Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting
Abstract
:1. Introduction
2. Basic Knowledge of Manganese-Based Materials
3. General Strategies and Progress in Regulating the Performance of Manganese-Based Electrocatalysts
3.1. Doping and Defect Engineering Strategies
3.2. Interface Engineering Strategy
3.3. Self-Supporting Conductive Substrate Strategy
3.4. Phase Engineering Strategy
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, P.; Hu, X. High-Efficiency Anion Exchange Membrane Water Electrolysis Employing Non-Noble Metal Catalysts. Adv. Energy Mater. 2020, 10, 2002285–2002291. [Google Scholar] [CrossRef]
- Luo, W.; Jiang, Y.; Wang, M.; Lu, D.; Sun, X.; Zhang, H. Design Strategies of Pt-Based Electrocatalysts and Tolerance Strategies in Fuel Cells: A Review. RSC Adv. 2023, 13, 4803–4822. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, W.; Li, S.; Williams, G.; Mahadi, A.; Ma, D. Solar-Versus Thermal-Driven Catalysis for Energy Conversion. Int. J. Hydrog. Energy 2019, 3, 920–937. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Wang, M.; Chen, G.; Dong, R.; Feng, X. Two-Dimensional Conjugated Metal-Organic Frameworks for Electrocatalysis: Opportunities and Challenges. ACS Nano 2022, 16, 1759–1780. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, P.; Hu, B.; Shen, X.; Liu, C.; Tao, W.; Huang, P.; Liu, L. Spin-Related Symmetry Breaking Induced by Half-Disordered Hybridization in BixEr2-xRu2O7 Pyrochlores for Acidic Oxygen Evolution. Nat. Commun. 2022, 13, 4106–4116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wang, P.; Li, H.; Hu, B.; Sun, Y.; Huang, R.; Liu, L. Spin-State Reconfiguration Induced by Alternating Magnetic Field for Efficient Oxygen Evolution Reaction. Nat. Commun. 2021, 12, 4827–4836. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I.; Naterer, G. Review of Photocatalytic Water-Splitting Methods for Sustainable Hydrogen Production. Int. J. Energy Res. 2016, 40, 1449–1473. [Google Scholar] [CrossRef]
- Anwer, H.; Park, J. Addressing the OER/HER Imbalance by a Redox Transition-Induced Two-Way Electron Injection in a Bifunctional n–p–n Electrode for Excellent Water Splitting. J. Mater. Chem. A 2020, 8, 13218–13230. [Google Scholar] [CrossRef]
- Chang, G.; Zhang, H.; Yu, X. 2D Metal-Organic Frameworks and Their Derivatives for the Oxygen Evolution Reaction. J. Alloys Compd. 2022, 919, 165823–165842. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, W.; Shi, Z.; Yang, L.; Tang, Y. Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Adv. Mater. 2019, 31, 1802880–1802915. [Google Scholar] [CrossRef]
- Lu, S.; Huynh, H.; Lou, F.; Guo, K.; Yu, Z. Single Transition Metal Atom Embedded Antimonene Monolayers as Efficient Trifunctional Electrocatalysts for the HER, OER and ORR: A Density Functional Theory Study. Nanoscale 2021, 13, 12885–12895. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Design of Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Conversion Reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Sun, T.; Mitchell, S.; Li, J.; Lyu, P.; Wu, X.; Pérez, R.; Lu, J. Design of Local Atomic Environments in Single-Atom Electrocatalysts for Renewable Energy Conversions. Adv. Mater. 2020, 33, 2003075–2003105. [Google Scholar] [CrossRef]
- Tian, L.; Li, Z.; Xu, X.; Zhang, C. Advances in Noble Metal (Ru, Rh, and Ir) Doping for Boosting Water Splitting Electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470. [Google Scholar] [CrossRef]
- Bai, L.; Song, A.; Wang, L.; Lei, X.; Zhang, T.; Tian, H.; Liu, H.; Qin, X.; Wang, G.; Shao, G. Enhancement of Hydrogen Desorption for Electrocatalytic Hydrogen Evolution on Nickel-Coupled Graphite Carbon Nitride Catalysts. Ionics 2022, 29, 323–330. [Google Scholar] [CrossRef]
- Bawari, S.; Kaley, N.; Pal, S.; Vineesh, T.; Ghosh, S.; Mondal, J.; Narayanan, T. On the Hydrogen Evolution Reaction Activity of Graphene–hBN Van Der Waals Heterostructures. Phys. Chem. Chem. Phys. 2018, 20, 15007–15014. [Google Scholar] [CrossRef]
