Calcification of Various Bioprosthetic Materials in Rats: Is It Really Different?
Abstract
:1. Introduction
2. Results
2.1. Fresh and Preserved Tissue Structure
2.2. Calcification Dynamics in Different Biomaterials
2.3. SEM and EDS Analysis Results
2.4. Micro- and Nano-Characterization of the Bioprosthetic Materials Mineralization
2.5. Composition of Mineralized Deposits
2.6. Potential Promoters of Calcification
2.6.1. ALP Localization in Implants and Connective Tissue Capsules
2.6.2. Calcium-Binding Protein Fibrillin in Elastin Fibers of Aortic and Venous Walls
2.6.3. Ca and P Content in Rat Subcutaneous Facial Tissue
3. Discussion
(1) | |
(2) |
4. Materials and Methods
4.1. Biomaterial Treatment
4.2. Subcutaneous Implantation of Biomaterials in Rats
4.3. Calcification Analysis
4.4. Histological, Histochemical, and Immunohistochemical Studies
4.5. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDS) Analysis
4.5.1. Explanted Samples Studies
4.5.2. Rat Fascial Tissue Study
4.6. Fourier-Transform Infrared (FTIR) Spectroscopy
4.7. Statistical Analysis
5. Conclusions
- (1)
- Calcium phosphate nucleation sites are positively charged pyridinium rings present in the desmosine bonds of elastin fibers, regardless of the preservation method. In collagen, pyridinium rings are formed only after treatment with GA.
- (2)
- Pyridinium rings actively bind inorganic phosphate from the recipient’s blood, while the “pyridinium/phosphate” complex acquires a negative charge and the ability to bind cations in the blood, including calcium cations. After the formation of the nucleus, the process of self-assembly or self-organization begins.
- (3)
- Since inorganic phosphate ions (H2PO4−, HPO42−, PO43−) is a key link in the formation of the nucleus, the promoter factors of the recipient are all processes that lead to an increase in the concentration of phosphate ions in the blood (high ALP levels, impaired glomerular filtration of phosphorus, children’s age, etc.).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schoen, F.J.; Levy, R.J. Bioprosthetic Heart Valve Calcification: Clinicopathologic Correlations, Mechanisms, and Prevention. In Cardiovascular Calcification and Bone, Mineralization, 1st ed.; Aikawa, E., Hutcheson, J.D., Eds.; Humana Press: Totowa, NJ, USA; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 183–218. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, Y.; Yim, W.Y.; Wang, S.; Xu, L.; Shi, J.; Qiao, W.; Dong, N. Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification. Front. Pharmacol. 2022, 13, 909801. [Google Scholar] [CrossRef]
- Goldstone, A.B.; Chiu, P.; Baiocchi, M.; Lingala, B.; Patrick, W.L.; Fischbein, M.P.; Woo, Y.J. Mechanical or biologic prostheses for aortic-valve and mitral-valve replacement. N. Engl. J. Med. 2017, 377, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, T.; Tara, S.; Nakayama, H.; Yi, T.; Lee, Y.U.; Shoji, T.; Breuer, C.K.; Shinoka, T. Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft. J. Vasc. Surg. 2017, 66, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duijvelshoff, R.; Di Luca, A.; Van Haaften, E.E.; Dekker, S.; Söntjens, S.H.M.; Janssen, H.M.; Smits, A.I.P.M.; Dankers, P.Y.W.; Bouten, C.V.C. Inconsistency in Graft Outcome of Bilayered Bioresorbable Supramolecular Arterial Scaffolds in Rats. Tissue Eng. 2021, 27, 894–904. [Google Scholar] [CrossRef]
