Effect of the Nanorough Surface of TiO2 Thin Films on the Compatibility with Endothelial Cells
Abstract
:1. Introduction
2. Results
2.1. Sample Surface Roughness and Topography
2.2. Results of the Cytocompatibility Tests
2.2.1. Indirect Cytotoxicity
2.2.2. Adhesion of Endothelial Cells on Abraded and Polished TiO2 and TiOxNy Samples
2.2.3. Proliferation of Endothelial Cells on Abraded and Polished TiO2 and TiOxNy Samples
2.2.4. Viability of Endothelial Cells TiO2 and TiOxNy Samples
2.2.5. NO Production of Endothelial Cells on Abraded and Polished TiO2 and TiOxNy Samples
2.3. Cytocompatibility by DTA Results
- -
- Optimal cytocompatibility has a surface with no red leaf, and at least 2 green leaves;
- -
- A surface was considered acceptable with its 3 green or yellow leaves;
- -
- The cytocompatibility was classified uncertain when 2 leaves are red;
- -
- The surface was determined unacceptable when 3 leaves are red.
3. Discussion
4. Materials and Methods
4.1. Sample Preprocessing
4.1.1. Abrading
4.1.2. Polishing
4.2. Atomic Force Microscopy (AFM)
4.3. Scanning Electron Microscopy (SEM)
4.4. Cytocompatibility Evaluation
4.4.1. Materials
4.4.2. Indirect Cytotoxicity Evaluation
4.4.3. Evaluation of Cell Adhesion
4.4.4. Cell Proliferation
4.4.5. Cell Viability Assay
4.4.6. NO Production Assay
4.5. Statistical Analysis
5. Conclusions
- The degree of smoothing of the substrate surface during pretreatment affects the relief of magnetron-sputtered TiO2 and TiOxNy thin films, and this is expressed not only in a decrease in the height of nanopillars and RMSRs, but also in a change in the shape and density of nanopillars.
- Optimal compatibility with endothelial cells is ensured by the surface of N-TiO2 film sputtered on the abraded surface at N2:O2 = 1:1 and Ub = 0 V. This surface has a uniform density (~ 0.5 per 1 µm2) of nanopillars. The height of the peaks is from 618 nm to 1400 nm, with a mean summit curvature of 0.63.
- The most unfavorable characteristics for cell/surface interface are high Sku with low Sds and Ssc.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Higgins, S.G.; Becce, M.; Belessiotis-Richards, A.; Seong, H.; Sero, J.E.; Stevens, M.M. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. Adv. Mater. 2020, 32, 1903862. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Chung, H.; Kwon, P.; Akkouch, A. Effects of Different Titanium Surfaces Created by 3D Printing Methods, Particle Sizes, and Acid Etching on Protein Adsorption and Cell Adhesion, Proliferation, and Differentiation. Bioengineering 2022, 9, 514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Fang, J.; Li, X.; Wang, J.; Chen, M.; Chen, H.-J.; Head, G.; Xie, X. Cellular nanointerface of vertical nanostructure arrays and its applications. Nanoscale Adv. 2022, 4, 1844–1867. [Google Scholar] [CrossRef] [PubMed]
- Nouri-Goushki, M.; Angeloni, L.; Modaresifar, K.; Minneboo, M.; Boukany, P.E.; Mirzaali, M.J.; Ghatkesar, M.K.; Fratila-Apachitei, L.E.; Zadpoor, A.A. 3D-Printed Submicron Patterns Reveal the Interrelation between Cell Adhesion, Cell Mechanics, and Osteogenesis. ACS Appl. Mater. Interfaces 2021, 13, 33767–33781. [Google Scholar] [CrossRef]
- Gentile, F. Cell aggregation on nanorough surfaces. J. Biomech. 2021, 115, 110134. [Google Scholar] [CrossRef]
- Kladko, D.V.; Falchevskaya, A.S.; Serov, N.S.; Prilepskii, A.Y. Nanomaterial Shape Influence on Cell Behavior. Int. J. Mol. Sci. 2021, 22, 5266. [Google Scholar] [CrossRef]
