From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues
Abstract
:1. Introduction
2. Improvement of Agronomic Traits through Transgenic Approaches
2.1. Resistance to Herbicides
2.2. Tolerance to Abiotic Stresses
2.3. Resistance to Biotic Stresses
2.4. Improvement of Quality-Related Traits
3. Improvement of Agronomic Traits through Intragenesis/Cisgenesis
4. Improvement of Agronomic Traits through Genome Editing (GE)
4.1. Improvement of Yield and Yield-Related Traits
4.2. Tolerance to Abiotic Stresses
4.3. Improving Resistance to Plant Pathogens
4.4. Improvement of Quality-Related Traits
4.5. High-Throughput Approaches for Modifying Crops through GE
5. Distribution Worldwide of Biotech Crops and Event Approval
6. Global Regulation of Transgenic and Genome-Edited Crops
7. Transgenic Versus GE Plants: What Possible Future?
8. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collard, B.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, P.; Chawade, A.; Larsson, M.; Olsson, J.; Olsson, O. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int. J. Plant Genom. 2011, 2011, 314829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCallum, C.M.; Comai, L.; Greene, E.A.; Henikoff, S. Targeted screening for induced mutations. Nat. Biotechnol. 2000, 18, 455–457. [Google Scholar] [CrossRef]
- Kamthan, A.; Chaudhuri, A.; Kamthan, M.; Datta, A. Genetically modified (GM) crops: Milestones and new advances in crop improvement. Theor. Appl. Genet. 2016, 129, 1639–1655. [Google Scholar] [CrossRef]
- Kamburova, V.S.; Nikitina, E.V.; Shermatov, S.E.; Buriev, Z.T.; Kumpatla, S.P.; Emani, C.; Abdurakhmonov, I.Y. Genome Editing in Plants: An Overview of Tools and Applications. Int. J. Agron. 2017, 2017, 7315351. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Gao, C. Targeted Genome Modification Technologies and Their Applications in Crop Improvements. Plant Cell Rep. 2014, 33, 575–583. [Google Scholar] [CrossRef]
- Puchta, H. Applying CRISPR/Cas for Genome Engineering in Plants: The Best is Yet to Come. Curr. Opin. Plant Biol. 2017, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, Q.; Zhu, Q.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.; Li, H.; Lin, Y.; et al. A robust CRISPR/Cas9 System for Convenient, High-efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Mol. Plant 2015, 8, 1274–1284. [Google Scholar] [CrossRef]
- Yin, K.; Gao, C.; Qiu, J.-L. Progress and prospects in plant genome editing. Nat. Plants 2017, 3, 17107. [Google Scholar] [CrossRef]
- Brookes, G.; Barfoot, P. GM Crop Technology Use 1996–2018: Farm Income and Production Impacts. GM Crops Food 2020, 11, 242–261. [Google Scholar] [CrossRef]
- Ricroch, A.E.; Martin-Laffon, J.; Rault, B.; Pallares, V.C.; Kuntz, M. Next biotechnological plants for addressing global challenges: The contribution of transgenesis and new breeding techniques. New Biotechnol. 2022, 66, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Dill, G.M. Glyphosate-resistant crops: History, status and future. Pest Manag. Sci. 2005, 61, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Pagano, M.; Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production; Miransari, M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Chapter 1; pp. 1–26. ISBN 978-0-12-801536-0. [Google Scholar] [CrossRef]
- Xu, H.; Guo, Y.; Qiu, L.; Ran, Y. Progress in Soybean Genetic Transformation Over the Last Decade. Front. Plant Sci. 2022, 13, 900318. [Google Scholar] [CrossRef] [PubMed]
- Sripaoraya, S.; Keawsompong, S.; Insupa, P.; Power, J.B.; Davey, M.R.; Srinives, P. Genetically manipulated pineapple: Transgene stability, gene expression and herbicide tolerance under field conditions. Plant Breed. 2006, 125, 411–413. [Google Scholar] [CrossRef]
- Wang, Y.; Wisniewski, M.; Meilan, R.; Cui, M.; Fuchigami, L. Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J. Appl. Hortic. 2006, 8, 87–90. [Google Scholar] [CrossRef]
- Jiang, J.; Bai, J.; Li, S.; Xiaorong, L.; Liyong, Y.; Yuke, H. HTT2 promotes plant thermotolerance in Brassica rapa. BMC Plant Biol. 2018, 18, 127. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yang, H.; Fang, Y.; Guo, W.; Chen, H.; Zhang, X.; Dai, W.; Chen, S.; Hao, Q.; Yuan, S.; et al. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnol. J. 2021, 19, 702–716. [Google Scholar] [CrossRef]
- González, F.G.; Capella, M.; Ribichich, K.F.; Curín, F.; Giacomelli, J.I.; Ayala, F.; Watson, G.; Otegui, M.E.; Chan, R.L. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type. J. Exp. Bot. 2019, 70, 1669–1681. [Google Scholar] [CrossRef] [Green Version]
- ISAAA. GM Approval Database. Available online: http://www.isaaa.org/gmapprovaldatabase/default.asp (accessed on 2 February 2023).