- Bi, W.; Zhang, L.; Sun, Z.; Li, X.; Jin, T.; Wu, X.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Insight into Electrocatalysts as Co-Catalysts in Efficient Photocatalytic Hydrogen Evolution. ACS Catal. 2016, 6, 4253–4257. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Liu, Y.; Xie, K.; Wang, Y. MOF-Derived Mo-CoP@NiFe LDH Hierarchical Nanosheets for High-Performance Hybrid Supercapacitors. J. Alloys Compd. 2022, 919, 165842–165851. [Google Scholar] [CrossRef]
- Guo, T.; Li, L.; Wang, Z. Recent Development and Future Perspectives of Amorphous Transition Metal-Based Electrocatalysts for Oxygen Evolution Reaction. Adv. Energy Mater. 2022, 12, 2200827–2200863. [Google Scholar] [CrossRef]
- Qin, Q.; Chen, L.; Wei, T.; Wang, Y.; Liu, X. Ni/NiM2O4 (M = Mn or Fe) Supported on N-Doped Carbon Nanotubes as Trifunctional Electrocatalysts for ORR, OER and HER. Catal. Sci. Technol. 2019, 9, 1595–1601. [Google Scholar] [CrossRef]
- Shang, W.; Xiao, Y.; Yu, A.; Shen, H.; Cheng, Q.; Sun, Y.; Zhang, L.; Liu, L.; Li, L. Visible-Light-Enhanced Electrocatalytic Hydrogen Evolution Using Electrodeposited Molybdenum Oxide. J. Electrochem. Soc. 2022, 169, 034529–034538. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, S.; Liu, H.; Zhang, W.; Cao, R. An Unusual Network of α-MnO2 Nanowires with Structure-Induced Hydrophilicity and Conductivity for Improved Electrocatalysis. Chin. J. Catal. 2021, 42, 1724–1731. [Google Scholar] [CrossRef]
- Liu, Y.; Vijayakumar, P.; Liu, Q.; Sakthivel, T.; Chen, F.; Dai, Z. Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives. Nano-Micro Lett. 2022, 14, 43. [Google Scholar] [CrossRef]
- Zhao, M.; Li, T.; Jia, L.; Li, H.; Yuan, W.; Li, C. Pristine-Graphene-Supported Nitrogen-Doped Carbon Self-Assembled from Glucaminium-Based Ionic Liquids as Metal-Free Catalyst for Oxygen Evolution. ChemSusChem 2019, 12, 5041–5050. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, W.; Li, C. Controlled Self-Assembly of Ni Foam Supported Poly(Ethyleneimine)/Reduced Graphene Oxide Three-Dimensional Composite Electrodes with Remarkable Synergistic Effects for Efficient Oxygen Evolution. J. Mater. Chem. A 2017, 5, 1201–1210. [Google Scholar] [CrossRef]
- Yusuf, B.; Yaseen, W.; Xie, M.; Zayyan, R.; Muhammad, A.; Nankya, R.; Xie, J.; Xu, Y. Recent Advances in Understanding And Design of Efficient Hydrogen Evolution Electrocatalysts for Water Splitting: A Comprehensive Review. Adv. Colloid Interfac. 2023, 311, 102811–102852. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhou, W.; Zhu, Z.; Su, C.; Liu, M.; Shao, Z. A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction. Adv. Mater. 2016, 28, 6442–64488. [Google Scholar] [CrossRef]
- Kong, X.; Gao, Q.; Bu, S.; Xu, Z.; Shen, D.; Liu, B.; Lee, C.; Zhang, W. Plasma-Assisted Synthesis of Nickel-Cobalt Nitride–Oxide Hybrids for High-Efficiency Electrochemical Hydrogen Evolution. Mater. Today Energy 2021, 21, 100784–100793. [Google Scholar] [CrossRef]
- Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the Electrochemical Synthesis of Ammonia. Catal. Today 2017, 286, 2–13. [Google Scholar] [CrossRef]
- Wang, C.; Shang, H.; Wang, Y.; Li, J.; Guo, S.; Guo, J.; Du, Y. A General MOF-Intermediated Synthesis of hollow CoFe-Based Trimetallic Phosphides Composed of Ultrathin Nanosheets for Boosting Water Oxidation Electrocatalysis. Nanoscale 2021, 13, 7279–7284. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, T.; Chou, W.; Wu, L.; Lin, S. First-Principles Investigation of the Hydrogen Evolution Reaction of Transition Metal Phosphides CrP, MnP, FeP, CoP, and NiP. Phys. Chem. Chem. Phys. 2021, 23, 2305–2312. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Ji, J.; Shen, B.; Xing, M.; Zhang, J. Enhancement of H2O2 Decomposition by the Co-catalytic Effect of WS2 on the Fenton Reaction for the Synchronous Reduction of Cr(VI) and Remediation of Phenol. Environ. Sci. Technol. 2018, 52, 11297–11308. [Google Scholar] [CrossRef]
- Lu, J.; Huang, Y.; Fu, Y.; Yan, Q.; Zeng, S. Synergistic Effect of Photocatalysis and Fenton on Improving the Removal Rate of 4H-SiC during CMP. ECS J. Solid State Sc. 2021, 10, 044001–044010. [Google Scholar] [CrossRef]
- Lkremer, M. The Fenton Reaction. Dependence of the Rate on pH. J. Phys. Chem. A 2003, 107, 1734–1741. [Google Scholar] [CrossRef]
- Jiang, C.; Pang, S.; Ouyang, F.; Ma, J.; Jiang, J. A New Insight into Fenton and Fenton-Like Processes for Water Treatment. J. Hazard. Mater. 2010, 174, 813–817. [Google Scholar] [CrossRef]
