The Uterine Melatonergic Systems of AANAT and Melatonin Membrane Receptor 2 (MT2) Are Essential for Endometrial Receptivity and Early Implantation in Mice
Abstract
:1. Introduction
2. Results
2.1. Identification of Expression of AANAT, MT1, and MT2 in Uteri and Their KO for Mice Fertility
2.2. Effects of Aanat KO on Embryo Implantation and Uterine E2 and P4 as Well as Their Related Downstream Gene Responses at 4.5 dpc
2.3. Effects of Aanat KO on Global Gene Expression in Uteri during the Window of Implantation at 4.5 dpc in Mice
2.4. Effects of Aanat KO on the ECM−Receptor Interaction at 4.5 dpc in Mice
2.5. Effects of Aanat KO on STAT Signaling at 4.5 dpc in Mice
2.6. Effects of Mt2 KO on Uterine E2 and P4 Responsiveness and Glands Formation at 4.5 dpc in Mice
2.7. Effects of Mt2 KO on Abortion and Uterine Immunity during the Second Trimester of Pregnancy
3. Discussion
4. Materials and Methods
4.1. Ethic Statement
4.2. Chemicals and Agents
4.3. Animals
4.4. Tissue Acquisition
4.5. Immunohistochemistry
4.6. Western Blot
4.7. RNA Extraction and Real-Time qPCR
4.8. RNA-Seq Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AANAT | aralkylamine N-acetyltransferase |
MT1 | melatonin receptor 1A |
MT2 | melatonin receptor 1B |
E2 | estrogen |
P4 | progesterone |
Erα (Esr1) | estrogen receptor α |
PR (Pgr) | progesterone receptor |
PTL | Preterm labor |
PE | preeclampsia |
IUGR | intra-uterine growth restriction |
RSA | recurrent spontaneous abortion |
GPCR | G protein-coupled receptor |
SOD | superoxide dismutase |
CAT | catalase |
HB-EGF | heparin-binding epidermal growth factor-like growth factor |
IVFET | In Vitro Fertilization and Embryo Transfer |
BMP2 | bone morphogenetic protein 2 |
Lif | Leukemia Inhibitory Factor |
Muc1 | mucin 1 |
Ltf | lactoferrin |
Hand2 | heart-and neural crest derivatives-expressed 2 |
Hoxa10 | Homeobox A10 |
Ihh | Hedgehog Homolog Indian |
Prss29 | serine protease 29 |
Wnt7a | Wnt family member 7a |
Cd55 | complement decay-accelerating factor 55 |
Masp1 | mannose associated serine protease 1 |
A2m | alpha-2-macroglobulin |
Eomes | eomesodermin |
Npy | neuropeptide Y |
Txk | tyrosine Kinase |
Gzma | granzyme A |
Angpt4 | angiopoietin 4 |
Akt2 | Serine/Threonine Kinase 2 |
MMPs | matrix metalloproteinases |
ECM | extracellular matrix |
GE | glandular epithelium |
FOX | forkhead box |
References
- Wang, H.; Dey, S.K. Roadmap to embryo implantation: Clues from mouse models. Nat. Rev. Genet. 2006, 7, 185–199. [Google Scholar] [CrossRef]
- Norwitz, E.R.; Schust, D.J.; Fisher, S.J. Implantation and the survival of early pregnancy. N. Engl. J. Med. 2001, 345, 1400–1408. [Google Scholar] [CrossRef]
- Zinaman, M.J.; Clegg, E.D.; Brown, C.C.; O’Connor, J.; Selevan, S.G. Estimates of human fertility and pregnancy loss. Fertil. Steril. 1996, 65, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, A.J.; Weinberg, C.R.; O’Connor, J.F.; Baird, D.D.; Schlatterer, J.P.; Canfield, R.E.; Armstrong, E.G.; Nisula, B.C. Incidence of early loss of pregnancy. N. Engl. J. Med. 1988, 319, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Monsivais, D.; Nagashima, T.; Prunskaite-Hyyrylainen, R.; Nozawa, K.; Shimada, K.; Tang, S.; Hamor, C.; Agno, J.E.; Chen, F.; Masand, R.P.; et al. Endometrial receptivity and implantation require uterine bmp signaling through an acvr2a-smad1/smad5 axis. Nat. Commun. 2021, 12, 3386. [Google Scholar] [CrossRef]