- Nazarov, D.; Ezhov, I.; Yudintceva, N.; Shevtsov, M.; Rudakova, A.; Kalganov, V.; Tolmachev, V.; Zharova, Y.; Lutakov, O.; Kraeva, L.; et al. Antibacterial and Osteogenic Properties of Ag Nanoparticles and Ag/TiO2 Nanostructures Prepared by Atomic Layer Deposition. J. Funct. Biomater. 2022, 13, 62. [Google Scholar] [CrossRef]
- Reynolds, P.M.; Pedersen, R.H.; Stormonth-Darling, J.; Dalby, M.J.; Riehle, M.O.; Gadegaard, N. Label-Free Segmentation of Co-cultured Cells on a Nanotopographical Gradient. Nano Lett. 2013, 13, 570–576. [Google Scholar] [CrossRef]
- Hotchkiss, K.M.; Reddy, G.B.; Hyzy, S.L.; Schwartz, Z.; Boyan, B.D.; Olivares-Navarrete, R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016, 31, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Ehrenfest, D.M.D.; Coelho, P.G.; Kang, B.-S.; Sul, Y.-T.; Albrektsson, T. Classification of osseointegrated implant surfaces: Materials, chemistry and topography. Trends Biotechnol. 2010, 28, 198–206. [Google Scholar] [CrossRef]
- Barthes, J.; Ciftci, S.; Ponzio, F.; Knopf-Marques, H.; Pelyhe, L.; Gudima, A.; Kientzl, I.; Bognár, E.; Weszl, M.; Kzhyshkowska, J.; et al. Review: The potential impact of surface crystalline states of titanium for biomedical applications. Crit. Rev. Biotechnol. 2018, 38, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Tonino, P.A.L.; Pijls, N.H.J.; Collet, C.; Namma, W.; Van der Heyden, J.; Romppanen, H.; Kervinen, K.; Airaksinen, J.K.E.; Sia, J.; Lalmand, J.; et al. TIDES-ACS Study Group, Titanium- Nitride-Oxide-Coated Versus Everolimus-Eluting Stents in Acute Coronary Syndrome: The Randomized TIDES-ACS Trial. JACC Cardiovasc. Interv. 2020, 13, 1697–1705. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Khlusov, I.A.; Evdokimov, K.E.; Konishchev, M.E.; Kuzmin, O.S.; Khaziakhmatova, O.G.; Malashchenko, V.V.; Litvinova, L.S.; Rutkowski, S.; Frueh, J.; et al. Nitrogen-doped titanium dioxide films fabricated via magnetron sputtering for vascular stent biocompatibility improvement. J. Colloid Interface Sci. 2022, 626, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chang, R.; Webster, T.J. Atomic Layer Deposition Coating of TiO2 Nano-Thin Films on Magnesium-Zinc Alloys to Enhance Cytocompatibility for Bioresorbable Vascular Stents. Int. J. Nanomed. 2019, 14, 9955–9970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surovtseva, M.A.; Poveschenko, O.V.; Kuzmin, O.S.; Kim, I.I.; Kozhukhov, A.S.; Bondarenko, N.A.; Chepeleva, E.V.; Kolodin, A.N.; Lykov, A.P.; Shcheglov, D.V.; et al. Titanium oxide– and oxynitride–coated nitinol: Effects of surface structure and composition on interactions with endothelial cells. Appl. Surf. Sci. 2022, 578, 152059. [Google Scholar] [CrossRef]
- Zhuravleva, I.Y.; Surovtseva, M.A.; Alshevskaya, A.A.; Surovtsev, N.V.; Okotrub, K.A.; Kim, I.I.; Nasimov, D.A.; Bondarenko, N.A.; Kuzmin, O.S.; Poveshchenko, O.V. Integral Algorithms to Evaluate TiO2 and N-TiO2 Thin Films’ Cytocompatibility. Int. J. Mol. Sci. 2022, 23, 15183. [Google Scholar] [CrossRef]
- Liu, X.; Sui, B.; Sun, J. Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood-brain barrier. J. Mater. Chem. B 2017, 5, 9558–9570. [Google Scholar] [CrossRef]
- Wu, J.; Sun, J.; Xue, Y. Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol. Lett. 2010, 199, 269–276. [Google Scholar] [CrossRef]
- Kuzmin, O.S.; Plekhanov, D.A.; Yakovlev, M.V. Vacuum Ion-Plasma Plant for Applying Coatings on Surface of Metal Intravascular Stents, Mainly from Titanium Oxynitride. Patent RU 2705839 C1, 10 April 2016. Available online: https://patents.google.com/patent/RU2580621C1/en (accessed on 31 January 2023).