- Wardman, P.; Candeias, L.P. Fenton Chemistry: An Introduction. Radiat. Res. 1996, 145, 523–531. [Google Scholar] [CrossRef]
- Tigwere, G.; Khan, M.; Nyamen, L.; De Souza, F.; Lin, W.; Gupta, R.; Revaprasadu, N.; Ndifon, P. Transition Metal (Ni, Cu and Fe) Doped MnS Nanostructures: Effect of Doping on Supercapacitance and Water Splitting. Mater. Sci. Semicond. Process. 2023, 158, 107365–107378. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Song, N.; Luo, S.; Xu, B.; Zhang, J.; Wang, F. Doping of the Mn Vacancy of Mn2B2 with a Single Different Transition Metal Atom as the Dual-Function Electrocatalyst. Phys. Chem. Chem. Phys. 2022, 24, 20988–20997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zong, L.; Fan, K.; Cui, L.; Zhang, Q.; Zhao, J.; Wang, L.; Feng, S. Enabling Highly Efficient Electrocatalytic Oxygen Reduction and Evolution Reaction by Established Strong MnO/Co-Support Interaction. J. Alloys Compd. 2021, 874, 159965–159975. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, Z.; Jiang, R.; Huang, J.; Hou, Y.; Yang, F.; Zhu, H.; Zhang, B.; Huang, Y.; Ye, B. Dual Synergistic Effect of S-Doped Carbon Bridged Semi Crystalline MILN-Based Co3S4/MnS2 Nanostructure in Electrocatalytic Overall Water Splitting. Electrochim. Acta 2021, 366, 137438–137441. [Google Scholar] [CrossRef]
- Wang, X.; Huang, G.; Pan, Z.; Kang, S.; Ma, S.; Shen, P.; Zhu, J. One-Pot Synthesis of Mn2P-Mn2O3 Heterogeneous Nanoparticles in a P, N -Doped Three-Dimensional Porous Carbon Framework as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Chem. Eng. J. 2022, 428, 131190–131198. [Google Scholar] [CrossRef]
- Chen, L.; Ren, S.; Xing, X.; Yang, J.; Li, J.; Yang, J.; Liu, Q. Effect of MnO2 Crystal Types on CeO2@MnO2 Oxides Catalysts for Low-Temperature NH3-SCR. J. Environ. Chem. Eng. 2022, 10, 108239–108247. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Okamoto, N.; Ichitsubo, T. Thermal Stability of MnO2 Polymorphs. J. Solid State Chem. 2022, 305, 122683–122693. [Google Scholar] [CrossRef]
- Lei, N.; Qiao, Y.; Liu, G.; Xu, R.; Jiang, G.; Demir, M.; Ma, P. MnO2 Modified Perovskite Oxide SrCo0.875Nb0.125O3 as Supercapacitor Electrode Material. Mater. Chem. Phys. 2022, 288, 126389–126399. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Zhou, C.; Xu, J.; Wang, J.; Ren, Y. Template-Assisted Preparation of MnO2@MnO2 Hollow Nanospheres and Their Research of Capacitance Performance. Mater. Lett. 2020, 262, 127139–127143. [Google Scholar] [CrossRef]
- Yang, R.; Fan, Y.; Ye, R.; Tang, Y.; Cao, X.; Yin, Z.; Zeng, Z. MnO2-Based Materials for Environmental Applications. Adv. Mater. 2021, 33, 2004862–2004915. [Google Scholar] [CrossRef]
- Leong, Z.; Yang, H. A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. ACS Appl. Mater. Interfaces 2019, 11, 13176–13184. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, S.; Liu, Z. Reaction Network of Layer-to-Tunnel Transition of MnO2. J. Am. Chem. Soc. 2016, 138, 5371–5379. [Google Scholar] [CrossRef] [PubMed]
- Sari, F.; So, P.; Ting, J. MnO2 with Controlled Phase for Use in Supercapacitors. J. Am. Ceram. Soc. 2017, 100, 1642–1652. [Google Scholar] [CrossRef]
- Yang, Y.; Chuan, X. Study on Electrochemical Properties of MnO2/MoS2 Composites. Acta Geol. Sin.—Engl. Ed. 2017, 91, 170–172. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; He, K.; Byles, B.; Liu, C.; Amine, K.; Lu, J.; Pomerantseva, E.; Shahbazian-Yassar, R. Deciphering the Atomic Patterns Leading to MnO2 Polymorphism. Chem 2019, 5, 1793–1805. [Google Scholar] [CrossRef]
- Cheng, F.; Su, Y.; Liang, J.; Tao, Z.; Chen, J. MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chem. Mater. 2009, 22, 898–905. [Google Scholar] [CrossRef]
- Chen, K.; Dong Noh, Y.; Li, K.; Komarneni, S.; Xue, D. Microwave–Hydrothermal Crystallization of Polymorphic MnO2 for Electrochemical Energy Storage. J. Phys. Chem. C 2013, 117, 10770–10779. [Google Scholar] [CrossRef]
- Barhoumi, M.; Lazaar, K.; Said, M. Electronic and Vibrational Properties of TMDs Heterogeneous Bilayers, Nontwisted Bilayers Silicene/TMDs Heterostructures and Photovoltaic Heterojunctions of Fullerenes with TMDs Monolayers. Phys. E Low-Dimens. Syst. Nanostructures 2018, 104, 155–164. [Google Scholar] [CrossRef]