- Anwar, A.; Kim, J.K. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 695. [Google Scholar] [CrossRef] [Green Version]
- Mores, A.; Borrelli, G.M.; Laidò, G.; Petruzzino, G.; Pecchioni, N.; Amoroso, L.G.M.; Desiderio, F.; Mazzucotelli, E.; Mastrangelo, A.M.; Marone, D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. Int. J. Mol. Sci. 2021, 22, 5423. [Google Scholar] [CrossRef]
- Xiangdong, W.; Congyu, L.; Zhijing, L.; Changming, Y. Analysis on virus resistance and fruit quality for T4 generation of transgenic papaya. Front. Biol. China 2007, 2, 284–290. [Google Scholar] [CrossRef]
- Dutt, M.; Barthe, G.; Irey, M.; Grosser, J. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB.; Citrus Greening). PLoS ONE 2015, 10, e0137134, Erratum in PLoS ONE 2016, 11, e0147657. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Datta, K.; Khush, G.S.; Zhang, Q.; Datta, S.K. Field performance of Xa21 transgenic indica rice (Oryza sativa L.), IR72. Theor. Appl. Genet. 2000, 101, 15–20. [Google Scholar] [CrossRef]
- Dastan, S.; Ghareyazie, B.; Abdollahi, S. Field trial evidence of non-transgenic and transgenic Bt. rice genotypes in north of Iran. J. Genet. Eng. Biotechnol. 2020, 18, 12. [Google Scholar] [CrossRef]
- Budeguer, F.; Enrique, R.; Perera, M.F.; Racedo, J.; Castagnaro, A.P.; Noguera, A.S.; Welin, B. Genetic Transformation of Sugarcane, Current Status and Future Prospects. Front. Plant Sci. 2021, 12, 768609. [Google Scholar] [CrossRef]
- Wang, W.Z.; Yang, B.P.; Feng, X.Y.; Cao, Z.Y.; Feng, C.L.; Wang, J.G.; Xiong, G.R.; Shen, L.B.; Zeng, J.; Zhao, T.T.; et al. Development and Characterization of Transgenic Sugarcane with Insect Resistance and Herbicide Tolerance. Front. Plant Sci. 2017, 8, 1535. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.A.; Gallo-Meagher, M.; Comstock, J.C.; Miller, J.D.; Jain, M.; Abouzid, A. Agronomic evaluation of sugarcane lines transformed for resistance to strain E. Crop Sci. 2005, 45, 2060–2067. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.A.; Glynn, N.C.; Comstock, J.C.; Davis, M.J. Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field Crop Res. 2009, 111, 39–46. [Google Scholar] [CrossRef]
- Yao, W.; Ruan, M.; Qin, L.; Yang, C.; Chen, R.; Chen, B.; Zhang, M. Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus. Front Plant Sci. 2017, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.D.; Witek, K.; Verweij, W.; Jupe, F.; Cooke, D.; Dorling, S.; Tomlinson, L.; Smoker, M.; Perkins, S.; Foster, S. Elevating crop disease resistance with cloned genes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130087. [Google Scholar] [CrossRef] [Green Version]
- Ghislain, M.; Byarugaba, A.A.; Magembe, E.; Njoroge, A.; Rivera, C.; Román, M.L.; Tovar, J.C.; Gamboa, S.; Forbes, G.A.; Kreuze, J.F.; et al. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotechnol. J. 2019, 17, 1119–1129. [Google Scholar] [CrossRef] [Green Version]
- Webi, E.N.; Kariuki, D.; Kinyua, J.; Njoroge, A.; Ghislain, M.; Magembe, E. Extreme resistance to late blight disease by transferring 3 R genes from wild relatives into African farmer-preferred potato varieties. Afr. J. Biotechnol. 2019, 18, 845–856. [Google Scholar] [CrossRef]
- Yang, J.; Xing, G.; Niu, L.; He, H.; Guo, D.; Du, Q.; Qian, X.; Yao, Y.; Li, H.; Zhong, X.; et al. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B. Transgenic Res. 2018, 27, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, S.H.; Park, S.; Lee, H.; Lee, J.S.; Park, W.S.; Ahn, M.; Kim, Y.; Jeong, J.C.; Lee, H.; et al. Enhanced accumulation of carotenoids in sweet potato plants overexpressing IbOr-Ins gene in purple-fleshed sweet potato cultivar. Plant Physiol. Biochem. 2015, 86, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Frauenlob, J.; Scharl, M.; Stefano D’Amico, S.; Regine Schoenlechner, R. Effect of different lipases on bread staling in comparison with Diacetyl tartaric ester of monoglycerides (DATEM). Cereal Chem. 2018, 95, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Larkin, P.J.; Liu, Q.; Vanhercke, T.; Zhou, X.R.; Bose, U.; Broadbent, J.A.; Colgrave, M.L.; Ral, J.P.; Reynolds, K.B.; Sun, M.; et al. Transgenic wheat with increased endosperm lipid—Impacts on grain composition and baking quality. J. Cereal Sci. 2021, 101, 103289. [Google Scholar] [CrossRef]
- Taylor, D.C.; Zhang, Y.; Kumar, A.; Francis, T.; Giblin, E.M.; Barton, D.L.; Ferrie, J.R.; Laroche, A.; Shah, S.; Zhu, W.; et al. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany 2009, 87, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Ramireddy, E.; Hosseini, S.A.; Eggert, K.; Gillandt, S.; Gnad, H.; von Wirén, N.; Schmülling, T. Root Engineering in Barley: Increasing Cytokinin Degradation Produces a Larger Root System, Mineral Enrichment in the Shoot and Improved Drought Tolerance. Plant Physiol. 2018, 177, 1078–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, C.M.; Krattiger, A.F. The First Decade of Crop Biotechnology. In Global Review of the Field Testing and Commercialization of Transgenic Plants, 1986 to 1995; ISAAA: Ithaca, NY, USA, 1996; Volume 1. [Google Scholar]
