Water-Soluble Polymer Polyethylene Glycol: Effect on the Bioluminescent Reaction of the Marine Coelenterate Obelia and Coelenteramide-Containing Fluorescent Protein
Abstract
:1. Introduction
2. Results and Discussion
2.1. PEG Effect on the Bioluminescence Reaction of Obelin
2.1.1. PEG Effect on the Bioluminescence Yield of Obelin
2.1.2. PEG Effect on the Spectra of Bioluminescence Reaction
2.2. PEG Effect on the Photoluminescence Spectra of the Coelenteramide-Containing Fluorescent Protein
2.2.1. PEG Effect on the Photoluminescence Intensity of the Coelenteramide-Containing Fluorescent Protein
2.2.2. PEG Effect on the Photoluminescence Spectra of the Coelenteramide-Containing Fluorescent Protein
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Experiment Methodology
3.4. Analysis of the Obelin Bioluminescence Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PEG | polyethylene glycol |
CCFP | coelenteramide-containing fluorescent protein |
EDTA | ethylenediaminetetraacetic acid |
Tris | tris(hydroxymethyl)aminomethane |
References
- Bezrukikh, A.; Esimbekova, E.; Kratasyuk, V. Thermoinactivation of Coupled Enzyme System of Luminous Bacteria NADH:FMN-Oxidoreductase-Luciferase in Gelatin. J. Sib. Fed. Univ. Biol. 2011, 4, 64–74. [Google Scholar]
- Esimbekova, E.N.; Kirillova, M.A.; Kratasyuk, V.A. Immobilization of Firefly Bioluminescent System: Development and Application of Reagents. Biosensors 2023, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Lonshakova-Mukina, V.I.; Esimbekova, E.N.; Kratasyuk, V.A. Thermal inactivation of butyrylcholinesterase in starch and gelatin gels. Catalysts 2021, 11, 492. [Google Scholar] [CrossRef]
- Wenande, E.; Garvey, L.H. Immediate-type hypersensitivity to polyethylene glycols. Clin. Exp. Allergy 2016, 46, 907–922. [Google Scholar] [CrossRef]
- Stone, C.A., Jr.; Liu, Y.; Relling, M.V.; Krantz, M.S.; Pratt, A.L.; Abreo, A.; Hemler, J.A.; Phillips, E.J. Immediate hypersensitivity to polyethylene glycols and polysorbates: More common than we have recognized. J. Allergy Clin. Immunol. Pract. 2019, 7, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Venâncio, C.; Lopes, I.; Oliveira, M. Nanoplastics and marine organisms: What has been studied? Environ. Toxicol. Pharmacol. 2019, 67, 1–7. [Google Scholar] [CrossRef]
- Molino, C.; Filippi, S.; Stoppiello, G.A.; Meschini, R.; Angeletti, D. In vitro evaluation of cytotoxic and genotoxic effects of Di (2-ethylhexyl)-phthalate (DEHP) on European sea bass (Dicentrarchus labrax) embryonic cell line. Toxicol. Vitr. 2019, 56, 118–125. [Google Scholar] [CrossRef]
- Liang, S.; Chen, Y.; Zhang, S.; Cao, Y.; Duan, J.; Wang, Y.; Sun, Z. RhB-encapsulating silica nanoparticles modified with PEG impact the vascular endothelial function in endothelial cells and the zebrafish model. Sci. Total Environ. 2020, 711, 134493. [Google Scholar] [CrossRef]
- Yustiningsih, M.; Poto, A.; Ledheng, L. Drought Stress Selection In Vitro White Corn Shoots (Zea mays L.) Using PEG. J. Pendidik. Biol. 2021, 6, 142–147. [Google Scholar] [CrossRef]
- Ionescu, L.; Gheorghe, S.; Mitru, D.; Stoica, C.; Banciu, A.; Mihalache, M.; Nita-Lazar, M. Evaluating the ecotoxicity of different pharmaceuticals using Aliivibrio fischeri bioassays. RJEEC 2020, 2, 47–53. [Google Scholar] [CrossRef]
- Girotti, S.; Ferri, E.N.; Fumo, M.G.; Maiolini, E. Monitoring of environmental pollutants by bioluminescent bacteria. Anal. Chim. Acta 2008, 608, 2–29. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Guardigli, M.; Michelini, E.; Mirasoli, M. Bioluminescence in analytical chemistry and in vivo imaging. Trends Analyt. Chem. 2009, 28, 307–322. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Rozhko, T.V. Effect of low-dose ionizing radiation on luminous marine bacteria: Radiation hormesis and toxicity. J. Environ. Radioact. 2015, 142, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Kratasyuk, V.A. Principle of luciferase biotesting. In Luminescence; World Scientific: Singapore, 1990; pp. 550–558. [Google Scholar]
