Revealing the Meissner Corpuscles in Human Glabrous Skin Using In Vivo Non-Invasive Imaging Techniques
Abstract
:1. Introduction
2. Results
2.1. Comparing OCT and LSM as Non-Invasive In Vivo Techniques on Glabrous Skin
2.2. LSM of Meissner Corpuscles
2.3. Individual Results for Participants
2.4. Meissner Corpuscles Locally Alter the Morphology of the Epidermis and Stratum Corneum
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Optical Coherence Tomography
4.3. Laser Scan Microscopy
4.4. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jakubiak, B.K.; Feeney, B.C. Affectionate touch to promote relational, psychological, and physical well-being in adulthood: A theoretical model and review of the research. Personal. Soc. Psychol. Rev. 2017, 21, 228–252. [Google Scholar] [CrossRef] [PubMed]
- Löken, L.S.; Olausson, H. The skin as a social organ. Exp. Brain Res. 2010, 204, 305–314. [Google Scholar] [CrossRef]
- White, B.W.; Saunders, F.A.; Scadden, L.; Collins, C.C. Seeing with the skin. Percep. Psychop. 1970, 7, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Ackerley, R.; Carlsson, I.; Wester, H.; Olausson, H.; Backlund Wasling, H. Touch perceptions across skin sites: Differences between sensitivity, direction discrimination and pleasantness. Front. B Neurosci. 2014, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahli, R.; Prot, A.; Wang, A.; Müser, M.H.; Piovarči, M.; Didyk, P.; Bennewitz, R. Tactile perception of randomly rough surfaces. Sci. Rep. 2020, 10, 15800. [Google Scholar] [CrossRef]
- Lee, G.; Son, J.H.; Lee, S.; Kim, S.W.; Kim, D.; Nguyen, N.N.; Lee, S.G.; Cho, K. Fingerpad-Inspired Multimodal Electronic Skin for Material Discrimination and Texture Recognition. Adv. Sci. 2021, 8, 2002606. [Google Scholar] [CrossRef]
- Johansson, R.S.; Vallbo, Å.B. Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci. 1983, 6, 27–32. [Google Scholar] [CrossRef]
- Zimmerman, A.; Bai, L.; Ginty, D.D. The gentle touch receptors of mammalian skin. Science 2014, 346, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Walcher, J.; Ojeda-Alonso, J.; Haseleu, J.; Oosthuizen, M.K.; Rowe, A.H.; Bennett, N.C.; Lewin, G.R. Specialized mechanoreceptor systems in rodent glabrous skin. J. Physiol. 2018, 596, 4995–5016. [Google Scholar] [CrossRef] [Green Version]
- Gould, J. Superpowered skin. Nature 2018, 563, S84. [Google Scholar] [CrossRef] [Green Version]
- Neubarth, N.L.; Emanuel, A.J.; Liu, Y.; Springel, M.W.; Handler, A.; Zhang, Q.; Lehnert, B.P.; Guo, C.; Orefice, L.L.; Abdelaziz, A. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 2020, 368, eabb2751. [Google Scholar] [CrossRef]
- Saal, H.P.; Bensmaia, S.J. Touch is a team effort: Interplay of submodalities in cutaneous sensibility. Trends Neurosci. 2014, 37, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Creigh, P.D.; McDermott, M.P.; Sowden, J.E.; Ferguson, M.; Herrmann, D.N. In-vivo reflectance confocal microscopy of Meissner’s corpuscles in diabetic distal symmetric polyneuropathy. J. Neurolol. Sci. 2017, 378, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Manganelli, F.; Nolano, M.; Pisciotta, C.; Provitera, V.; Fabrizi, G.M.; Cavallaro, T.; Satancanelli, A.; Caporaso, G.; Sjy, M.E.; Santoro, L. Charcot-Marie-Tooth disease: New insights from skin biopsy. Neurology 2015, 85, 1202–1208. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, D.N.; Boger, J.N.; Jansen, C.; Alessi-Fox, C. In vivo confocal microscopy of Meissner corpuscles as a measure of sensory neuropathy. Neurology 2007, 69, 2121–2127. [Google Scholar] [CrossRef] [PubMed]