- Kramer, M.G.; Redenbaugh, K. Commercialization of a tomato with an antisense polygalacturonase gene: The FLAVR SAVR™ tomato story. Euphytica 1994, 79, 293–297. [Google Scholar] [CrossRef]
- Schouten, H.J.; Krens, F.A.; Jacobsen, E. Cisgenic Plants are Similar to Traditionally Bred Plants: International Regulations for Genetically Modified Organisms Should be Altered to Exempt Cisgenesis. EMBO Rep. 2006, 7, 750–753. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, C.; Schlechter, R.; Herrera, D.; Torres, E.; Serrano, A.; Medina, C.; Arce-Johnson, P. Cisgenesis and Intragenesis: New Tools for Improving Crops. Biol. Res. 2013, 46, 323–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holme, I.B.; Wendt, T.; Holme, P.B. Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol. J. 2013, 11, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Cardi, T. Cisgenesis and genome editing: Combining concepts and effortsfor a smarter use of genetic resources in crop breeding. Plant Breed. 2016, 135, 139–147. [Google Scholar] [CrossRef]
- Moradpour, M.; Abdullah, S.N.A. Cisgenesis and Intragenesis as New Strategies for Crop Improvement. In Crop Improvement: Sustainability Through Leading-Edge Technology; Abdullah, S., Chai-Ling, H., Wagstaff, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 191–216. [Google Scholar] [CrossRef]
- Gadaleta, A.; Giancaspro, A.; Blechl, A.E.; Blanco, A. A transgenic durum wheat line that is free of marker genes and expresses 1DY10. J. Cereal Sci. 2008, 48, 439–445. [Google Scholar] [CrossRef]
- Maltseva, E.; Ismagul, A.; Iskakova, G.; Chirkin, A.; Skiba, Y.; Ismagulova, G.; Eliby, S.; Aitkhozhinaet, N. Wheat Cisgenic Transformation with Class I Chitinase Gene. J. Biotechnol. 2014, 185, S116–S117. [Google Scholar] [CrossRef]
- Holme, I.B.; Dionisio, G.; Brinch-Pedersen, H.; Wendt, T.; Madsen, C.K.; Vincze, E.; Holm, P.B. Cisgenic barley with improved phytase activity. Plant Biotechnol. J. 2012, 10, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Singh, S.; Shikha, K.; Kumar, A. Cisgenesis a Sustainable Approach of Gene Introgression and Its Utilization in Horticultural Crops: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 5002–5009. [Google Scholar]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Vossen, J.H.; Visser, R.G.F. Durable Late Blight Resistance in Potato through Dynamic Varieties Obtained by Cisgenesis: Scientific and Societal Advances in the DuRPh Project. Potato Res. 2016, 59, 35–66. [Google Scholar] [CrossRef] [Green Version]
- Haesaert, G.; Vossen, J.H.; Custers, R.; De Loose, M.; Haverkort, A.; Heremans, B.; Hutten, R.; Kessel, G.; Landschoot, S.; Van Droogenbroeck, B.; et al. Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. Crop Prot. 2015, 77, 163–175. [Google Scholar] [CrossRef]
- Krause, S.M.B.; Näther, A.; Ortiz Cortes, V.; Mullins, E.; Kessel, G.J.T.; Lotz, L.A.P.; Tebbe, C.C. No Tangible Effects of Field-Grown Cisgenic Potatoes on Soil Microbial Communities. Front. Bioeng. Biotechnol. 2020, 8, 603145. [Google Scholar] [CrossRef]
- Chawla, R.; Shakya, R.; Rommens, C.M. Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnol. J. 2012, 10, 913–924. [Google Scholar] [CrossRef] [PubMed]
- de Vetten, N.; Wolters, A.; Raemakers, K.; van der Meer, I.; ter Stege, R.; Heeres, E.; Heeres, P.; Visser, R. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat. Biotech. 2003, 21, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.G.; Schaart, J.G.; Groenwold, R.; Jacobsen, E.; Schouten, H.J.; Krens, F.A. Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol. Biol. 2011, 75, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Vanblaere, T.; Szankowski, I.; Schaart, J.; Schouten, H.; Flachowsky, H.; Broggini, G.A.L.; Gessler, C. The development of a cisgenic apple plant. J. Biotechnol. 2011, 154, 304–311. [Google Scholar] [CrossRef]
- Hamdan, M.F.; Karlson, C.K.S.; Teoh, E.Y.; Lau, S.-E.; Tan, B.C. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. Plants 2022, 11, 2625. [Google Scholar] [CrossRef]
- Menz, J.; Modrzejewski, D.; Hartung, F.; Wilhelm, R.; Sprink, T. Genome Edited Crops Touch the Market: A View on the Global Development and Regulatory Environment. Front. Plant Sci. 2020, 11, 586027. [Google Scholar] [CrossRef] [PubMed]