- Leippe, M.; Nguyen, D.; Zhou, M.; Good, T.; Kirkland, T.A.; Scurria, M.; Bernad, L.; Ugo, T.; Vidugiriene, J.; Cali, J.J.; et al. A Bioluminescent Assay for the Sensitive Detection of Proteases. Biotechniques 2011, 51, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Kudryasheva, N.S.; Esimbekova, E.N.; Remmel, N.N.; Kratasyuk, V.A.; Visser, A.J.W.G.; van Hoek, A. Effect of Quinones and Phenols on the Triple-Enzyme Bioluminescent System with Protease. Luminescence 2003, 18, 224–228. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Kudinova, I.Y.; Esimbekova, E.N.; Kratasyuk, V.A.; Stom, D.I. The Influence of Quinones and Phenols on the Triple NAD(H)-Dependent Enzyme Systems. Chemosphere 1999, 38, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Esimbekova, E.; Kratasyuk, V.; Shimomura, O. Application of enzyme bioluminescence in ecology. In Bioluminescence: Fundamentals and Applications in Biotechnology—Volume 1; Springer: Berlin/Heidelberg, Germany, 2014; Volume 144, pp. 67–109. [Google Scholar] [CrossRef]
- Esimbekova, E.N.; Torgashina, I.G.; Kalyabina, V.P.; Kratasyuk, V.A. Enzymatic Biotesting: Scientific Basis and Application. Contemp. Probl. Ecol. 2021, 14, 290–304. [Google Scholar] [CrossRef]
- Alieva, R.R.; Kudryasheva, N.S. Variability of fluorescence spectra of coelenteramide-containing proteins as a basis for toxicity monitoring. Talanta 2017, 170, 425–431. [Google Scholar] [CrossRef]
- Petrova, A.S.; Lukonina, A.A.; Badun, G.A.; Kudryasheva, N.S. Fluorescent coelenteramide-containing protein as a color bioindicator for low-dose radiation effects. Anal. Bioanal. Chem. 2017, 409, 4377–4381. [Google Scholar] [CrossRef] [Green Version]
- Petrova, A.S.; Lukonina, A.A.; Dementyev, D.V.; Popov, A.V.; Kudryasheva, N.S. Protein-based fluorescent bioassay for low-dose gamma radiation exposures. Anal. Bioanal. Chem. 2018, 410, 6837–6844. [Google Scholar] [CrossRef] [PubMed]
- Alieva, R.R.; Belogurova, N.V.; Petrova, A.S.; Kudryasheva, N.S. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker. Anal. Bioanal. Chem. 2014, 406, 2965–2974. [Google Scholar] [CrossRef] [PubMed]
- Petrova, A.S.; Alieva, R.R.; Belogurova, N.V.; Tirranen, L.S.; Kudryasheva, N.S. Variation of spectral characteristics of coelenteramide-containing fluorescent protein from Obelia longissima exposed to Dimethyl sulfoxide. Russ. J. Math Phys. 2016, 59, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Alieva, R.R.; Belogurova, N.V.; Petrova, A.S.; Kudryasheva, N.S. Fluorescence properties of Ca2+-independent discharged obelin and its application prospects. Anal. Bioanal. Chem. 2013, 405, 3351–3358. [Google Scholar] [CrossRef]
- Chen, S.F.; Vysotski, E.S.; Liu, Y.J. H2O-Bridged Proton-Transfer Channel in Emitter Species Formation in Obelin Bioluminescence. J. Phys. Chem. 2021, 125, 10452–10458. [Google Scholar] [CrossRef]
- Natashin, P.V.; Eremeeva, E.V.; Shevtsov, M.B.; Kovaleva, M.I.; Bukhdruker, S.S.; Dmitrieva, D.A.; Gulnov, D.V.; Nemtseva, E.V.; Gordeliy, V.I.; Mishin, A.V.; et al. Crystal structure of semi-synthetic obelin-v after calcium induced bioluminescence implies coelenteramine as the main reaction product. Sci. Rep. 2022, 12, 19613. [Google Scholar] [CrossRef]
- Shimomura, O.; Johnson, F.H. Chemical nature of bioluminescence systems in coelenterates. Proc. Natl. Acad. Sci. USA 1975, 72, 1546–1549. [Google Scholar] [CrossRef] [Green Version]