- Guan, J.; Huang, C.; Deng, K.; Kan, E. First-Principles Prediction of Room-Temperature Ferromagnetic Semiconductor MnS2 via Isovalent Alloying. J. Phys. Chem. C 2019, 123, 10114–10119. [Google Scholar] [CrossRef]
- Rana, A.; Jeong, M.; Noh, Y.; Park, H.; Baik, J.; Choi, K. Phase-Tuned MoS2 and Its Hybridization with Perovskite Oxide as Bifunctional Catalyst: A Rationale for Highly Stable and Efficient Water Splitting. ACS Appl. Mater. Interfaces 2022, 14, 18248–18260. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, C.; Liu, F.; Peng, C. Variation of Magnetism in a Two-Dimensional Non-Van Der Waals MnS2 Bilayer. Appl. Surf. Sci. 2023, 609, 155336–155342. [Google Scholar] [CrossRef]
- Chen, D.; Wang, C.; Li, J.; Liu, F. Variation of Magnetism in Two-Dimensional MnS2 Thin Films. J. Magn. Magn. Mater. 2022, 563, 169966–169974. [Google Scholar] [CrossRef]
- Durkee, D.; Smith, D.; Torchio, R.; Petitgirard, S.; Briggs, R.; Kantor, I.; Evans, S.; Chatterji, T.; Irifune, T.; Pascarelli, S.; et al. Electronic Origins of the Giant Volume Collapse in the Pyrite Mineral MnS2. J. Solid State Chem. 2019, 269, 540–546. [Google Scholar] [CrossRef]
- Pujari, R.; Gund, G.; Patil, S.; Park, H.; Lee, D. Anion-Exchange Phase Control of Manganese Sulfide for Oxygen Evolution Reaction. J. Mater. Chem. A 2020, 8, 3901–3909. [Google Scholar] [CrossRef]
- Sun, M.; Gao, R.; Liu, X.; Gao, R.; Wang, L. Manganese-Based Oxygen Evolution Catalysts Boosting Stable Solar-Driven Water Splitting: MnSe as an Intermetallic Phase. J. Mater. Chem. A 2020, 8, 25298–25305. [Google Scholar] [CrossRef]
- Tian, L.; Zhai, X.; Wang, X.; Li, J.; Li, Z. Advances in Manganese-Based Oxides for Oxygen Evolution Reaction. J. Mater. Chem. A 2020, 8, 14400–14414. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, S.; Wang, Z.; Mo, Y.; Luo, X.; Yang, F.; Lv, M.; Li, Z.; Liu, X. Manganese-Based Oxide Electrocatalysts for the Oxygen Evolution Reaction: A Review. J. Mater. Chem. A 2023, 11, 5476–5494. [Google Scholar] [CrossRef]
- Kumar, A.; Raizada, P.; Khan, A.; Nguyen, V.; Van Le, Q.; Singh, A.; Saini, V.; Selvasembian, R.; Huynh, T.; Singh, P. Phenolic Compounds Degradation: Insight into the role and Evidence of Oxygen Vacancy Defects Engineering on Nanomaterials. Sci. Total Environ. 2021, 800, 149410–149428. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, P. Fundamentals and Engineering of Defects. Prog. Cryst. Growth Charact. Mater. 2016, 62, 89–110. [Google Scholar] [CrossRef]
- Yan, D.; Xia, C.; Zhang, W.; Hu, Q.; He, C.; Xia, B.; Wang, S. Cation Defect Engineering of Transition Metal Electrocatalysts for Oxygen Evolution Reaction. Adv. Energy Mater. 2022, 12, 2202317. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, S.; Li, N.; Chen, G.; Hou, L. Applications of Vacancy Defect Engineering in Persulfate Activation: Performance and Internal Mechanism. J. Hazard. Mater. 2023, 449, 130971–130984. [Google Scholar] [CrossRef]
- Zhao, Y.; Chang, C.; Teng, F.; Zhao, Y.; Chen, G.; Shi, R.; Waterhouse, G.; Huang, W.; Zhang, T. Defect-Engineered Ultrathin δ-MnO2Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1700005–1700012. [Google Scholar] [CrossRef]
- Gupta, P.; Bhandari, A.; Saha, S.; Bhattacharya, J.; Pala, R. Modulating Oxygen Evolution Reactivity in MnO2 through Polymorphic Engineering. J. Phys. Chem. C 2019, 123, 22345–22357. [Google Scholar] [CrossRef]
- Mo, S.; Zhang, Q.; Li, J.; Sun, Y.; Ren, Q.; Zou, S.; Zhang, Q.; Lu, J.; Fu, M.; Mo, D.; et al. Highly Efficient Mesoporous MnO2 Catalysts for the Total Toluene Oxidation: Oxygen-Vacancy Defect Engineering and Involved Intermediates Using in Situ Drifts. Appl. Catal. B 2020, 264, 118464–118480. [Google Scholar] [CrossRef]
- Kölbach, M.; Fiechter, S.; Van De Krol, R.; Bogdanoff, P. Evaluation of Electrodeposited α-Mn2O3 as a Catalyst for the Oxygen Evolution Reaction. Catal. Today 2017, 290, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Mattelaer, F.; Bosserez, T.; Rongé, J.; Martens, J.; Dendooven, J.; Detavernier, C. Manganese Oxide Films with Controlled Oxidation State for Water Splitting Devices through a Combination of Atomic Layer Deposition and Post-Deposition Annealing. RSC Adv. 2016, 6, 98337–98343. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Liang, Z.; Chen, S.; Liu, Z.; Xu, C. Manganese Oxide with Different Morphology as Efficient Electrocatalyst for Oxygen Evolution Reaction. Int. J. Hydrog. Energy 2017, 42, 7151–7157. [Google Scholar] [CrossRef]