- Sedeek, K.E.M.; Mahas, A.; Mahfouz, M. Plant Genome Engineering for Targeted Improvement of Crop Traits. Front. Plant Sci. 2019, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Metje-Sprink, J.; Sprink, T.; Hartung, F. Genome-edited plants in the field. Curr. Opin. Biotechnol. 2020, 61, 1–6. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Zhou, Z.; Wu, P.; Fang, M.; Pan, X.; Lin, Q.; Luo, W.; Wu, G.; Li, H. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci. 2016, 7, 377. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Hua, Y.; Fu, Y.; Li, J.; Liu, Q.; Jiao, X.; Xin, G.; Wang, J.; Wang, X.; Yan, C.; et al. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci. China Life Sci. 2017, 60, 506–515, Erratum in Sci. China Life Sci. 2019, 62, 1270. [Google Scholar] [CrossRef]
- Zhou, J.; Xin, X.; He, Y.; Chen, H.; Li, Q.; Tang, X.; Zhong, Z.; Deng, K.; Zheng, X.; Akher, S.A.; et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep. 2019, 38, 475–485. [Google Scholar] [CrossRef]
- Hu, X.; Cui, Y.; Dong, G.; Feng, A.; Wang, D.; Zhao, C.; Zhang, Y.; Hu, J.; Zeng, D.; Guo, L.; et al. Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Sci. Rep. 2019, 9, 19096. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, H.; Li, S.; Li, J.; Yan, L.; Xia, L. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J. Integr. Plant Biol. 2021, 63, 1649–1663. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Gao, H.; Wang, H.; Lafitte, H.R.; Archibald, R.L.; Yang, M.; Hakimi, S.M.; Mo, H.; Habben, J.E. ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 2017, 15, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Liu, Y.; Wang, F.; Li, T.; Chen, Z.; Kong, D.; Bi, J.; Zhang, F.; Luo, X.; Wang, J.; et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol. Breed. 2019, 39, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, H.; Tamiru, M.; Abe, A.; Yoshida, K.; Uemura, A.; Yaegashi, H.; Obara, T.; Oikawa, K.; Utsushi, H.; Kanzaki, E.; et al. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat. Biotechnol. 2015, 33, 445–449. [Google Scholar] [CrossRef]
- Zeng, X.; Luo, Y.; Vu, N.T.Q.; Shen, S.; Xia, K.; Zhang, M. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biol. 2020, 20, 313. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, S.; Jiang, N.; Zhao, X.; Bai, Z.; Liu, J.; Yao, W.; Tang, W.; Xiao, G.; Chao Lv, C.; et al. Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9. Plant Biotech. J. 2022, 20, 876–885. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Liu, P.; Lei, C.; Hao, W.; Gao, Y.; Liu, Y.G.; Zhao, K. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS ONE 2016, 11, e0154027. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Gadlage, M.J.; Lafitte, H.R.; Lenderts, B.; Yang, M.; Schroder, M.; Farrell, J.; Snopek, K.; Peterson, D.; Feigenbutz, L.; et al. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat. Biotechnol. 2020, 38, 579–581. [Google Scholar] [CrossRef]
- Tang, L.; Mao, B.; Li, Y.; Lv, Q.; Zhang, L.; Chen, C.; He, H.; Wang, W.; Zeng, X.; Shao, Y.; et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci. Rep. 2017, 7, 14438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.H.; Zhang, Y.; Huang, C.F. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. J. Integr. Agric. 2019, 18, 688–697. [Google Scholar] [CrossRef]
- Songmei, L.; Jie, J.; Yang, L.; Jun, M.; Shouling, X.; Yuanyuan, T.; Youfa, L.; Qingyao, S.; Jianzhong, H. Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice. Rice Sci. 2019, 26, 88–97. [Google Scholar] [CrossRef]
- Nieves-Cordones, M.; Mohamed, S.; Tanoi, K.; Kobayashi, N.I.; Takagi, K.; Vernet, A.; Guiderdoni, E.; Périn, C.; Sentenac, H.; Véry, A.A. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. Plant J. 2017, 92, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neequaye, M.; Stavnstrup, S.; Harwood, W.; Lawrenson, T.; Hundleby, P.; Irwin, J.; Troncoso-Rey, P.; Saha, S.; Traka, M.H.; Mithen, R.; et al. CRISPR-Cas9-Mediated Gene Editing of MYB28 Genes Impair Glucoraphanin Accumulation of Brassica oleracea in the Field. CRISPR J. 2021, 4, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Raffan, S.; Sparks, C.; Huttly, A.; Hyde, L.; Martignago, D.; Mead, A.; Hanley, S.J.; Wilkinson, P.A.; Barker, G.; Edwards, K.J.; et al. Wheat with Greatly Reduced Accumulation of Free Asparagine in the Grain, Produced by CRISPR/Cas9 Editing of Asparagine Synthetase Gene TaASN2. Plant Biotechnol. J. 2021, 19, 1602–1613. [Google Scholar] [CrossRef]
- Faure, J.D.; Napier, J.A. Europe’s first and last field trial of gene-edited plants? Elife 2018, 7, e42379. [Google Scholar] [CrossRef]
- Salie, M.J.; Zhang, N.; Lancikova, V.; Xu, D.; Thelen, J.J. A Family of Negative Regulators Targets the Committed Step of de Novo Fatty Acid Biosynthesis. Plant Cell 2016, 28, 2312–2325. [Google Scholar] [CrossRef] [Green Version]
- Yield10 Bioscience, Inc. Yield10 Bioscience Field Test Results Show Seed Oil Content Increase in Camelina and Canola. Available online: https://www.yield10bio.com/press/yield10-bioscience-field-test-results-show-seed-oil-content-increase-in-camelina-and-canola (accessed on 10 November 2022).