- Finn, C.A.; Martin, L. The role of the oestrogen secreted before oestrus in the preparation of the uterus for implantation in the mouse. J. Endocrinol. 1970, 47, 431–438. [Google Scholar] [CrossRef]
- Wetendorf, M.; Demayo, F.J. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol. Cell. Endocrinol. 2012, 357, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kannan, A.; Demayo, F.J.; Lydon, J.P.; Cooke, P.S.; Yamagishi, H.; Srivastava, D.; Bagchi, M.K.; Bagchi, I.C. The antiproliferative action of progesterone in uterine epithelium is mediated by hand2. Science 2011, 331, 912–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitriadis, E.; White, C.A.; Jones, R.L.; Salamonsen, L.A. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum. Reprod. Update 2005, 11, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Mor, G.; Cardenas, I.; Abrahams, V.; Guller, S. Inflammation and pregnancy: The role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 2011, 1221, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.A.; Chin, P.Y.; Glynn, D.J.; Thompson, J.G. Peri-conceptual cytokines--setting the trajectory for embryo implantation, pregnancy and beyond. Am. J. Reprod. Immunol. 2011, 66 (Suppl. 1), 2–10. [Google Scholar] [CrossRef] [PubMed]
- Benner, M.; Feyaerts, D.; Garcia, C.C.; Inci, N.; Lopez, S.C.; Fasse, E.; Shadmanfar, W.; van der Heijden, O.; Gorris, M.; Joosten, I.; et al. Clusters of tolerogenic b cells feature in the dynamic immunological landscape of the pregnant uterus. Cell Rep. 2020, 32, 108204. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Sargent, I.L. Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 2010, 63, 534–543. [Google Scholar] [CrossRef]
- He, C.; Wang, J.; Zhang, Z.; Yang, M.; Li, Y.; Tian, X.; Ma, T.; Tao, J.; Zhu, K.; Song, Y.; et al. Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int. J. Mol. Sci. 2016, 17, 939. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Tao, J.; Wu, H.; Guan, S.; Liu, L.; Zhang, L.; Deng, S.; He, C.; Ji, P.; Liu, J.; et al. Aanat knockdown and melatonin supplementation in embryo development: Involvement of mitochondrial function and dna methylation. Antioxid. Redox Signal. 2019, 30, 2050–2065. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, T.; Ma, X.; Wang, Y.; Liu, J.; Li, G.; Liu, Y.; Ji, P.; Zhang, Z.; Zhang, L.; et al. Melatonergic systems of aanat, melatonin, and its receptor mt2 in the corpus luteum are essential for reproductive success in mammalsdagger. Biol. Reprod. 2021, 104, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Baker, J.; Rosano, T.G.; Guisti, L.W.; Ermak, G.; Grande, M.; Gaudet, S.J. Metabolism of serotonin to n-acetylserotonin, melatonin, and 5-methoxytryptamine in hamster skin culture. J. Biol. Chem. 1996, 271, 12281–12286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slominski, A.; Pisarchik, A.; Semak, I.; Sweatman, T.; Wortsman, J.; Szczesniewski, A.; Slugocki, G.; Mcnulty, J.; Kauser, S.; Tobin, D.J.; et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J. 2002, 16, 896–898. [Google Scholar] [CrossRef] [Green Version]
- Finocchiaro, L.M.; Nahmod, V.E.; Launay, J.M. Melatonin biosynthesis and metabolism in peripheral blood mononuclear leucocytes. Biochem. J. 1991, 280 Pt 3, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Bubenik, G.A. Gastrointestinal melatonin: Localization, function, and clinical relevance. Dig. Dis. Sci. 2002, 47, 2336–2348. [Google Scholar] [CrossRef]