- Biermann, A.C.; Marzi, J.; Brauchle, E.; Wichmann, J.L.; Arendt, C.T.; Puntmann, V.; Nagel, E.; Abdelaziz, S.; Winter, A.G.; Brockbank, K.G.M.; et al. Improved long-term durability of allogeneic heart valves in the orthotopic sheep model. Eur. J. Cardiothorac. Surg. 2019, 55, 484–493. [Google Scholar] [CrossRef]
- Kelly, J.M.; Mirhaidari, G.J.M.; Chang, Y.C.; Shinoka, T.; Breuer, C.K.; Yates, A.R.; Hor, K.N. Evaluating the Longevity of the Fontan Pathway. Pediatr. Cardiol. 2020, 41, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Yamagishi, M.; Maeda, Y.; Asada, S.; Hongu, H.; Fujita, S.; Yaku, H. Histopathologic Analysis of Explanted Polytetrafluoroethylene-Valved Pulmonary Conduits. Semin. Thorac. Cardiovasc. Surg. 2020, 32, 990–999. [Google Scholar] [CrossRef]
- Parashar, A.; Gourgas, O.; Lau, K.; Li, J.; Muiznieks, L.; Sharpe, S.; Davis, E.; Cerruti, M.; Murshed, M. Elastin calcification in in vitro models and its prevention by MGP’s m3pS peptide. J. Struct. Biol. 2021, 213, 107637. [Google Scholar] [CrossRef]
- Li, K.Y.C. Bioprosthetic Heart Valves: Upgrading a 50-Year Old Technology. Front. Cardiovasc. Med. 2019, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottio, T.; Thiene, G.; Pettenazzo, E.; Ius, P.; Bortolotti, U.; Rizzoli, G.; Valfré, C.; Casarotto, D.; Valente, M. Hancock II bioprosthesis: A glance at the microscope in mid-long-term explants. J. Thorac. Cardiovasc. Surg. 2003, 126, 99–105. [Google Scholar] [CrossRef]
- Levy, R.J.; Schoen, F.J.; Sherman, F.S.; Nichols, J.; Hawley, M.A.; Lund, S.A. Calcification of subcutaneously implanted Type I collagen sponges: Effects of glutaraldehyde and formaldehyde pretreatments. Am. J. Pathol. 1986, 122, 71–82. [Google Scholar]
- Schoen, F.J.; Levy, R.J. Bioprosthetic heart valve calcification: Membrane-mediated events and alkaline phosphatase. Bone Miner. 1992, 17, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Schoen, F.J.; Levy, R.J. Calcification of Tissue Heart Valve Substitutes: Progress Toward Understanding and Prevention. Ann. Thorac. Surg. 2005, 79, 1072–1080. [Google Scholar] [CrossRef]
- Manji, R.A.; Lee, W.; Cooper, D.K.C. Xenograft bioprosthetic heart valves: Past, present and future. Int. J. Surg. 2015, 23, 280–284. [Google Scholar] [CrossRef]
- Kiesendahl, N.; Schmitz, C.; Menne, M.; Schmitz-Rode, T.; Steinseifer, U. In Vitro Calcification of Bioprosthetic Heart Valves: Test Fluid Validation on Prosthetic Material Samples. Ann. Biomed. Eng. 2021, 49, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Vyavahare, N.R.; Hirsch, D.; Lerner, E.; Baskin, J.Z.; Zand, R.; Schoen, F.J.; Levy, R.J. Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: Mechanistic studies of protein structure and water-biomaterial relationships. J. Biomed. Mater. Res. 1998, 40, 577–585. [Google Scholar] [CrossRef]
- Zhuravleva, I.Y.; Karpova, E.V.; Dokuchaeva, A.A.; Kuznetsova, E.V.; Vladimirov, S.V.; Ksenofontov, A.L.; Nichay, N.R. Bovine jugular vein conduit: What affects its elastomechanical properties and thermostability? J. Biomed. Mater. Res. A 2022, 110, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, H.S.; Connolly, J.M.; Fulmer, J.; Dai, N.; Murti, B.H.; Gorman, R.C.; Gorman, J.H.; Alferiev, I.S.; Levy, R.J. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials 2007, 28, 690–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, J.M.; Bakay, M.A.; Alferiev, I.S.; Gorman, R.G.; Gorman, J.H., 3rd; Kruth, H.S.; Ashworth, P.E.; Kutty, J.K.; Schoen, F.J.; Bianco, R.W.; et al. Triglycidyl amine crosslinking combined with ethanol inhibits bioprosthetic heart valve calcification. Ann. Thorac. Surg. 2011, 92, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Zhuravleva, I.Y.; Polienko, Y.F.; Karpova, E.V.; Timchenko, T.P.; Vasilieva, M.B.; Baratova, L.A.; Shatskaya, S.S.; Kuznetsova, E.V.; Nichay, N.R.; Beshchasna, N.; et al. Treatment with bisphosphonates to mitigate calcification of elastin-containing bioprosthetic materials. J. Biomed. Mater. Res. A 2020, 108, 1579–1588. [Google Scholar] [CrossRef]
- Zhuravleva, I.Y.; Karpova, E.V.; Oparina, L.A.; Poveschenko, O.V.; Surovtseva, M.A.; Titov, A.T.; Ksenofontov, A.L.; Vasilieva, M.B.; Kuznetsova, E.V.; Bogachev-Prokophiev, A.V.; et al. Cross-linking method using pentaepoxide for improving bovine and porcine bioprosthetic pericardia: A multiparametric assessment study. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111473. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Jin, L.; Jin, W.; Chen, L.; Lei, Y.; Wang, Y. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response. Acta Biomater. 2018, 82, 44–55. [Google Scholar] [CrossRef]
- Guo, G.; Jin, L.; Wu, B.; He, H.; Yang, F.; Xu, L.; Lei, Y.; Wang, Y. A method for simultaneously crosslinking and functionalizing extracellular matrix-based biomaterials as bioprosthetic heart valves with enhanced endothelialization and reduced inflammation. Acta Biomater. 2021, 119, 89–100. [Google Scholar] [CrossRef]
- Ding, K.; Zheng, C.; Huang, X.; Zhang, S.; Li, M.; Lei, Y.; Wang, Y. A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-crosslinking with improved antithrombogenicity and cytocompatibility. Acta Biomater. 2022, 144, 279–291. [Google Scholar] [CrossRef]
- Vyavahare, N.; Ogle, M.; Schoen, F.J.; Levy, R.J. Elastin calcification and its prevention with aluminum chloride pretreatment. Am. J. Pathol. 1999, 155, 973–982. [Google Scholar] [CrossRef] [Green Version]
- Rucker, R.B. Calcium Binding to ElastinProtein-Metal Interactions. In Advances in Experimental Medicine and Biology; Friedman, M., Ed.; Springer: Boston, MA, USA, 1974; pp. 185–209. [Google Scholar] [CrossRef]
- Halper, J.; Kjaer, M. Basic Components of Connective Tissues and Extracellular Matrix: Elastin, Fibrillin, Fibulins, Fibrinogen, Fibronectin, Laminin, Tenascins and Thrombospondins. In Progress in Heritable Soft Connective Tissue Diseases, Advances in Experimental Medicine and Biology, 1st ed.; Halper, J., Ed.; Springer Science + Business Media: Dordrecht, The Netherland, 2014; Volume 802, pp. 31–47. [Google Scholar] [CrossRef]
- Shina, K.; Kenta, J.E.; Singha, C.; Fujimotoa, L.M.; Yua, J.; Tiana, Y.; Imb, W.; Marassia, F.M. Calcium and hydroxyapatite binding site of human vitronectin provides insights to abnormal deposit formation. Proc. Natl. Acad. Sci. USA 2020, 117, 18504–18510. [Google Scholar] [CrossRef] [PubMed]
- Roumeliotis, S.; Roumeliotis, A.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Biomarkers of vascular calcification in serum. Adv. Clin. Chem. 2020, 98, 91–147. [Google Scholar] [CrossRef]
- Gourgas, O.; Muiznieks, L.D.; Bello, D.G.; Nanci, A.; Sharpe, S.; Cerruti, M. Cross-Linked Elastin-like Polypeptide Membranes as a Model for Medial Arterial Calcification. Biomacromolecules 2019, 20, 2625–2636. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef]