- Ye, Z.; Li, T.; Ma, G.; Dong, Y.; Zhou, X. Metal-Ion (Fe, V, Co, and Ni)-Doped MnO2 Ultrathin Nanosheets Supported on Carbon Fiber Paper for the Oxygen Evolution Reaction. Adv. Funct. Mater. 2017, 27, 1704083–1704091. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, J.; Zhao, H.; Jiang, R.; Tian, F.; Zhang, R. Tremella-Like Ni3S2/MnS with Ultrathin Nanosheets and Abundant Oxygen Vacancies Directly Used for High Speed Overall Water Splitting. Appl. Catal. B 2019, 257, 117899–117909. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, M.; Liu, S.; Liu, X.; Hu, K.; Wang, L. Study of Active Sites on Se-MnS/NiS Heterojunctions as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting. J. Mater. Chem. A 2019, 7, 26975–26983. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, S.; Lin, J.; Hu, W.; Li, C. Synergic Effect of Fe-Doping And Ni3S2/MnS Heterointerface to Boost Efficient Oxygen Evolution Reaction. Electrochim. Acta 2022, 430, 141088–141096. [Google Scholar] [CrossRef]
- Gupta, S.; Zhao, S.; Wang, X.; Hwang, S.; Karakalos, S.; Devaguptapu, S.; Mukherjee, S.; Su, D.; Xu, H.; Wu, G. Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS Catal. 2017, 7, 8386–8393. [Google Scholar] [CrossRef]
- Du, Y.; Li, B.; Xu, G.; Wang, L. Recent Advances in Interface Engineering Strategy for Highly-Efficient Electrocatalytic Water Splitting. InfoMat 2022, 5, 12377–12410. [Google Scholar] [CrossRef]
- Jung, J.; Chang, M.; Yoon, H. Interface Engineering Strategies for Fabricating Nanocrystal-Based Organic–Inorganic Nanocomposites. Appl. Sci. 2018, 8, 1376. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Shen, P. Interface Engineering of NiMoSx Heterostructure Nanorods for Efficient Oxygen Evolution Reaction. J. Colloid Interface Sci. 2022, 628, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Wang, P.; Chen, Z.; Yu, Q.; Wang, P.; Zhu, M.; Zhao, W.; Wang, J.; Zheng, Y.; Li, C. The Pt-free 1T/2H-MoS2/CdS/MnOx Hollow Core-Shell Nanocomposites Toward Overall Water Splitting via HER/OER Synergy of 1T-MoS2/MnOx. Mater. Today Chem. 2021, 21, 100528–100538. [Google Scholar] [CrossRef]
- Shao, Q.; Wang, P.; Huang, X. Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis. Adv. Funct. Mater. 2019, 29, 1806419–1806442. [Google Scholar] [CrossRef]
- Wang, C.; Bai, S.; Xiong, Y. Recent Advances in Surface And Interface Engineering for Electrocatalysis. Chin. J. Catal. 2015, 36, 1476–1493. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; Duan, T.; Song, L. Interfacial Engineering of Heterogeneous Catalysts for Electrocatalysis. Mater. Today 2021, 48, 115–134. [Google Scholar] [CrossRef]
- Banerjee, A. Electrical and Optoelectronic Properties of Chemically Prepared PbS/MnS Heterojunction. J. Electron. Mater. 2018, 48, 438–444. [Google Scholar] [CrossRef]
- Lin, B.; Chaturvedi, A.; Di, J.; You, L.; Lai, C.; Duan, R.; Zhou, J.; Xu, B.; Chen, Z.; Song, P.; et al. Ferroelectric-Field Accelerated Charge Transfer in 2D CuInP2S6 Heterostructure for Enhanced Photocatalytic H2 Evolution. Nano Energy 2020, 76, 104972. [Google Scholar] [CrossRef]
- Zuo, G.; Wang, Y.; Teo, W.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W.; et al. Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution. Angew. Chem. Int. Ed. Engl. 2020, 59, 11287–11292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Feng, Q.; Zhang, Y.; Zhang, J.; Wu, X.; Li, Y.; Yin, L.; Huang, J.; Kong, X. A CdS/MnS p–n Heterojunction with a Directional Carrier Diffusion Path for Efficient Photocatalytic H2 Production. Inorg. Chem. Front. 2022, 9, 1100–1106. [Google Scholar] [CrossRef]
- Chen, K.; Wang, X.; Zhang, C.; Xu, R.; Wang, H.; Chu, L.; Huang, M. Three-Phases Co/Co9S8/MnS Heterostructures Engineering for Boosted ORR/OER Activities in Zn–Air Batteries. Mater. Today Energy 2022, 30, 101150–101159. [Google Scholar] [CrossRef]