- Itoh, M.T.; Ishizuka, B.; Kuribayashi, Y.; Amemiya, A.; Sumi, Y. Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol. Hum. Reprod. 1999, 5, 402–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suofu, Y.; Li, W.; Jean-Alphonse, F.G.; Jia, J.; Khattar, N.K.; Li, J.; Baranov, S.V.; Leronni, D.; Mihalik, A.C.; He, Y.; et al. Dual role of mitochondria in producing melatonin and driving gpcr signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA 2017, 114, E7997–E8006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Feng, C.; Zheng, X.; Guo, Y.; Zhou, F.; Shan, D.; Liu, X.; Kong, J. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J. Pineal Res. 2017, 63, e12429. [Google Scholar] [CrossRef]
- Martin, M.; Macias, M.; Escames, G.; Leon, J.; Acuna-Castroviejo, D. Melatonin but not vitamins c and e maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J. 2000, 14, 1677–1679. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, G.; Comai, S. Sleep well. Untangling the role of melatonin mt1 and mt2 receptors in sleep. J. Pineal Res. 2019, 66, e12544. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Pilar, T.M.; Flores, L.J.; Koppisepi, S. Medical implications of melatonin: Receptor-mediated and receptor-independent actions. Adv. Med. Sci. 2007, 52, 11–28. [Google Scholar]
- Sharan, K.; Lewis, K.; Furukawa, T.; Yadav, V.K. Regulation of bone mass through pineal-derived melatonin-mt2 receptor pathway. J. Pineal Res. 2017, 63, e12423. [Google Scholar] [CrossRef] [Green Version]
- Barberino, R.S.; Menezes, V.G.; Ribeiro, A.; Palheta, R.J.; Jiang, X.; Smitz, J.; Matos, M. Melatonin protects against cisplatin-induced ovarian damage in mice via the mt1 receptor and antioxidant activity. Biol. Reprod. 2017, 96, 1244–1255. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Z.; He, C.; Zhu, K.; Xu, Z.; Ma, T.; Tao, J.; Liu, G. Melatonin protects porcine oocyte in vitro maturation from heat stress. J. Pineal Res. 2015, 59, 365–375. [Google Scholar] [CrossRef]
- Park, H.J.; Park, J.Y.; Kim, J.W.; Yang, S.G.; Jung, J.M.; Kim, M.J.; Kang, M.J.; Cho, Y.H.; Wee, G.; Yang, H.Y.; et al. Melatonin improves the meiotic maturation of porcine oocytes by reducing endoplasmic reticulum stress during in vitro maturation. J. Pineal Res. 2018, 64, e12458. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Ma, T.; Shi, J.; Zhang, Z.; Wang, J.; Zhu, K.; Li, Y.; Yang, M.; Song, Y.; Liu, G. Melatonin and its receptor mt1 are involved in the downstream reaction to luteinizing hormone and participate in the regulation of luteinization indifferent species. J. Pineal Res. 2016, 61, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.; Lacasse, A.A.; Lanoix, D.; Sagrillo-Fagundes, L.; Boulard, V.; Vaillancourt, C. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J. Pineal Res. 2015, 59, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.X.; Lee, S.; Taweechaipaisankul, A.; Kim, G.A.; Lee, B.C. Melatonin regulates lipid metabolism in porcine oocytes. J. Pineal Res. 2017, 62, e12388. [Google Scholar] [CrossRef]