- Surface Texture Parameters Glossary. Michigan Metrology, LLC. Available online: https://michmet.com/surface-texture-parameters-glossary (accessed on 31 January 2023).
- ISO 10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. 3rd ed. International Organization for Standardization: Geneva, Switzerland, 2009.
- Pustovalova, A.; Boytsova, E.; Aubakirov, D.; Bruns, M.; Tverdokhlebov, S.; Pichugin, V. Formation and structural features of nitrogen-doped titanium dioxide thin films grown by reactive magnetron sputtering. Appl. Surf. Sci. 2020, 534, 147572. [Google Scholar] [CrossRef]
- Beshchasna, N.; Saqib, M.; Kraskiewicz, H.; Wasyluk, L.; Kuzmin, O.; Duta, O.C.; Ficai, D.; Ghizdavet, Z.; Marin, A.; Ficai, A.; et al. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics 2020, 12, 349. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Yan, C.; Peng, R.; Zhao, Y.; He, Y.; Ding, J. Control of cell nucleus shapes via micropillar patterns. Biomaterials 2012, 33, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, Y.; Cui, B. New perspectives on the roles of nanoscale surface topography in modulating intracellular signaling. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100873. [Google Scholar] [CrossRef] [PubMed]
Group No. | Partial Gas Pressure, Pa, N2/O2 | Negative Bias Voltage | Films | N2/O2 Ratio | |
---|---|---|---|---|---|
Abraded | Polished | ||||
1 | 9 | 0/0.130 | U = −100 V | TiO2 | - |
2 | 10 | 0/0.130 | U = 0 | TiO2 | - |
3 | 11 | 0.065/0.065 | U = −100 V | Ti-O-N | 1/1 |
4 | 12 | 0.065/0.065 | U = 0 | Ti-O-N | 1/1 |
5 | 13 | 0.087/0.046 | U = −100 V | Ti-O-N | 2/1 |
6 | 14 | 0.087/0.046 | U = 0 | Ti-O-N | 2/1 |
7 | 15 | 0.102/0.033 | U = −100 V | Ti-O-N | 3/1 |
8 | 16 | 0.102/0.033 | U = 0 | Ti-O-N | 3/1 |
C1 (NiTi) | C2 (NiTi) | - | - | - | - |
No. | Sq, nm | Sp, nm | Sz, nm |
---|---|---|---|
C1 | 65.28 (47.40; 74.18) | 290.53 (184.33; 430.70) | 795.94 (418.07; 977.06) |
C2 | 41.95 (39.79; 45.61) | 216.92 (199.26; 292.09) | 391.49 (347.36; 521.28) |
1 | 83.00 (53.39; 95.81) | 301.12 (261.76; 387.79) | 676.24 (415.84; 708.05) |
2 | 81.55 (68.78; 91.11) | 400.34 (302.28; 572.13) | 758.53 (567.05; 1079.99) |
3 | 104.56 (99.38; 119.01) | 357.15 (327.13; 401.46) | 969.62 (778.01; 1087.29) |
4 | 127.42 (110.28; 147.00) | 711.69 (618.62; 1399.00) | 1473.64 (1150.95; 2203.00) |
5 | 111.59 (95.90; 140.80) | 588.99 (479.60; 799.83) | 1330.24 (1125.72; 1352.33) |
6 | 97.73 (90.55; 101.67) | 360.63 (338.30; 445.78) | 858.68 (785.93; 1047.61) |
7 | 69.60 (58.42; 72.73) | 348.65 (324.20; 369.25) | 749.23 (675.25; 884.06) |