- Knisley, S. 2021 Gene Editing Innovations Present many Benefits to Farmers and Their Customers. Available online: https://www.uswheat.org/wheatletter/gene-editing-innovationspresent-many-benefits-to-farmers-and-their-customers (accessed on 6 January 2022).
- Meng, X.; Yu, H.; Zhang, Y.; Zhuang, F.; Song, X.; Gao, S.; Gao, C.; Li, J. Construction of a Genome-Wide Mutant Library in Rice Using CRISPR/Cas9. Mol. Plant. 2017, 10, 1238–1241. [Google Scholar] [CrossRef] [Green Version]
- Dhariwal, G.K.; Laroche, A. The future of genetically engineered plants to stabilize yield and improve feed. Anim. Front. 2017, 7, 5–8. [Google Scholar] [CrossRef] [Green Version]
- ISAAA. Global Status of Commercialized Biotech/GM Crops in 2019 (ISAAA Brief No. 55); ISAAA: Ithaca, NY, USA, 2019. [Google Scholar]
- Report Linker 2023. Global Agricultural Biotechnology Industry: Global Agricultural Biotechnology Market to Reach $88.9 Billion by 2030. Available online: https://www.reportlinker.com/p04838495/Global-Agricultural-Biotechnology-Biotechnology.html (accessed on 7 April 2023).
- ISAAA. Global Status of Commercialized Biotech/GM Crops in 2018: Biotech Crops Continue to Help Meet the Challenges of Increased Population and Climate Change (ISAAA Brief N. 54); ISAAA: Ithaca, NY, USA, 2018. [Google Scholar]
- Shahbandeh, M. World Cotton Production by Country 2019/2020; Statista Inc.: New York, NY, USA, 2020. [Google Scholar]
- USDA Foreign Agricultural Service (USDA FAS). Agricultural Biotechnology Annual—Japan. GAIN Report Number: JA2021-0140. Available online: https://www.fas.usda.gov/data/japan-agricultural-biotechnology-annual-3 (accessed on 12 May 2022).
- Turnbull, C.; Lillemo, M.; Hvoslef-Eide, T.A.K. Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom—A Review. Front. Plant Sci. 2021, 12, 630396. [Google Scholar] [CrossRef]
- Nosowitz, D. 2017 Soy Is Set to Become Our Biggest Crop by Acreage. But What Are We Doing with This Soy? Available online: https://modernfarmer.com/2017/12/soy-set-become-biggest-crop-acreage-soy/ (accessed on 19 October 2020).
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global Maize Production, Utilization, and Consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- FAO. New Food Balances. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 14 September 2020).
- Hamdan, M.F.; Mohd Noor, S.N.; Abd-Aziz, N.; Pua, T.-L.; Tan, B.C. Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. Plants 2022, 11, 1297. [Google Scholar] [CrossRef]
- Jenkins, D.; Dobert, R.; Atanassova, A.; Pavely, C. Impacts of the Regulatory Environment for Gene Editing on Delivering Beneficial Products. In Vitro Cell Dev. Biol. Plant. 2021, 57, 609–626. [Google Scholar] [CrossRef] [PubMed]
- Cibus. Cibus Global Announces Approval of First Commercial Product SU Canola in Canada 2014. Available online: http://cibus.com/press/press031814.php (accessed on 12 May 2022).
- Cibus Canada Inc. Marketed Products. Available online: https://www.cibus.com/marketed-products.php (accessed on 21 October 2021).