- Papis, K.; Poleszczuk, O.; Wenta-Muchalska, E.; Modlinski, J.A. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J. Pineal Res. 2007, 43, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, R.V.; Conceicao, S.; Miranda, M.S.; Sampaio, L.F.; Ohashi, O.M. Mt3 melatonin binding site, mt1 and mt2 melatonin receptors are present in oocyte, but only mt1 is present in bovine blastocyst produced in vitro. Reprod. Biol. Endocrinol. 2012, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Wang, F.; Zhang, L.; He, C.; Ji, P.; Wang, J.; Zhang, Z.; Lv, D.; Abulizi, W.; Wang, X.; et al. Beneficial effects of melatonin on the in vitro maturation of sheep oocytes and its relation to melatonin receptors. Int. J. Mol. Sci. 2017, 18, 834. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, M.H.; Ghasemian, F.; Ramezani, M.; Asgari, Z. Melatonin effect during different maturation stages of oocyte and subsequentembryo development in mice. Iran J. Reprod. Med. 2013, 11, 11–18. [Google Scholar]
- Ishizuka, B.; Kuribayashi, Y.; Murai, K.; Amemiya, A.; Itoh, M.T. The effect of melatonin on in vitro fertilization and embryo development in mice. J. Pineal Res. 2000, 28, 48–51. [Google Scholar] [CrossRef]
- Tian, X.Z.; Wen, Q.; Shi, J.M.; Liang-Wang; Zeng, S.M.; Tian, J.H.; Zhou, G.B.; Zhu, S.E.; Liu, G.S. Effects of melatonin on in vitro development of mouse two-cell embryos cultured in htf medium. Endocr. Res. 2010, 35, 17–23. [Google Scholar] [CrossRef]
- Wang, F.; Tian, X.; Zhang, L.; Tan, D.; Reiter, R.J.; Liu, G. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine. J. Pineal Res. 2013, 55, 267–274. [Google Scholar] [CrossRef]
- Nishihara, T.; Hashimoto, S.; Ito, K.; Nakaoka, Y.; Matsumoto, K.; Hosoi, Y.; Morimoto, Y. Oral melatonin supplementation improves oocyte and embryo quality in women undergoing in vitro fertilization-embryo transfer. Gynecol. Endocrinol. 2014, 30, 359–362. [Google Scholar] [CrossRef]
- He, C.; Wang, J.; Li, Y.; Zhu, K.; Xu, Z.; Song, Y.; Song, Y.; Liu, G. Melatonin-related genes expressed in the mouse uterus during early gestation promote embryo implantation. J. Pineal Res. 2015, 58, 300–309. [Google Scholar] [CrossRef]
- Ma, W.G.; Song, H.; Das, S.K.; Paria, B.C.; Dey, S.K. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc. Natl. Acad. Sci. USA 2003, 100, 2963–2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, H.G.; Hansell, J.A.; Raut, S.; Giussani, D.A. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J. Pineal Res. 2009, 46, 357–364. [Google Scholar] [CrossRef]
- Moghani-Ghoroghi, F.; Moshkdanian, G.; Sehat, M.; Nematollahi-Mahani, S.N.; Ragerdi-Kashani, I.; Pasbakhsh, P. Melatonin pretreated blastocysts along with calcitonin administration improved implantation by upregulation of heparin binding-epidermal growth factor expression in murine endometrium. Cell J. 2018, 19, 599–606. [Google Scholar]
- Zhang, L.; Zhang, Z.; Wang, F.; Tian, X.; Ji, P.; Liu, G. Effects of melatonin administration on embryo implantation and offspring growth in mice under different schedules of photoperiodic exposure. Reprod. Biol. Endocrinol. 2017, 15, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okatani, Y.; Okamoto, K.; Hayashi, K.; Wakatsuki, A.; Tamura, S.; Sagara, Y. Maternal-fetal transfer of melatonin in pregnant women near term. J. Pineal Res. 1998, 25, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.S.; Poehlmann, T.G.; Schleussner, E.; Markert, U.R. Trophoblast invasion: The role of intracellular cytokine signalling via signal transducer and activator of transcription 3 (stat3). Hum. Reprod. Update 2008, 14, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Hilton, D.J. Negative regulators of cytokine signal transduction. Cell. Mol. Life Sci. 1999, 55, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.A.; Zhong, Z.; Wen, Z.; Darnell, J.J. Stat signaling is active during early mammalian development. Dev. Dyn. 1997, 208, 190–198. [Google Scholar] [CrossRef]