8 | 70.66 (67.36; 83.21) | 360.95 (344.48; 392.69) | 796.64 (653.91; 1125.42) |
9 | 59.35 (54.32; 64.96) | 226.25 (218.58; 239.61) | 421.50 (396.91; 446.40) |
10 | 61.73 (60.68; 71.66) | 300.27 (226.83; 355.49) | 525.52 (417.04; 600.62) |
11 | 62.46 (59.81; 64.97) | 284.18 (273.18; 292.35) | 506.40 (444.63; 509.07) |
12 | 51.84 (48.18; 58.48) | 277.71 (196.31; 465.75) | 504.69 (362.60; 686.68) |
13 | 66.55 (66.17; 71.30) | 339.89 (233.93; 359.63) | 613.92 (421.85; 637.11) |
14 | 65.81 (62.44; 83.06) | 300.02 (259.29; 313.50) | 836.09 (810.07; 1072.13) |
15 | 62.44 (59.92; 68.92) | 313.50 (286.37; 319.30) | 515.08 (487.47; 810.07) |
16 | 55.82 (55.20; 62.83) | 263.64 (263.64; 296.20) | 730.73 (623.55; 730.73) |
No. | Sku, Kurtosis of Height Distribution | Ssc, Mean Summit Curvature, 1/μm | Sds, Density of Summits of the Surface, 1/μm2 |
---|---|---|---|
C1 | 8.01 (3.51; 11.10) | 0.15 (0.14; 0.26) | 0.48 (0.38; 0.60) |
C2 | 3.68 (2.81; 4.06) | 0.11 (0.11; 0.12) | 0.29 (0.26; 0.30) |
1 | 2.93 (2.53; 3.42) | 0.15 (0.10; 0.17) | 0.16 (0.11; 0.16) |
2 | 4.34 (2.94; 5.01) | 0.45 (0.36; 0.47) | 0.58 (0.55; 0.71) |
3 | 3.57 (2.93; 4.05) | 0.45 (0.08; 0.66) | 0.55 (0.10; 0.66) |
4 | 4.44 (3.85; 5.00) | 0.63 (0.61; 0.67) | 0.49 (0.47; 0.53) |
5 | 3.90 (3.30; 4.43) | 0.49 (0.46; 0.52) | 0.52 (0.50; 0.55) |
6 | 3.72 (3.14; 3.78) | 0.30 (0.12; 0.31) | 0.17 (0.12; 0.37) |
7 | 3.83 (3.70; 4.03) | 0.37 (0.32; 0.37) | 0.38 (0.36; 0.42) |
8 | 5.04 (4.58; 5.80) | 0.35 (0.23; 0.43) | 0.36 (0.27; 0.51) |
9 | 3.19 (2.94; 3.49) | 0.22 (0.11; 0.29) | 0.38 (0.23; 0.51) |
10 | 4.16 (3.45; 5.22) | 0.04 (0.04; 0.05) | 0.08 (0.06; 0.10) |
11 | 3.35 (2.97; 3.83) | 0.23 (0.17; 0.32) | 0.25 (0.18; 0.27) |
12 | 3.44 (2.80; 3.74) | 0.16 (0.11; 0.29) | 0.43 (0.27; 0.52) |
13 | 3.45 (2.95; 3.90) | 0.40 (0.28; 0.41) | 0.39 (0.31; 0.42) |
14 | 6.22 (5.29; 6.39) | 0.56 (0.54; 0.57) | 0.74 (0.70; 0.75) |
15 | 3.22 (3.21; 4.32) | 0.57 (0.28; 0.58) | 0.39 (0.21; 0.72) |
16 | 4.42 (3.52; 4.42) | 0.54 (0.54; 0.54) | 0.93 (0.80; 0.94) |
Abraded Samples | Polished Samples | ||||
---|---|---|---|---|---|
No. | 24 h | 72 h | No. | 24 h | 72 h |
1 | 82.19 ± 7.52 *# | 86.92 ± 12.71 # | 9 | 110.10 ± 6.24 | 93.52 ± 6.16 |
2 | 112.85 ± 6.78 *# | 103.34 ± 16.72 | 10 | 100.49 ± 2.01 # | 100.57 ± 1.09 |
3 | 95.71 ± 6.60 * | 89.56 ± 9.97 # | 11 | 107.19 ± 1.60 | 103.82 ± 6.13 |
4 | 106.78 ± 8.73 | 93.19 ± 10.60 # | 12 | 112.43 ± 6.87 | 102.10 ± 7.94 |
5 | 100.55 ± 15.07 | 89.76 ± 11.03 *# | 13 | 105.33 ± 4.60 | 109.23 ± 3.37 # |