- Lin, C.; He, X.; Li, H.; Zou, J.; Que, M.; Tian, J.; Qian, Y. Tunable Metal–Organic Framework Nanoarrays on Carbon Cloth Constructed by A Rational Self-Sacrificing Template for Efficient and Robust Oxygen Evolution Reactions. CrystEngComm 2021, 23, 7090–7096. [Google Scholar] [CrossRef]
- Liu, P.; Jing, P.; Xu, X.; Liu, B.; Zhang, J. Structural Reconstruction of Ce-MOF with Active Sites for Efficient Electrocatalytic N2 Reduction. ACS Appl. Energy Mater. 2021, 4, 12128–12136. [Google Scholar] [CrossRef]
- Wang, L.; Wang, A.; Xue, Z.; Hu, J.; Han, S.; Wang, G. Ultrathin Two-Dimensional Polyoxometalate-Based Metal–Organic Framework Nanosheets for Efficient Electrocatalytic Hydrogen Evolution. Inorg. Chem. 2022, 61, 18311–18317. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Zhang, J.; Li, Z.; Li, T.; Zhao, X.; Liu, W. Influence of Electropolished Copper Substrate on Morphology of Electroplating Self-Supporting Ni Films. Nucl. Instrum. Meth. A 2019, 927, 343–348. [Google Scholar] [CrossRef]
- Xu, R.; Wu, R.; Shi, Y.; Zhang, J.; Zhang, B. Ni3Se2 Nanoforest/Ni Foam as a Hydrophilic, Metallic, and Self-Supported Bifunctional Electrocatalyst for Both H2 and O2 Generations. Nano Energy 2016, 24, 103–110. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, S.; Pan, K.; Dong, Z.; Zhang, B.; Wu, H.; Zhang, Q.; Lin, J.; Pang, H. Self-Supporting Transition Metal Chalcogenides on Metal Substrates for Catalytic Water Splitting. Chem. Eng. J. 2021, 421, 129645–129688. [Google Scholar] [CrossRef]
- Singh, B.; Indra, A. Designing Self-Supported Metal-Organic Framework Derived Catalysts for Electrochemical Water Splitting. Chem. Asian J. 2020, 15, 607–623. [Google Scholar] [CrossRef]
- Cheng, W.; Lu, X.; Luan, D.; Lou, X. NiMn-Based Bimetal-Organic Framework Nanosheets Supported on Multi-Channel Carbon Fibers for Efficient Oxygen Electrocatalysis. Angew. Chem. Int. Ed. 2020, 59, 18234–18239. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jia, B.; Chen, B.; Liu, Q.; Cai, M.; Xue, Z.; Fan, Y.; Wang, H.; Su, C.; Li, G. MOF-Derived Mn Doped Porous Cop Nanosheets as Efficient and Stable Bifunctional Electrocatalysts for Water Splitting. Dalton Trans. 2018, 47, 14679–14685. [Google Scholar] [CrossRef]
- Goswami, A.; Ghosh, D.; Pradhan, D.; Biradha, K. In Situ Grown Mn(II) MOF upon Nickel Foam Acts as a Robust Self-Supporting Bifunctional Electrode for Overall Water Splitting: A Bimetallic Synergistic Collaboration Strategy. ACS Appl. Mater. Interfaces 2022, 14, 29722–29734. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, M.; Wang, Y.; Sun, K.; Wang, L.; Xie, Z.; Shen, Y.; Han, X.; Yang, L.; Zou, X. Crystal Phase Engineering of Electrocatalysts for Energy Conversions. Nano Res. 2022, 15, 10194–10217. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Liu, J.; Lin, Z.; Hu, X.; Lin, X.; Xu, Z.; Zeb, A. Metal-Organic Framework-Derived Mixed-Phase Anatase/Rutile TiO2 towards Boosted Lithium Storage: Surface Engineering and Design Strategy Through Crystal Phase Transition. Mater. Today Nano 2022, 20, 100265–100278. [Google Scholar] [CrossRef]
- Chu, X.; Wang, L.; Li, J.; Xu, H. Strategies for Promoting Catalytic Performance of Ru-based Electrocatalysts towards Oxygen/Hydrogen Evolution Reaction. Chem. Rec. 2023, 21, 202300013–202300034. [Google Scholar] [CrossRef]
- Lee, M.; Yang, J.; Kwon, H.; Jang, H. Crystal Facet and Phase Engineering for Advanced Water Splitting. CrystEngComm 2022, 24, 5838–5864. [Google Scholar] [CrossRef]
- Li, M.; Shu, C.; Hu, A.; Li, J.; Liang, R.; Long, J. Invigorating the Catalytic Activity of Cobalt Selenide via Structural Phase Transition Engineering for Lithium–Oxygen Batteries. ACS Sustain. Chem. Eng. 2020, 8, 5018–5027. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, M.; Chen, T.; Li, L.; Shi, S.; Jiang, R. Unconventional Phase Engineering of Fuel-Cell Electrocatalysts. J. Electroanal. Chem. 2022, 916, 116363–116381. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Yang, D.; Li, J. High Performance MnO2 Supercapacitor Material Prepared by Modified Electrodeposition Method with Different Electrodeposition Voltages. J. Energy Storage 2020, 29, 101363–101372. [Google Scholar] [CrossRef]