- García-Mesa, Y.; Feito, J.; González-Gay, M.; Martínez, I.; García-Piqueras, J.; Martín-Cruces, J.; Vina, E.; Cobo, T.; García-Suárez, O. Involvement of cutaneous sensory corpuscles in non-painful and painful diabetic neuropathy. J. Clin. Med. 2021, 10, 4609. [Google Scholar] [CrossRef]
- Infante, V.H.P.; Maia Campos, P. Application of a Reflectance Confocal Microscopy Imaging Analysis Score for the Evaluation of Non-Melanogenic Changes in Male Photoaged Skin. Photochem. Photobiol. 2022, Online ahead of print. [Google Scholar] [CrossRef]
- Creigh, P.D.; Du, K.; Wood, E.P.; Mountain, J.; Sowden, J.; Charles, J.; Behrens-Spraggins, S.; Herrmann, D.N. In Vivo Reflectance Microscopy of Meissner Corpuscles and Bedside Measures of Large Fiber Sensory Function: A Normative Data Cohort. Neurology 2022, 98, e750–e758. [Google Scholar] [CrossRef]
- Skedung, L.; El Rawadi, C.; Arvidsson, M.; Farcet, C.; Luengo, G.S.; Breton, L.; Rutland, M.W. Mechanisms of tactile sensory deterioration amongst the elderly. Sci. Rep. 2018, 8, 5303. [Google Scholar] [CrossRef] [Green Version]
- Liba, O.; Lew, M.D.; SoRelle, E.D.; Dutta, R.; Sen, D.; Moshfeghi, D.M.; Chu, S.; de La Zerda, A. Speckle-modulating optical coherence tomography in living mice and humans. Nat. Commun. 2017, 8, 15845. [Google Scholar] [CrossRef] [Green Version]
- Crowther, J.M.; Sieg, A.; Blenkiron, P.; Marcott, C.; Matts, P.J.; Kaczvinsky, J.R.; Rawlings, A.V. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br. J. Dermatol. 2008, 159, 567–577. [Google Scholar] [CrossRef]
- Mogensen, M.; Morsy, H.A.; Thrane, L.; Jemec, G.B. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 2008, 217, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Czekalla, C.; Schönborn, K.H.; Lademann, J.; Meinke, M.C. Noninvasive determination of epidermal and stratum corneum thickness in vivo using two-photon microscopy and optical coherence tomography: Impact of body area, age, and gender. Skin Pharmacol. Physiol. 2019, 32, 142–150. [Google Scholar] [CrossRef]
- Jobanputra, R.D.; Boyle, C.J.; Dini, D.; Masen, M.A. Modelling the effects of age-related morphological and mechanical skin changes on the stimulation of tactile mechanoreceptors. J. Mech. Behav. Biomed. Mater. 2020, 112, 104073. [Google Scholar] [CrossRef] [PubMed]
- Kröger, M.; Scheffel, J.; Nikolaev, V.V.; Shirshin, E.A.; Siebenhaar, F.; Schleusener, J.; Lademann, J.; Maurer, M.; Darvin, M.E. In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging. Sci. Rep. 2020, 10, 14930. [Google Scholar] [CrossRef]
- Gerling, G.J.; Thomas, G.W. The effect of fingertip microstructures on tactile edge perception. In Proceedings of the World Haptics Conference, Pisa, Italy, 18–20 March 2005; pp. 63–72. [Google Scholar] [CrossRef]
- Cuendias, P.; del Rio, R.; García-Suárez, O.; Cobo, R.; Aragona, M.; Feito, J.; Martín-Biedma, B.; Vega, J.A.; García-Mesa, Y. Differences between finger and toe Meissner corpuscles: Searching for the optimal place to analyze meissner corpuscles in cutaneous biopsy. Transl. Res. Anat. 2023, 30, 100234. [Google Scholar] [CrossRef]
- Yuan, Y.; Verma, R. Measuring microelastic properties of stratum corneum. Colloids Surf. B Biointerfaces 2006, 48, 6–12. [Google Scholar] [CrossRef]
- Cauna, N. Nature and functions of the papillary ridges of the digital skin. Anat. Record 1954, 119, 449–468. [Google Scholar] [CrossRef]
- Lademann, J.; Knüttel, A.; Richter, H.; Otberg, N.; Pelchrzim, R.V.; Audring, H. Application of optical coherent tomography for skin diagnostics. Laser Phys. 2005, 15, 288–294. [Google Scholar]
- Klein, A.L.; Lubda, M.; Skov, P.S.; Vogt, A.; Keck, C.M.; Lademann, J.; Beckers, I.; von Hagen, J.; Patzelt, A. Investigation of transfollicular caffeine penetration using microdialysis on ex vivo porcine ear skin. Eur. J. Pharm. Biopharm. 2020, 157, 1–8. [Google Scholar] [CrossRef]