- Akira, S. Functional roles of stat family proteins: Lessons from knockout mice. Stem Cells 1999, 17, 138–146. [Google Scholar] [CrossRef]
- Takeda, K.; Noguchi, K.; Shi, W.; Tanaka, T.; Matsumoto, M.; Yoshida, N.; Kishimoto, T.; Akira, S. Targeted disruption of the mouse stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA 1997, 94, 3801–3804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duellman, T.; Warren, C.L.; Peissig, P.; Wynn, M.; Yang, J. Matrix metalloproteinase-9 genotype as a potential genetic marker for abdominal aortic aneurysm. Circ. Cardiovasc. Genet. 2012, 5, 529–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, Y.; Li, W.; Tran, V.; Khalil, R.A. Emmprin-mediated induction of uterine and vascular matrix metalloproteinases during pregnancy and in response to estrogen and progesterone. Biochem. Pharmacol. 2013, 86, 734–747. [Google Scholar] [CrossRef] [Green Version]
- Jing, M.; Chen, X.; Qiu, H.; He, W.; Zhou, Y.; Li, D.; Wang, D.; Jiao, Y.; Liu, A. Insights into the immunomodulatory regulation of matrix metalloproteinase at the maternal-fetal interface during early pregnancy and pregnancy-related diseases. Front. Immunol. 2022, 13, 1067661. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E.; Charnock-Jones, D.S. Human early placental development: Potential roles of the endometrial glands. Placenta 2007, 28 (Suppl. A), S64–S69. [Google Scholar] [CrossRef] [Green Version]
- Spencer, T.E. Biological roles of uterine glands in pregnancy. Semin. Reprod. Med. 2014, 32, 346–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.W.; Kwak, I.; Lee, K.Y.; Kim, T.H.; Large, M.J.; Stewart, C.L.; Kaestner, K.H.; Lydon, J.P.; Demayo, F.J. Foxa2 is essential for mouse endometrial gland development and fertility. Biol. Reprod. 2010, 83, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, A.M.; Milano-Foster, J.; Behura, S.K.; Spencer, T.E. Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success. Nat. Commun. 2018, 9, 2435. [Google Scholar] [CrossRef]
- Rosario, G.X.; Stewart, C.L. The multifaceted actions of leukaemia inhibitory factor in mediating uterine receptivity and embryo implantation. Am. J. Reprod. Immunol. 2016, 75, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Kaestner, K.H. The foxa factors in organogenesis and differentiation. Curr. Opin. Genet. Dev. 2010, 20, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, A.M.; Peng, W.; Pru, J.K.; Pru, C.A.; Demayo, F.J.; Spencer, T.E. Forkhead box a2 (foxa2) is essential for uterine function and fertility. Proc. Natl. Acad. Sci. USA 2017, 114, E1018–E1026. [Google Scholar] [CrossRef] [Green Version]
- Huppertz, B.; Weiss, G.; Moser, G. Trophoblast invasion and oxygenation of the placenta: Measurements versus presumptions. J. Reprod. Immunol. 2014, 101–102, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Salamonsen, L.A.; Edgell, T.; Rombauts, L.J.; Stephens, A.N.; Robertson, D.M.; Rainczuk, A.; Nie, G.; Hannan, N.J. Proteomics of the human endometrium and uterine fluid: A pathway to biomarkerdiscovery. Fertil. Steril. 2013, 99, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Erlebacher, A. Immunology of the maternal-fetal interface. Annu. Rev. Immunol. 2013, 31, 387–411. [Google Scholar] [CrossRef] [PubMed]