- Demorest, Z.L.; Coffman, A.; Baltes, N.J.; Stoddard, T.J.; Clasen, B.M.; Luo, S.; Retterath, A.; Yabandith, A.; Gamo, M.E.; Bissen, J.; et al. Direct Stacking of Sequence-specific Nuclease-induced Mutations to Produce High Oleic and Low Linolenic Soybean Oil. BMC Plant Biol. 2016, 16, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calyxt Inc. Calyxt Launches Field Trials of High Oleic Soybean; Calyxt Inc.: New Brighton, MI, USA, 2015. [Google Scholar]
- Calyxt Inc. First Commercial Sale of Calyxt High Oleic Soybean Oil on the U.S. Market; Calyxt Inc.: St.Paul, MI, USA, 2019. [Google Scholar]
- Nonaka, S.; Arai, C.; Takayama, M.; Matsukura, C.; Ezura, H. Efficient Increase of ɣ-aminobutyric Acid (GABA) Content in Tomato Fruits by Targeted Mutagenesis. Sci. Rep. 2017, 7, 7057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USDA Foreign Agricultural Service (USDA FAS). Japan: Japan Determines Genome Edited Tomato Will Not be Regulated as GE. Available online: https://www.fas.usda.gov/data/japan-japan-determines-genome-edited-tomato-will-not-be-regulated-ge (accessed on 12 May 2022).
- Sanatech Seed. First Genome Edited Tomato with Increased GABA In the World. Available online: https://sanatech-seed.com/en/20201211-1-2/ (accessed on 12 May 2022).
- Sanatech Seed. Launch of Genome Edited Tomato Fruit for Purchase. Available online: https://sanatech-seed.com/en/20210915-2/ (accessed on 12 May 2022).
- Waltz, E. GABA-enriched Tomato is First CRISPR-Edited Food to Enter Market. Nat. Biotech. 2021, 40, 9–11. [Google Scholar] [CrossRef]
- Waltz, E. Gene-Edited CRISPR Mushroom Escapes US Regulation. Nature 2016, 532, 293. [Google Scholar] [CrossRef] [Green Version]
- USDA Animal and Plant Health Inspection Service (USDA APHIS). Regulated Article Letters of Inquiry. Available online: https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-i-regulated/Regulated_Article_Letters_of_Inquiry (accessed on 23 January 2022).
- Secretariat of the Convention on Biological Diversity. Cartagena Protocol on Biosafety to the Convention on Biological Diversity: Text and annexes. Montreal: Secretariat of the Convention on Biological Diversity. Available online: https://bch.cbd.int/protocol/text/ (accessed on 30 October 2021).
- Wolt, J.D.; Wang, K.; Yang, B. The Regulatory Status of Genome-edited Crops. Plant Biotechnol. J. 2016, 14, 510–518, Erratum in Plant Biotechnol. J. 2016, 14, 1937. [Google Scholar] [CrossRef] [Green Version]
- Huesing, J.E.; Andres, D.; Braverman, M.P.; Burns, A.; Felsot, A.S.; Harrigan, G.G.; Hellmich, R.L.; Reynolds, A.; Shelton, A.M.; Jansen van Rijssen, W.; et al. Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector. J. Agric. Food Chem. 2016, 64, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Sprink, T.; Eriksson, D.; Schiemann, J.; Hartung, F. Regulatory Hurdles for Genome Editing: Process-vs. Product-Based Approaches in Different Regulatory Contexts. Plant Cell Rep. 2016, 35, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- Medvedieva, M.O.; Blume, Y.B. Legal Regulation of Plant Genome Editing with the CRISPR/Cas9 Technology as an Example. Cytol. Genet. 2018, 52, 204–212. [Google Scholar] [CrossRef]
- Eckerstorfer, M.F.; Engelhard, M.; Heissenberger, A.; Simon, S.; Teichmann, H. Plants developed by new genetic modification techniques—Comparison of existing regulatory frameworks in the EU and Non-EU countries. Front. Bioeng. Biotechnol. 2019, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A. Europe’s Genetically Edited Plants Stuck in Legal Limbo. Nature 2015, 528, 319–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolia, A.; Manzo, A.; Veronesi, F.; Rosellini, D. An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol. 2014, 34, 77–88. [Google Scholar] [CrossRef]
- Leopoldina, D.F.G.; Akademieunion. Wege zu Einer Wissenschaftlich Begründeten, Differenzierten Regulierung Genomeditierter Planzen in der EU: Stellungnahme = Towards a Scientifically Justified, differentiated Regulation of Genome Edited Plants in the EU. In Halle: Deutsche Akademie der Naturforscher; German National Academy of Sciences Leopoldina, Union of the German Academies of Sciences, and Humanities German Research Foundation: Halle (Saale), Germany, 2019; 84p, ISBN 978-3-8047-4064-8. [Google Scholar]
- Smyth, S.J. Canadian Regulatory Perspectives on Genome Engineered Crops. GM Crops Food 2017, 8, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Ellens, K.W.; Levac, D.; Pearson, C.; Savoie, A.; Strand, N.; Louter, J.; Tibelius, C. Canadian Regulatory Aspects of Gene Editing Technologies. In Transgenic Research; Springer International Publishing: Cham, Switzerland, 2019; Volume 28, pp. 165–168. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, N.E. Revisions to USDA Biotechnology Regulations: The SECURE Rule. Proc. Natl. Acad. Sci. USA 2021, 118, e2004841118. [Google Scholar] [CrossRef]