- Levine, L.D.; Ward, W.W. Isolation and characterization of a photoprotein,“phialidin”, and a spectrally unique green-fluorescent protein from the bioluminescent jellyfish Phialidium gregarium. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1982, 72, 77–85. [Google Scholar] [CrossRef]
- Vysotski, E.S.; Bondar, V.S.; Letunov, V.N. Extraction and purification of obelin, the Ca2+-dependent photoprotein from the hydroid Obelia longissima. Biochemistry 1989, 54, 965–973. [Google Scholar]
- Shimomura, O.; Teranishi, K. Light-emitters involved in the luminescence of coelenterazine. Luminescence 2000, 15, 51–58. [Google Scholar] [CrossRef]
- Min, C.G.; Li, Z.S.; Ren, A.M.; Zou, L.Y.; Guo, J.F.; Goddard, J.D. The fluorescent properties of coelenteramide, a substrate of aequorin and obelin. J. Photochem. Photobiol. A Chem. 2013, 251, 182–188. [Google Scholar] [CrossRef]
- Chen, S.F.; Ferré, N.; Liu, Y.J. QM/MM study on the light emitters of aequorin chemiluminescence, bioluminescence, and fluorescence: A general understanding of the bioluminescence of several marine organisms. Chembiochem 2013, 19, 8466–8472. [Google Scholar] [CrossRef]
- Chen, S.F.; Navizet, I.; Roca-Sanjuan, D.; Lindh, R.; Liu, Y.J.; Ferre, N. Chemiluminescence of coelenterazine and fluorescence of coelenteramide: A systematic theoretical study. J. Chem. Theory Comput. 2012, 8, 2796–2807. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.S.; Zou, L.Y.; Min, C.G.; Ren, A.M. The effect of micro-environment on luminescence of aequorin: The role of amino acids and explicit water molecules on spectroscopic properties of coelenteramide. J. Photochem. Photobiol. B Biol. 2013, 127, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.S.; Zhao, X.; Zou, L.Y.; Ren, A.M. The dynamics simulation and quantum calculation investigation about the luminescence mechanism of coelenteramide. Photochem. Photobiol. 2013, 89, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Tomilin, F.N.; Antipina, L.Y.; Vysotski, E.S.; Ovchinnikov, S.G.; Gitelzon, I.I. Fluorescence of calcium-discharged obelin: The structure and molecular mechanism of emitter formation. Dokl. Biochem. Biophys. 2008, 422, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Alieva, R.R.; Tomilin, F.N.; Kuzubov, A.A.; Ovchinnikov, S.G.; Kudryasheva, N.S. Ultraviolet fluorescence of coelenteramide and coelenteramide-containing fluorescent proteins. Experimental and theoretical study. J. Photochem. Photobiol. B Biol. 2016, 162, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Belogurova, N.V.; Kudryasheva, N.S.; Alieva, R.R.; Sizykh, A.G. Spectral components of bioluminescence of aequorin and obelin. J. Photochem. Photobiol. B Biol. 2008, 92, 117–122. [Google Scholar] [CrossRef]
- Illarionov, B.A.; Frank, L.A.; Illarionova, V.A.; Bondar, V.S.; Vysotski, E.S.; Blinks, J.R. Recombinant obelin: Cloning and expression of cDNA, purification, and characterization as a calcium indicator. Methods Enzymol. 2000, 305, 223–249. [Google Scholar] [CrossRef]
- Markova, S.V.; Vysotski, E.S.; Blinks, J.R.; Burakova, L.P.; Wang, B.C.; Lee, J. Obelin from the bioluminescent marine hydroid Obelia geniculata: Cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemistry 2002, 41, 2227–2236. [Google Scholar] [CrossRef]
- Bailey, F.E.; Koleske, J.V. Alkylene Oxides and Their Polymers; CRC Press: Boca Raton, FL, USA, 2020; p. 272. [Google Scholar] [CrossRef]
- Gosstandart Oxygen-Containing Organics. Available online: http://himiya.gosstandart.info/kislorodosoderzhashchaya-organika/prostye-efiry/polietilenglikol/ (accessed on 20 October 2022).