- Mori, S.; Ando, D.; Sutou, Y. Sequential Two-Stage Displacive Transformation from β to α via β′Phase in Polymorphic MnTe Film. Mater. Des. 2020, 196, 109141–109149. [Google Scholar] [CrossRef]
- Chen, Y.; Lai, Z.; Zhang, X.; Fan, Z.; He, Q.; Tan, C.; Zhang, H. Phase Engineering of Nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256. [Google Scholar] [CrossRef]
- Bacirhonde, P.; Dzade, N.; Chalony, C.; Park, J.; Jeong, E.; Afranie, E.; Lee, S.; Kim, C.; Kim, D.; Park, C. Reduction of Transition-Metal Columbite-Tantalite as a Highly Efficient Electrocatalyst for Water Splitting. ACS Appl. Mater. Interfaces 2022, 14, 15090–15102. [Google Scholar] [CrossRef]
- Luo, J.; Guo, W.; Zhang, Q.; Wang, X.; Shen, L.; Fu, H.; Wu, L.; Chen, X.; Luo, H.; Li, N. One-Pot Synthesis of Mn–Fe Bimetallic Oxide Heterostructures as Bifunctional Electrodes for Efficient Overall Water Splitting. Nanoscale 2020, 12, 19992–20001. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Q.; Luo, J.; Fu, H.; Chen, X.; Wu, L.; Luo, H.; Li, N. Heteroatoms Adjusting Amorphous FeMn-Based Nanosheets via a Facile Electrodeposition Method for Full Water Splitting. ACS Sustain. Chem. Eng. 2021, 9, 5963–5971. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, Z.; Wang, D.; Yan, Y.; Wang, P.; Wang, X. Air-Stable Mn doped CuCl/CuO Hybrid Triquetrous Nanoarrays as Bifunctional Electrocatalysts for Overall Water Splitting. Chem. Asian J. 2021, 16, 3107–3113. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Ali, H.; Taha, T.; Qazi, H.; Ur Rahman, N.; Ajmal, Z.; Kalam, A.; Al-Sehemi, A.; Wageh, S.; et al. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. Chem. Rec. 2022, 23, 202200149–202200213. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, R.; Wang, D.; Xu, H.; Meng, F.; Dong, D.; Jiang, J.; Zhang, J.; An, M.; Yang, P. A Review: Target-Oriented Transition Metal Phosphide Design and Synthesis for Water Splitting. Int. J. Hydrog. Energy 2021, 46, 5131–5149. [Google Scholar] [CrossRef]
- Paul, A.; Symes, M. Decoupled Electrolysis for Water Splitting. Curr. Opin. Green Sustain. Chem. 2021, 29, 100453–100459. [Google Scholar] [CrossRef]
- Rosman, N.; Yunus, R.; Shah, N.; Shah, R.; Arifin, K.; Minggu, L.; Ludin, N. An Overview of Co-Catalysts on Metal Oxides for Photocatalytic Water Splitting. Int. J. Energy Res. 2022, 46, 11596–11619. [Google Scholar] [CrossRef]
- Tang, T.; Jiang, W.; Niu, S.; Liu, N.; Luo, H.; Chen, Y.; Jin, S.; Gao, F.; Wan, L.; Hu, J. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328. [Google Scholar] [CrossRef]
- Xiao, K.; Wei, J.; Han, W.; Liu, Z. Bimetallic Sulfide Interfaces: Promoting Destabilization of Water Molecules for Overall Water Splitting. J. Power Sources 2021, 487, 229408–229416. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Zhou, Y.; Tan, F.; Dai, R.; Liu, X.; Hu, G.; Jiang, L.; Chen, A.; Wu, R. Heterostructured Bimetallic Phosphide Nanowire Arrays with Lattice-Torsion Interfaces for Efficient Overall Water Splitting. J. Energy Chem. 2023, 77, 420–427. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect Engineering in Photocatalytic Materials. Nano Energy 2018, 53, 296–336. [Google Scholar] [CrossRef]
- Hasan, M.; Gomaa, A.; Khedr, G.; Salem, K.; Shaheen, B.; Allam, N. Highly Durable Compositionally Variant Bifunctional Tetrametallic Ni–Co–Mn–Fe Phosphide Electrocatalysts Synthesized by a Facile Electrodeposition Method for High-Performance Overall Water Splitting. Energy Fuels 2022, 36, 14371–14381. [Google Scholar] [CrossRef]
- Huang, H.; Hu, X.; Hou, Z.; Yang, D.; Xiang, D.; Hu, L. Interfacial Construction and Lattice Distortion-Triggered Bifunctionality of Mn-NiS/Mn-Ni3S4 for H2 Production. Fuel 2022, 328, 125337–125346. [Google Scholar] [CrossRef]
- Kotha, V.; Karajagi, I.; Ghosh, P.; Panchakarla, L. Potassium-Substituted LaMnO3 as a Highly Active and Exceptionally Stable Electrocatalyst toward Bifunctional Oxygen Reduction and Oxygen Evolution Reactions. ACS Appl. Energy Mater. 2022, 5, 7297–7307. [Google Scholar] [CrossRef]
- Liu, F.; Shi, C.; Guo, X.; He, Z.; Pan, L.; Huang, Z.; Zhang, X.; Zou, J. Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Adv. Sci. 2022, 9, 2200307–2200334. [Google Scholar] [CrossRef]