- Schmidt, S.M.; Belisle, M.; Frommer, W.B. The Evolving Landscape Around Genome Editing in Agriculture: Many Countries have Exempted or Move to Exempt Forms of Genome Editing from GMO Regulation of Crop Plants. EMBO Rep. 2020, 21, e50680. [Google Scholar] [CrossRef]
- Grohmann, L.; Keilwagen, J.; Duensing, N.; Dagand, E.; Hartung, F.; Wilhelm, R.; Bendiek, J.; Sprink, T. Detection and Identification of Genome Editing in Plants: Challenges and Opportunities. Front. Plant Sci. 2019, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Whelan, A.I.; Gutti, P.; Lema, M.A. Gene Editing Regulation and Innovation Economics. Front. Bioeng. Biotechnol. 2020, 8, 303. [Google Scholar] [CrossRef]
- Entine, J.; Felipe, M.S.S.; Groenewald, J.H.; Kershen, D.L.; Lema, M.; McHughen, A.; Nepomuceno, A.L.; Ohsawa, R.; Ordonio, R.L.; Parrott, W.A.; et al. Regulatory Approaches for Genome Edited Agricultural Plants in Select Countries and Jurisdictions Around the World. Transgenic Res. 2021, 30, 551–584. [Google Scholar] [CrossRef] [PubMed]
- Lema, M.A. Regulatory Aspects of Gene Editing in Argentina. Transgenic Res. 2019, 28, 147–150. [Google Scholar] [CrossRef]
- USDA Foreign Agricultural Service (USDA FAS). Israel Agricultural Biotechnology Annual 2018. GAIN Report Number: IS18011. 2018. Available online: https://www.fas.usda.gov/data/israel-agricultural-biotechnology-annual-2 (accessed on 12 May 2022).
- USDA Foreign Agricultural Service (USDA FAS). Japan Discusses Genome Editing Technology. GAIN Report Number: JA8048. 2018. Available online: https://www.fas.usda.gov/data/japan-japan-discusses-genome-editing-technology (accessed on 12 May 2022).
- Gatica-Arias, A. The Regulatory Current Status of Plant Breeding Technologies in Some Latin American and the Caribbean Countries. Plant Cell. Tissue Organ Cult. 2020, 141, 229–242. [Google Scholar] [CrossRef]
- Thygesen, P. Clarifying the Regulation of Genome Editing in Australia: Situation for Genetically Modified Organisms. Transgenic Res. 2019, 28, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.; Watanabe, K.N.; Ohsawa, R. Regulatory Status of Genome edited Organisms Under the Japanese Cartagena Act. Front. Bioeng. Biotechnol. 2019, 7, 387. [Google Scholar] [CrossRef] [Green Version]
- Camacho, A.; Van Deynze, A.; Chi-Ham, C.; Bennett, A.B. Genetically Engineered Crops that Fly Under the US Regulatory Radar. Nat. Biotechnol. 2014, 32, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Department for Environment Food & Rural Affairs (DEFRA). The Regulation of Genetic Technologies—A Public Consultation on the Regulation of Genetic Technologies. Available online: www.gov.uk/government/publications (accessed on 13 May 2022).
- Department for Environment Food & Rural Affairs (DEFRA). Genetic Technologies Regulation: Government Response. Available online: https://www.gov.uk/government/consultations/genetic-technologies-regulation/outcome/genetic-technologies-regulation-government-response (accessed on 13 May 2022).
- Fernandes, V. India’s Genome-Editing Draft Guidelines are Needlessly Restrictive. 2020, India: Smart Indian Agriculture. Available online: https://smartindianagriculture.com/indias-genome-editing-draft-guidelines-are-needlessly-restrictive/ (accessed on 13 May 2022).
- van der Meer, P.; Angenon, G.; Bergmans, H.; Buhk, H.-J.; Callebaut, S.; Chamon, M.; Eriksson, D.; Gheysen, G.; Harwood, W.; Hundleby, P.; et al. The Status Under EU Law of Organisms Developed Through Novel Genomic Techniques. Eur. J. Risk Regul. 2021, 14, 93–112. [Google Scholar] [CrossRef]
- EFSA GMO Panel. Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other Site-Directed Nucleases with similar function. EFSA J. 2012, 10, 2943. [Google Scholar]
- EFSA GMO Panel. Applicability of the EFSA Opinion on site-directed nucleases type 3 for the safety assessment of plants developed using site-directed nucleases type 1 and 2 and oligonucleotide-directed mutagenesis. EFSA J. 2020, 18, e06299. [Google Scholar] [CrossRef]
- Paraskevopoulos, K.; Federici, S. Overview of EFSA and European national authorities’ scientific opinions on the risk assessment of plants developed through New Genomic Techniques. EFSA J. 2021, 19, e06314. [Google Scholar] [CrossRef] [PubMed]
- EFSA GMO Panel. Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J. 2012, 10, 2561. [Google Scholar] [CrossRef] [Green Version]
- EFSA GMO Panel. Updated scientific opinion on plants developed through cisgenesis and intragenesis. EFSA J. 2022, 20, e07621. [Google Scholar] [CrossRef]
- EFSA GMO Panel. Statement on criteria for risk assessment of plants produced by targeted mutagenesis, cisgenesis and intragenesis. EFSA J. 2022, 20, 7618. [Google Scholar] [CrossRef]
- USDA Foreign Agricultural Service (USDA FAS). Russian Federation Agricultural Biotechnology Annual. GAIN Report Number: RS1833. 2018. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Agricultural%20Biotechnology%20Annual_Moscow_Russian%20Federation_12-4-2018.pdf (accessed on 12 May 2022).