- Grunenwald, A.; Keyser, C.; Sautereau, A.M.; Crubézy, E.; Ludes, B.; Drouet, C. Revisiting carbonate quantification in apatite (bio)minerals: A validated FTIR methodology. J. Archaeol. Sci. 2014, 49, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Markovic, M.; Fowler, B.O.; Tung, M.S. Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 553. [Google Scholar] [CrossRef]
- Fowler, B.O.; Markovic, M.; Brown, W.E. Octacalcium phosphate. 3. Infrared and Raman vibrational spectra. Chem. Mater. 1993, 5, 1417–1423. [Google Scholar] [CrossRef]
- Vandecandelaere, N.; Rey, C.; Drouet, C. Biomimetic apatite-based biomaterials: On the critical impact of synthesis and post-synthesis parameters. J. Mater. Sci. Mater. Med. 2012, 23, 2593–2606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuravleva, I.Y.; Nichay, N.R.; Kulyabin, Y.Y.; Timchenko, T.P.; Korobeinikov, A.A.; Polienko, Y.F.; Shatskaya, S.S.; Kuznetsova, E.V.; Voitov, A.V.; Bogachev-Prokophiev, A.V.; et al. In search of the best xenogeneic material for a paediatric conduit: An experimental study. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 738–744. [Google Scholar] [CrossRef] [Green Version]
- Van Aken, B.E.; Seiffert, D.; Thinnes, T.; Loskutoff, D.J. Localization of vitronectin in the normal and atherosclerotic human vessel wall. Histochem. Cell. Biol. 1997, 107, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.; Lee, C.H. Effect of elastin on the calcification rate of collagen-elastin matrix systems. J. Biomed. Mater. Res. 2002, 60, 368–374. [Google Scholar] [CrossRef]
- Lee, J.S.; Basalyga, D.M.; Simionescu, A.; Isenburg, J.C.; Simionescu, D.T.; Vyavahare, N.R. Elastin Calcification in the Rat Subdermal Model Is Accompanied by Up-Regulation of Degradative and Osteogenic Cellular Responses. Am. J. Pathol. 2006, 168, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Mozafari, M.; Banijamali, S.; Baino, F.; Kargozar, S.; Hill, R.G. Calcium carbonate: Adored and ignored in bioactivity assessment. Acta Biomater. 2019, 91, 35–47. [Google Scholar] [CrossRef]
- Mattson, J.M.; Zhang, Y. Structural and functional differences between porcine aorta and vena cava. J. Biomech. Eng. 2017, 39, 071007. [Google Scholar] [CrossRef] [Green Version]
- Caballero, A.; Sulejmani, F.; Martin, C.; Pham, T.; Sun, W. Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium. J. Mech. Behav. Biomed. Mater. 2017, 75, 486–494. [Google Scholar] [CrossRef]
- Landis, W.J.; Silver, F.H.; Freeman, J.W. Collagen as a scaffold for biomimetic mineralization of vertebrate tissues. J. Mater. Chem. 2006, 16, 1495–1503. [Google Scholar] [CrossRef]
- Bohner, M.; Maazouz, Y.; Ginebra, M.P.; Habibovic, P.; Schoenecker, J.G.; Seeherman, H.; Van den Beucken, J.J.J.P.; Witte, F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater. 2022, 145, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Artiach, G.; Carracedo, M.; Seime, N.; Plunde, O.; Laguna-Fernandez, A.; Matic, L.; Franco-Cereceda, A.; Bäck, M. Proteoglycan 4 is Increased in Human Calcified Aortic Valves and Enhances Valvular Interstitial Cell Calcification. Cells 2020, 9, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodroof, E.A. Use of glutaraldehyde and formaldehyde to process tissue heart valves. J. Bioeng. 1978, 2, 1–9. [Google Scholar] [PubMed]
- Schräder, C.U.; Heinz, A.; Majovsky, P.; Karaman, M.B.; Brinckmann, J.; Sippl, W.; Schmelzer, C.E.H. Elastin is heterogeneously cross-linked. J. Biol. Chem. 2018, 293, 15107–15119. [Google Scholar] [CrossRef] [Green Version]