6 | 98.35 ± 5.38 | 110.97 ± 12.41 * | 14 | 101.19 ± 5.86 | 85.18 ± 3.39 # |
7 | 100.83 ± 7.40 | 122.66 ± 7.44 * | 15 | 104.86 ± 5.67 | 99.33 ± 0.78 |
8 | 94.81 ± 6.55 * | 109.20 ± 15.22 | 16 | 107.02 ± 6.41 | 104.11 ± 1.22 # |
NiTi (C1) | 101.15 ± 8.05 * | 125.70 ± 26.75 | NiTi (C2) | 115.05 ± 12.18 | 99.33 ± 3.25 |
Abraded Samples | Polished Samples | ||||
---|---|---|---|---|---|
No. | 3 days | 6 days | No. | 3 days | 6 days |
1 | 456.82 ± 68.63 *# | 441.97 ± 77.63 * | 9 | 714.02 ± 128.71 | 1441.04 ± 594.89 # |
2 | 606.13 ± 53.75 | 967.97 ± 248.94 # | 10 | 727.02 ± 166.23 | 889.14 ± 208.54 # |
3 | 705.85 ± 35.76 # | 622.28 ± 277.54 | 11 | 621.63 ± 14.55 # | 847.35 ± 65.66 # |
4 | 630.45 ± 106.97 * | 1270.89 ± 364.02 # | 12 | 202.55 ± 65.77 | 1393.87 ± 373.21 # |
5 | 768.80 ± 123.36 # | 645.68 ± 145.51 *# | 13 | 1046.43 ± 217.34 | 1653.48 ± 484.69 # |
6 | 38.07 ± 14.28 *# | 509.19 ± 120.93 # | 14 | 691.36 ± 123.53 | 747.91 ± 182.55 # |
7 | 1075.21 ± 152.47 # | 1192.76 ± 142.20 # | 15 | 888.12 ± 279.09 | 876.04 ± 275.26 # |
8 | 645.13 ± 178.55 | 950.97 ± 189.85 # | 16 | 831.75 ± 218.04 | 854.22 ± 191.81 # |
NiTi (C1) | 542.25 ± 121.62 | 390.67 ± 72.69 * | NiTi (C2) | 777.56 ± 193.56 | 81.85 ± 45.93 |
No. | Abraded Samples | No. | Polished Samples |
---|---|---|---|
1 | 0.96 ± 0.22 * | 9 | 2.31 ± 1.10 # |
2 | 1.57 ± 0.48 # | 10 | 1.29 ± 0.45 # |
3 | 0.90 ± 0.43 * | 11 | 1.51 ± 0.23 # |
4 | 1.95 ± 0.50 *# | 12 | 6.27 ± 2.00 # |
5 | 0.87 ± 0.1 * | 13 | 2.56 ± 2.25 # |
6 | 17.40 ± 11.60 *# | 14 | 1.05 ± 0.31 # |
7 | 1.14 ± 0.26 # | 15 | 1.08 ± 0.66 # |
8 | 1.60 ± 0.62 *# | 16 | 1.05 ± 0.23 # |
NiTi (C1) | 0.62 ± 0.15 | NiTi (C2) | 0.12 ± 0.05 # |
EA.hy926 | 3.86 ± 0.104 | EA.hy926 | 3.86 ± 0.108 |
Abraded Samples | Polished Samples | ||||
---|---|---|---|---|---|
No. | 3 days | 6 days | No. | 3 days | 6 days |
1 | 83.99 ± 17.98 * | 87.36 ± 7.54 *# | 9 | 16.92 ± 16.87 # | 64.12 ± 17.60 # |
2 | 40.20 ± 15.11 *# | 75.81 ± 9.20 | 10 | 78.52 ± 8.02 | 69.74 ± 15.29 |
3 | 34.32 ± 10.40 *# | 82.97 ± 5.82 # | 11 | 82.23 ± 9.35 # | 87.27 ± 5.10 |
4 | 25.29 ± 7.16 *# | 88.74 ± 3.28 *# | 12 | 99.80 ± 0,09 # | 70.42 ± 17.32 |
5 | 51.73 ± 10.93 *# | 94.35 ± 2.27 *# | 13 | 8.12 ± 18.13 # | 67.73 ± 15.46 |
6 | 7.93 ± 2.15 # | 87.46 ± 2.73 *# | 14 | 0.59 ± 0.91 # | 5.21 ± 7.08 # |
7 | 28.17 ± 6.53 *# | 84.05 ± 4.89 *# | 15 | 44.87 ± 12.07 # | 60.06 ± 20.07 # |
8 | 11.40 ± 5.54 *# | 83.05 ± 6.25 *# | 16 | 81.63 ± 12.82 | 71.60 ± 9.64 |
NiTi (C1) | 77.88 ± 11.06 * | 58.22 ± 18.94 * | NiTi (C2) | 65.80 ± 12.45 | 83.92 ± 14.21 |
No. | Abraded Samples | No. | Polished Samples |