- OPOCE. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EEC—Commission Declaration. Off. J. Eur. Union 2001, L106, 1–39. Available online: http://data.europa.eu/eli/dir/2001/18/oj (accessed on 13 May 2022).
- OPOCE. Directive (EU) 2015/412 of the European Parliament and of the Council of 11 March 2015 Amending Directive 2001/18/EC as Regards the Possibility for the Member States to Restrict or Prohibit the Cultivation of Genetically Modified Organisms (GMOs) in Their territory. Text with EEA relevance. Off. J. Eur. Union 2015, L68, 1–8. Available online: http://data.europa.eu/eli/dir/2015/412/oj (accessed on 13 May 2022).
- OPOCE. Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on Genetically Modified Food and Feed (Text with EEA relevance). Off. J. Eur. Union 2003, L268, 1–23. Available online: http://data.europa.eu/eli/reg/2003/1829/oj (accessed on 13 May 2022).
- OPOCE. Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC. Off. J. Eur. Union 2003, L268, 24–28. Available online: http://data.europa.eu/eli/reg/2003/1830/oj (accessed on 13 May 2022).
- CJEU, European Court of Justice. Judgment in Case C-528/16. Organisms obtained by mutagenesis are GMOs and are, in principle, subject to the obligations laid down by the GMO Directive. PRESS RELEASE No 111/18. Available online: http://www.curia.europa.eu/ (accessed on 12 May 2022).
- Bartsch, D.; Ehlers, U.; Hartung, F.; Kahrmann, J.; Leggewie, G.; Sprink, T.; Wilhelm, R. Questions Regarding the Implementation of EU Mutagenesis Ruling in France. Front. Plant Sci. 2020, 11, 584485. [Google Scholar] [CrossRef]
- Council of the European Union. Council Decision (EU) 2019/1904 of November 2019 Requesting the Commission to Submit a Study in Light of the Court of Justice’s Judgment in Case C-528/16 Regarding the Status of Novel Genomic Techniques Under Union Law, and a Proposal, if Appropriate in View of the Outcomes of the Study. Off. J. Eur. Union 2019, L293, 103–104. Available online: http://data.europa.eu/eli/dec/2019/1904/oj (accessed on 13 May 2022).
- European Commission. EC Study on New Genomic Techniques. Available online: https://ec.europa.eu/food/plant/gmo/modern_biotech/newgenomic-techniques_en (accessed on 23 January 2021).
- European Commission. Inception Impact Assessment: Legislation for plants produced by certain new genomic techniques. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=PI_COM:Ares(2021)5835503 (accessed on 13 May 2022).
- Dong, H.; Huang, Y.; Wang, K. The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes 2021, 12, 912. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, W.; Chen, L.; Shen, X.; Yang, H.; Fang, Y.; Ouyang, W.; Mai, S.; Chen, H.; Chen, S.; et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmUGT Enhanced Soybean Resistance Against Leaf-Chewing Insects Through Flavonoids Biosynthesis. Front. Plant Sci. 2022, 13, 802716. [Google Scholar] [CrossRef]
- Karavolias, N.G.; Horner, W.; Abugu, M.N.; Evanega, S.N. Application of Gene Editing for Climate Change in Agriculture. Front. Sustain. Food Syst. 2021, 5, 685801. [Google Scholar] [CrossRef]
- Smyth, S.J. Contributions of Genome Editing Technologies Towards Improved Nutrition, Environmental Sustainability and Poverty Reduction. Front. Genome Ed. 2022, 4, 863193. [Google Scholar] [CrossRef] [PubMed]
- Gnanasekaran, P.; Ponnusamy, K.; Chakraborty, S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. Mol. Plant Pathol. 2019, 20, 943–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marone, D.; Mastrangelo, A.M.; Borrelli, G.M. From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. Int. J. Mol. Sci. 2023, 24, 7122. https://doi.org/10.3390/ijms24087122
Marone D, Mastrangelo AM, Borrelli GM. From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. International Journal of Molecular Sciences. 2023; 24(8):7122. https://doi.org/10.3390/ijms24087122
Chicago/Turabian StyleMarone, Daniela, Anna Maria Mastrangelo, and Grazia Maria Borrelli. 2023. "From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues" International Journal of Molecular Sciences 24, no. 8: 7122. https://doi.org/10.3390/ijms24087122
APA StyleMarone, D., Mastrangelo, A. M., & Borrelli, G. M. (2023). From Transgenesis to Genome Editing in Crop Improvement: Applications, Marketing, and Legal Issues. International Journal of Molecular Sciences, 24(8), 7122. https://doi.org/10.3390/ijms24087122