- Zhuravleva, I.Y.; Dokuchaeva, A.A.; Karpova, E.V.; Timchenko, T.P.; Titov, A.T.; Shatskaya, S.S.; Polienko, Y.F. Immobilized Bisphosphonates as Potential Inhibitors of Bioprosthetic Calcification: Effects on Various Xenogeneic Cardiovascular Tissues. Biomedicines 2021, 10, 65. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.S.; Ren, J.L.; Zhang, Y.R.; Wu, N.; Jia, M.Z.; Yu, Y.R.; Ning, Z.P.; Tang, C.S.; Qi, Y.F. Intermedin1-53 attenuates aging-associated vascular calcification in rats by upregulating sirtuin 1. Aging 2020, 12, 5651–5674. [Google Scholar] [CrossRef]
- Lockitch, G.; Halstead, A.C.; Albersheim, S.; MacCallum, C.; Quigley, G. Age- and sex-specific pediatric reference intervals for biochemistry analytes as measured with the Ektachem-700 analyzer. Clin. Chem. 1988, 34, 1622–1625. [Google Scholar] [CrossRef] [PubMed]
- Pagana, K.D.; Pagana, T.J.; Pagana, T.N. Mosby’s Manual of Diagnostic & Laboratory Test References, 14th ed.; Elsevier Health Sciences: St. Louis, MI, USA, 2019. [Google Scholar]
- Turan, S.; Topcu, B.; Gokce, I.; Guran, T.; Atay, Z.; Omar, A.; Akcay, T.; Bereket, A. Serum Alkaline Phosphatase Levels in Healthy Children and Evaluation of Alkaline Phosphatase z-scores in Different Types of Rickets. J. Clin. Res. Ped. Endo. 2011, 3, 7–11. [Google Scholar] [CrossRef]
- Barbarash, O.; Rutkovskaya, N.; Hryachkova, O.; Gruzdeva, O.; Uchasova, E.; Ponasenko, A.; Kondyukova, N.; Odarenko, Y.; Barbarash, L. Impact of recipient-related factors on structural dysfunction of xenoaortic bioprosthetic heart valves. Patient Prefer. Adherence. 2015, 9, 389–399. [Google Scholar] [CrossRef] [Green Version]
Elemental Map | Surface Particles | ||||
---|---|---|---|---|---|
Ca, Atomic % | P, Atomic % | Ca/P | Ca, Atomic % | P, Atomic % | Ca/P |
Aging rats | |||||
0.04 (0.03; 0.05) | 0.06 (0.06; 0.08) | 0.5 (0.5; 0.72) | 0.41 (0.29; 0.61) | 0.22 (0.16; 0.26) | 2.1 (1.6; 3.8) |
Young rats | |||||
0.07 (0.03; 0.14) | 0.35 (0.3; 0.55) | 0.2 (0.14;0.25) | 0.76 (0.51; 1.37) | 1.65 (1.39; 1.92) | 0.54 (0.34; 0.81) |
Paging-young | |||||
0.49 | 0.0004 | 0.0009 | 0.019 | 0.0003 | 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuravleva, I.Y.; Karpova, E.V.; Dokuchaeva, A.A.; Titov, A.T.; Timchenko, T.P.; Vasilieva, M.B. Calcification of Various Bioprosthetic Materials in Rats: Is It Really Different? Int. J. Mol. Sci. 2023, 24, 7274. https://doi.org/10.3390/ijms24087274
Zhuravleva IY, Karpova EV, Dokuchaeva AA, Titov AT, Timchenko TP, Vasilieva MB. Calcification of Various Bioprosthetic Materials in Rats: Is It Really Different? International Journal of Molecular Sciences. 2023; 24(8):7274. https://doi.org/10.3390/ijms24087274
Chicago/Turabian StyleZhuravleva, Irina Y., Elena V. Karpova, Anna A. Dokuchaeva, Anatoly T. Titov, Tatiana P. Timchenko, and Maria B. Vasilieva. 2023. "Calcification of Various Bioprosthetic Materials in Rats: Is It Really Different?" International Journal of Molecular Sciences 24, no. 8: 7274. https://doi.org/10.3390/ijms24087274
APA StyleZhuravleva, I. Y., Karpova, E. V., Dokuchaeva, A. A., Titov, A. T., Timchenko, T. P., & Vasilieva, M. B. (2023). Calcification of Various Bioprosthetic Materials in Rats: Is It Really Different? International Journal of Molecular Sciences, 24(8), 7274. https://doi.org/10.3390/ijms24087274