- Agilent. Available online: https://www.agilent.com/en/product/molecular-spectroscopy/fluorescence-spectroscopy/fluorescence-systems/cary-eclipse-fluorescence-spectrophotometer#specifications (accessed on 30 October 2022).
- Lakowicz, J.R. (Ed.) Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006; pp. 50–53. [Google Scholar]
- Yacimirski, K.B.; Mal’kova, T.V. Khimiya. In Spectroscopic Methods in Chemistry of Complex; Nauka: Moscow, Russia, 1984; p. 183. [Google Scholar]
- Mikhailenko, V.I.; Redkin, Y.R. Resolution of overlapped asymmetric bands. Zh. Prikl. Spectrosk. 1979, 31, 919–921. [Google Scholar]
PEG 1000 | PEG 8000 | PEG 35000 | |
---|---|---|---|
Formula | (C2H4O)nH2O [42] | ||
pH 1% solution | 5.0–7.0 | ||
Molecular weight | 900–1100 | 7200–8200 | 35,000–40,000 |
Solubility | Soluble in organic solvents. Solubility decreases with increasing the molecular weight of the polymer [43]. | ||
Reactivity | Mostly inert, can form complex compounds with salts of alkaline/earth metals [43]. | ||
Toxicity | Non-toxic [4]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siniakova, T.S.; Raikov, A.V.; Kudryasheva, N.S. Water-Soluble Polymer Polyethylene Glycol: Effect on the Bioluminescent Reaction of the Marine Coelenterate Obelia and Coelenteramide-Containing Fluorescent Protein. Int. J. Mol. Sci. 2023, 24, 6345. https://doi.org/10.3390/ijms24076345
Siniakova TS, Raikov AV, Kudryasheva NS. Water-Soluble Polymer Polyethylene Glycol: Effect on the Bioluminescent Reaction of the Marine Coelenterate Obelia and Coelenteramide-Containing Fluorescent Protein. International Journal of Molecular Sciences. 2023; 24(7):6345. https://doi.org/10.3390/ijms24076345
Chicago/Turabian StyleSiniakova, Tatiana S., Alexander V. Raikov, and Nadezhda S. Kudryasheva. 2023. "Water-Soluble Polymer Polyethylene Glycol: Effect on the Bioluminescent Reaction of the Marine Coelenterate Obelia and Coelenteramide-Containing Fluorescent Protein" International Journal of Molecular Sciences 24, no. 7: 6345. https://doi.org/10.3390/ijms24076345
APA StyleSiniakova, T. S., Raikov, A. V., & Kudryasheva, N. S. (2023). Water-Soluble Polymer Polyethylene Glycol: Effect on the Bioluminescent Reaction of the Marine Coelenterate Obelia and Coelenteramide-Containing Fluorescent Protein. International Journal of Molecular Sciences, 24(7), 6345. https://doi.org/10.3390/ijms24076345