- Shynlova, O.; Lee, Y.H.; Srikhajon, K.; Lye, S.J. Physiologic uterine inflammation and labor onset: Integration of endocrine and mechanical signals. Reprod. Sci. 2013, 20, 154–167. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. Featurecounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Won, J.; Lee, D.; Lee, Y.G.; Hong, S.H.; Kim, J.H.; Kang, Y.J. The therapeutic effects and optimal timing of granulocyte colony stimulating factor intrauterine administration during ivf-et. Life Sci. 2023, 317, 121444. [Google Scholar] [CrossRef]
- Isa, T.; Somfai, T.; Oyadomari, M.; Fusho, K.; Touma, S.; Suzuki, N.; Kaneko, H.; Katagiri, Y.; Kikuchi, K. Production of agu piglets after transfer of embryos produced in vitro. Anim. Sci. J. 2022, 93, e13685. [Google Scholar] [CrossRef]
- Torikai, K.; Shimizu, K.; Nagatomo, H.; Kasai, M.; Kato-Itoh, M.; Kamada, Y.; Shibasaki, I.; Jeon, H.; Kikuchi, R.; Wakayama, S.; et al. Removal of sperm tail using trypsin and pre-activation of oocyte facilitates intracytoplasmic sperm injection in mice and rats. J. Reprod. Dev. 2023, 69, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Briski, O.; Salamone, D.F. Past, present and future of icsi in livestock species. Anim. Reprod. Sci. 2022, 246, 106925. [Google Scholar] [CrossRef] [PubMed]
- Samiec, M.; Skrzyszowska, M.; Lipinski, D. Pseudophysiological transcomplementary activation of reconstructed oocytes as a highly efficient method used for producing nuclear-transferred pig embryos originating from transgenic foetal fibroblast cells. Pol. J. Vet. Sci. 2012, 15, 509–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrzyszowska, M.; Smorag, Z.; Slomski, R.; Katska-Ksiazkiewicz, L.; Kalak, R.; Michalak, E.; Wielgus, K.; Lehmann, J.; Lipinski, D.; Szalata, M.; et al. Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol. Reprod. 2006, 74, 1114–1120. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Wang, J.; Wang, L.; Yan, L.; Liu, Y.; Ma, W.; Ji, P.; Zhang, L.; Liu, G. The Uterine Melatonergic Systems of AANAT and Melatonin Membrane Receptor 2 (MT2) Are Essential for Endometrial Receptivity and Early Implantation in Mice. Int. J. Mol. Sci. 2023, 24, 7127. https://doi.org/10.3390/ijms24087127
Ma X, Wang J, Wang L, Yan L, Liu Y, Ma W, Ji P, Zhang L, Liu G. The Uterine Melatonergic Systems of AANAT and Melatonin Membrane Receptor 2 (MT2) Are Essential for Endometrial Receptivity and Early Implantation in Mice. International Journal of Molecular Sciences. 2023; 24(8):7127. https://doi.org/10.3390/ijms24087127
Chicago/Turabian StyleMa, Xiao, Jing Wang, Likai Wang, Laiqing Yan, Yunjie Liu, Wenkui Ma, Pengyun Ji, Lu Zhang, and Guoshi Liu. 2023. "The Uterine Melatonergic Systems of AANAT and Melatonin Membrane Receptor 2 (MT2) Are Essential for Endometrial Receptivity and Early Implantation in Mice" International Journal of Molecular Sciences 24, no. 8: 7127. https://doi.org/10.3390/ijms24087127
APA StyleMa, X., Wang, J., Wang, L., Yan, L., Liu, Y., Ma, W., Ji, P., Zhang, L., & Liu, G. (2023). The Uterine Melatonergic Systems of AANAT and Melatonin Membrane Receptor 2 (MT2) Are Essential for Endometrial Receptivity and Early Implantation in Mice. International Journal of Molecular Sciences, 24(8), 7127. https://doi.org/10.3390/ijms24087127