- Adegoke, K.; Maxakato, N. Empirical Analysis and Recent Advances in Metal-Organic Framework-Derived Electrocatalysts for Oxygen Reduction, Hydrogen and Oxygen Evolution Reactions. Mater. Chem. Phys. 2022, 289, 126438–126467. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, M.; Wang, Z.; Liu, Y.; Liu, Y.; Geng, Y.; Wang, L. A Self-Templating Method for Metal–Organic Frameworks to Construct Multi-Shelled Bimetallic Phosphide Hollow Microspheres as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7, 8602–8608. [Google Scholar] [CrossRef]
- Li, Z.; Hu, M.; Wang, P.; Liu, J.; Yao, J.; Li, C. Heterojunction Catalyst in Electrocatalytic Water Splitting. Coord. Chem. Rev. 2021, 439, 213953–213984. [Google Scholar] [CrossRef]
- Liu, W.; Cao, D.; Cheng, D. Review on Synthesis and Catalytic Coupling Mechanism of Highly Active Electrocatalysts for Water Splitting. Energy Technol. 2021, 9, 2000855–2000878. [Google Scholar] [CrossRef]
- Qin, D.; Tang, Y.; Ma, G.; Qin, L.; Tao, C.; Zhang, X.; Tang, Z. Molecular Metal Nanoclusters for ORR, HER and OER: Achievements, Opportunities and Challenges. Int. J. Hydrog. Energy 2021, 46, 25771–25781. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Li, W.; Gao, W.; Tang, Y.; Li, R. Hollow Bimetallic Cobalt-Based Selenide Polyhedrons Derived from Metal–Organic Framework: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting. J. Mater. Chem. A 2017, 5, 17982–17989. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, B.; Zhao, S. Cation-Tuning Engineering on Metal Oxides for Oxygen Electrocatalysis. Chem. Eur. J. 2022, 29, 202202000–202202010. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Hu, R.; Yao, L.; Sui, L.; Liu, Y.; Abdelkader, A.; Li, Y.; Ren, X.; Deng, L. Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries. Nano-Micro Lett. 2023, 15, 48. [Google Scholar] [CrossRef]
- Huo, X.; Yu, H.; Xing, B.; Zuo, X.; Zhang, N. Review of High Entropy Alloys Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Chem. Rec. 2022, 22, 202200175–202200196. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Y.; Qi, S.; Li, W.; Zhao, M. Bifunctional HER/OER or OER/ORR Catalytic Activity of Two-Dimensional TM3(HITP)2 with TM = Fe-Zn. J. Phys. Chem. C 2020, 124, 9350–9359. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Liu, Y.; Wang, R.; Yang, Y.; Chen, J. A Critical Review of Research Progress for Metal Alloy Materials in Hydrogen Evolution and Oxygen Evolution Reaction. Environ. Sci. Pollut. Res. 2022, 30, 11302–11320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Jiang, R. Interfacial Engineering of Metal/Metal Oxide Heterojunctions toward Oxygen Reduction and Evolution Reactions. ChemPlusChem 2021, 86, 1586–1601. [Google Scholar] [CrossRef]
Catalysts | Water Electrolysis Test | η10 (mV) | Tafel Slope (mV dec−1) | Electrolyte | Ref. |
---|---|---|---|---|---|
NS-MnO2 | HER | 197 | 62 | 1 M KOH | [68] |
OER | 320 | 40 | |||
NF/T(Ni3S2/MnS-O) | HER | 116 | 54 | 1 M KOH | [75] |
OER | 228 | 46 | |||
Se-MnS/NiS | HER | 56 | 55 | 1 M KOH | [76] |
OER | 210 | 50 | |||
MILN-Based Co3S4/MnS2 (20 mA cm−2) | HER | 197 | 150 | 1 M KOH | [40] |
OER | 265 | 120 | |||
Pt/C | HER | 46 | 41 | 1 M KOH | [40] |
RuO2 | OER | 316 | 82 | 1 M KOH | [90] |
Co/Co9S8/MnS-NMC | OER | 330 | 51 | 1 M KOH | [90] |
MCCF/NiMn-MOFs | OER | 280 | 86 | 1 M KOH | [98] |
α-MnS | OER | 292 | 70 | 1 M KOH | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhou, Y.; Liu, Y.; Xu, Z.; Li, H. Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting. Int. J. Mol. Sci. 2023, 24, 6861. https://doi.org/10.3390/ijms24076861
Hu J, Zhou Y, Liu Y, Xu Z, Li H. Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting. International Journal of Molecular Sciences. 2023; 24(7):6861. https://doi.org/10.3390/ijms24076861
Chicago/Turabian StyleHu, Jing, Yuru Zhou, Yinan Liu, Zhichao Xu, and Haijin Li. 2023. "Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting" International Journal of Molecular Sciences 24, no. 7: 6861. https://doi.org/10.3390/ijms24076861
APA StyleHu, J., Zhou, Y., Liu, Y., Xu, Z., & Li, H. (2023). Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting. International Journal of Molecular Sciences, 24(7), 6861. https://doi.org/10.3390/ijms24076861