbBacterial enzymes. Int. J. Mol. Sci. 2023, 24, 2286. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, X.; Wu, Y.; Chen, Z.; Han, Y.; Zhou, P.; Shi, J.; Zhao, Z. A study of type II ε-PL degrading enzyme (pldII) in Streptomyces albulus through the CRISPRi system. Int. J. Mol. Sci. 2022, 23, 6691. [Google Scholar] [CrossRef] [PubMed]
- Plawinski, L.; Cras, A.; Lopez, J.R.H.; de la Peña, A.; Van der Heyden, A.; Belle, C.; Toti, F.; Anglés-Cano, E. Distinguishing plasmin-generating microvesicles: Tiny messengers involved in fibrinolysis and proteolysis. Int. J. Mol. Sci. 2023, 24, 1571. [Google Scholar] [CrossRef] [PubMed]
- De Pablo-Moreno, J.A.; Miguel-Batuecas, A.; de Sancha, M.; Liras, A. The magic of proteases: From a procoagulant and anticoagulant factor V to an equitable treatment of its inherited deficiency. Int. J. Mol. Sci. 2023, 24, 6243. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.Y.; Stavik, B.; Thiede, B.; Morten Sandset, P.; Kanse, S.M. FSAP protects against histone-mediated increase in endothelial permeability in vitro. Int. J. Mol. Sci. 2022, 23, 13706. [Google Scholar] [CrossRef] [PubMed]
- Solberg, R.; Lunde, N.N.; Forbord, K.M.; Okla, M.; Kassem, M.; Jafari, A. The mammalian cysteine protease legumain in health and disease. Int. J. Mol. Sci. 2022, 23, 15983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zheng, H.; Xian, Y.; Song, H.; Wang, S.; Yun, Y.; Yi, L.; Zhang, G. Profiling substrate specificity of the SUMO protease Ulp1 by the YESS–PSSC system to advance the conserved mechanism for substrate cleavage. Int. J. Mol. Sci. 2023, 23, 12188. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kos, J. Peptidases: Role and Function in Health and Disease. Int. J. Mol. Sci. 2023, 24, 7823. https://doi.org/10.3390/ijms24097823
Kos J. Peptidases: Role and Function in Health and Disease. International Journal of Molecular Sciences. 2023; 24(9):7823. https://doi.org/10.3390/ijms24097823
Chicago/Turabian StyleKos, Janko. 2023. "Peptidases: Role and Function in Health and Disease" International Journal of Molecular Sciences 24, no. 9: 7823. https://doi.org/10.3390/ijms24097823
APA StyleKos, J. (2023). Peptidases: Role and Function in Health and Disease. International Journal of Molecular Sciences, 24(9), 7823. https://doi.org/10.3390/ijms24097823