- Kuck, M.; Strese, H.; Alawi, S.A.; Meinke, M.C.; Fluhr, J.W.; Burbach, G.J.; Krah, M.; Sterry, W.; Lademann, J. Evaluation of optical coherence tomography as a non-invasive diagnostic tool in cutaneous wound healing. Skin Res. Technol. 2014, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Koenig, K.; Speicher, M.; Bückle, R.; Reckfort, J.; McKenzie, G.; Welzel, J.; Koehler, M.J.; Elsner, P.; Kaatz, M. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. J. Biophotonics 2009, 2, 389–397. [Google Scholar] [CrossRef] [PubMed]
- König, K.; Breunig, H.G.; Batista, A.; Schindele, A.; Zieger, M.; Kaatz, M. Translation of two-photon microscopy to the clinic: Multimodal multiphoton CARS tomography of in vivo human skin. J. Biomed. Opt. 2020, 25, 014515. [Google Scholar] [CrossRef] [PubMed]
- Longo, C.; Casari, A.; Beretti, F.; Cesinaro, A.M.; Pellacani, G. Skin aging: In vivo microscopic assessment of epidermal and dermal changes by means of confocal microscopy. J. Am. Acad. Dermatol. 2013, 68, e73–e82. [Google Scholar] [CrossRef] [PubMed]
- Robertson, K.; Rees, J.L. Variation in epidermal morphology in human skin at different body sites as measured by reflectance confocal microscopy. Acta Derm.-Venereol. 2010, 90, 368–373. [Google Scholar] [CrossRef] [Green Version]
Participant/Age/Sex | Anatomic Position | SC Thickness (µm) | Epidermis Thickness (µm) MC/No MC | Protrusions (µm) |
---|---|---|---|---|
001/32/F | Index finger | 180 | 72/86.5 | 23 |
Small finger | 126 | 55/55 | 33 | |
Palm | 107 | 59/67 | 23 | |
002/26/F | Index finger | 134 | 74/85 | 13.5 |
Index finger | 128 | 70/81 | 10 | |
Small finger | 102 | 66/72 | 19 | |
Small finger | 102 | 60/69 | 31 | |
003/30/M | Index finger | 190 | 95/103 | 32 |
Small finger | 157 | 112/138 | 14 | |
Palm | 89 | 45/76 | 14 | |
004/29/F | Index finger | 184 | 93/105 | 37 |
Index finger | 180 | 76/96 | 22 | |
Small finger | 164 | 59/67 | 10 | |
Palm | 112 | 63/102 | 0 | |
005/29/F | Index finger | 139 | 70/103 | 25 |
Index finger | 136 | 60/89 | 24 | |
Palm | 88 | 54/66 | 5 | |
006/55/F | Small finger | 170 | 75/83 | 22 |
Palm | 125 | 59/66 | 12 | |
007/52/F | Small finger | 127 | 65/59 | 26 |
Palm | 100 | 65/92 | 0 | |
008/44/M | Index finger | 190 | 72/88 | 35 |
Palm | 110 | 64/81 | 10 | |
Palm | 92 | 64/77 | 5 | |
009/32/F | Index finger | 168 | 75/85 | 31 |
Small finger | 121 | 65/63 | 22 | |
Small finger | 113 | 62/55 | 31 | |
Palm | 104 | 59/58 | 22 | |
010/23/M | Small finger | 202 | 132/115 | 28 |
Palm | 158 | 85/65 | 25 | |
Palm | 156 | 88/71 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Infante, V.H.P.; Bennewitz, R.; Klein, A.L.; Meinke, M.C. Revealing the Meissner Corpuscles in Human Glabrous Skin Using In Vivo Non-Invasive Imaging Techniques. Int. J. Mol. Sci. 2023, 24, 7121. https://doi.org/10.3390/ijms24087121
Infante VHP, Bennewitz R, Klein AL, Meinke MC. Revealing the Meissner Corpuscles in Human Glabrous Skin Using In Vivo Non-Invasive Imaging Techniques. International Journal of Molecular Sciences. 2023; 24(8):7121. https://doi.org/10.3390/ijms24087121
Chicago/Turabian StyleInfante, Victor Hugo Pacagnelli, Roland Bennewitz, Anna Lena Klein, and Martina C. Meinke. 2023. "Revealing the Meissner Corpuscles in Human Glabrous Skin Using In Vivo Non-Invasive Imaging Techniques" International Journal of Molecular Sciences 24, no. 8: 7121. https://doi.org/10.3390/ijms24087121
APA StyleInfante, V. H. P., Bennewitz, R., Klein, A. L., & Meinke, M. C. (2023). Revealing the Meissner Corpuscles in Human Glabrous Skin Using In Vivo Non-Invasive Imaging Techniques. International Journal of Molecular Sciences, 24(8), 7121. https://doi.org/10.3390/ijms24087121