---|---|---|---|
1 | 14.55 ± 3.13 | 9 | 13.43 ± 2.58 |
2 | 13.51 ± 2.55 | 10 | 15.01 ± 4.05 |
3 | 17.68 ± 0.48 | 11 | 18.25 ± 1.66 |
4 | 22.05 ± 5.36 | 12 | 28.97 ± 8.36 # |
5 | 9.76 ± 3.19 # | 13 | 8.15 ± 1.22 # |
6 | 12.47 ± 2.44 # | 14 | 11.32 ± 3.52 # |
7 | 56.22 ± 31.38 # | 15 | 49.17 ± 15.19 # |
8 | 52.16 ± 13.70 # | 16 | 48.54 ± 18.48 # |
NiTi | 16.06 ± 2.43 | NiTi | 15.13 ± 5.11 |
EA.hy926 | 17.23 ± 3.34 | EA.hy926 | 17.23 ± 3.34 |
Criterion | Parameter | ||
---|---|---|---|
Unacceptable Level | Moderate Level | Optimal Level | |
Cell adhesion, % (100% is adhesion on bare NiTi surface on the third day) | <100% of bare NiTi control level low adhesion | 100–120% of bare NiTi control level moderate adhesion | >120% of bare NiTi control level high adhesion |
Proliferation index | <1.5 low proliferation | - | >1.5 high proliferation |
Cell viability, % (relative content of living cells on the sixth day) | <85% non-cytocompatible surface | - | ≥85% cytocompatible surface |
NO production, μM/mL (16 μM/mL—NO production level on the C1 surface) | <16 μM/mL low functional activity | - | >16 mM/mL high functional activity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuravleva, I.Y.; Surovtseva, M.A.; Vaver, A.A.; Suprun, E.A.; Kim, I.I.; Bondarenko, N.A.; Kuzmin, O.S.; Mayorov, A.P.; Poveshchenko, O.V. Effect of the Nanorough Surface of TiO2 Thin Films on the Compatibility with Endothelial Cells. Int. J. Mol. Sci. 2023, 24, 6699. https://doi.org/10.3390/ijms24076699
Zhuravleva IY, Surovtseva MA, Vaver AA, Suprun EA, Kim II, Bondarenko NA, Kuzmin OS, Mayorov AP, Poveshchenko OV. Effect of the Nanorough Surface of TiO2 Thin Films on the Compatibility with Endothelial Cells. International Journal of Molecular Sciences. 2023; 24(7):6699. https://doi.org/10.3390/ijms24076699
Chicago/Turabian StyleZhuravleva, Irina Yu., Maria A. Surovtseva, Andrey A. Vaver, Evgeny A. Suprun, Irina I. Kim, Natalia A. Bondarenko, Oleg S. Kuzmin, Alexander P. Mayorov, and Olga V. Poveshchenko. 2023. "Effect of the Nanorough Surface of TiO2 Thin Films on the Compatibility with Endothelial Cells" International Journal of Molecular Sciences 24, no. 7: 6699. https://doi.org/10.3390/ijms24076699
APA StyleZhuravleva, I. Y., Surovtseva, M. A., Vaver, A. A., Suprun, E. A., Kim, I. I., Bondarenko, N. A., Kuzmin, O. S., Mayorov, A. P., & Poveshchenko, O. V. (2023). Effect of the Nanorough Surface of TiO2 Thin Films on the Compatibility with Endothelial Cells. International Journal of Molecular Sciences, 24(7), 6699. https://doi.org/10.3390/ijms24076699