An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis
Abstract
:1. Introduction
1.1. A Short View on microRNAs Biology
1.2. microRNAs in Cancer
2. Role of microRNAs in Cell Cycle
3. microRNAs on the Angiogenesis Process
4. microRNAs and Metastasis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cao, Y. Tumorigenesis as a Process of Gradual Loss of Original Cell Identity and Gain of Properties of Neural Precursor/Progenitor Cells. Cell Biosci. 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, D.P.; Polyak, K. Tumorigenesis: It Takes a Village. Nat. Rev. Cancer 2015, 15, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anglicheau, D.; Muthukumar, T.; Suthanthiran, M. MicroRNAs: Small RNAs with Big Effects. Transplantation 2010, 90, 105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, Q.; Chang, C. Epigenetics in Health and Disease. Adv. Exp. Med. Biol. 2020, 1253, 3–55. [Google Scholar] [CrossRef]
- Ortega, M.A.; Alvarez-Mon, M.A.; García-Montero, C.; Fraile-Martinez, O.; Lahera, G.; Monserrat, J.; Muñoz-Merida, L.; Mora, F.; Rodríguez-Jiménez, R.; Fernandez-Rojo, S.; et al. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021, 9, 1659. [Google Scholar] [CrossRef] [PubMed]
- Borchert, G.M.; Lanier, W.; Davidson, B.L. RNA Polymerase III Transcribes Human MicroRNAs. Nat. Struct. Mol. Biol. 2006, 13, 1097–1101. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA Genes Are Transcribed by RNA Polymerase II. EMBO J. 2004, 23, 4051. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Gregory, R.I.; Yan, K.-P.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor Complex Mediates the Genesis of MicroRNAs. Nature 2004, 432, 235–240. [Google Scholar] [CrossRef]
- Shukla, G.C.; Singh, J.; Barik, S. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol. Cell. Pharmacol. 2011, 3, 83–92. [Google Scholar]
- Stavast, C.J.; Erkeland, S.J. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019, 8, 1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, M.A.; Fraile-Martínez, O.; Guijarro, L.G.; Casanova, C.; Coca, S.; Álvarez-Mon, M.; Buján, J.; García-Honduvilla, N.; Asúnsolo, Á. The Regulatory Role of Mitochondrial MicroRNAs (MitomiRs) in Breast Cancer: Translational Implications Present and Future. Cancers 2020, 12, 2443. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016, 17, 1712. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [Green Version]
- Svoronos, A.A.; Engelman, D.M.; Slack, F.J. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res. 2016, 76, 3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syeda, Z.A.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef] [Green Version]
- Calin, G.A.; Cimmino, A.; Fabbri, M.; Ferracin, M.; Wojcik, S.E.; Shimizu, M.; Taccioli, C.; Zanesi, N.; Garzon, R.; Aqeilan, R.I.; et al. MiR-15a and MiR-16-1 Cluster Functions in Human Leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 5166–5171. [Google Scholar] [CrossRef] [Green Version]
- Poli, V.; Seclì, L.; Avalle, L. The Microrna-143/145 Cluster in Tumors: A Matter of Where and When. Cancers 2020, 12, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawat, M.; Kadian, K.; Gupta, Y.; Kumar, A.; Chain, P.S.G.; Kovbasnjuk, O.; Kumar, S.; Parasher, G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes 2019, 10, 752. [Google Scholar] [CrossRef] [Green Version]
- Yonemori, K.; Kurahara, H.; Maemura, K.; Natsugoe, S. MicroRNA in Pancreatic Cancer. J. Hum. Genet. 2016, 62, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Zubair, H.; Srivastava, S.K.; Singh, S.; Singh, A.P. Insights into the Role of MicroRNAs in Pancreatic Cancer Pathogenesis: Potential for Diagnosis, Prognosis, and Therapy. Adv. Exp. Med. Biol. 2015, 889, 71. [Google Scholar] [CrossRef] [Green Version]
- Kwok, G.T.; Zhao, J.T.; Weiss, J.; Mugridge, N.; Brahmbhatt, H.; MacDiarmid, J.A.; Robinson, B.G.; Sidhu, S.B. Translational Applications of MicroRNAs in Cancer, and Therapeutic Implications. Non-Coding RNA Res. 2017, 2, 143–150. [Google Scholar] [CrossRef]
- Rose, D. MicroRNAs in Cancer Translational Research: The Microcosm of Cancer Diagnosis, Prognosis, and Therapy. Front. Genet. 2012, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Revythis, A.; Shah, S.; Kutka, M.; Moschetta, M.; Ozturk, M.A.; Pappas-Gogos, G.; Ioannidou, E.; Sheriff, M.; Rassy, E.; Boussios, S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics 2021, 11, 1341. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Cell Cycle Progression and Synchronization: An Overview. Methods Mol. Biol. 2022, 2579, 3–23. [Google Scholar] [CrossRef]
- Williams, G.H.; Stoeber, K. The Cell Cycle and Cancer. J. Pathol. 2012, 226, 352–364. [Google Scholar] [CrossRef]
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell Cycle Control in Cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. [Google Scholar] [CrossRef]
- Tan, E.P.; Duncan, F.E.; Slawson, C. The Sweet Side of the Cell Cycle. Biochem. Soc. Trans. 2017, 45, 313. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The Cell Cycle: A Review of Regulation, Deregulation and Therapeutic Targets in Cancer. Cell Prolif. 2003, 36, 131. [Google Scholar] [CrossRef]
- Wang, Z. Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells 2021, 10, 3327. [Google Scholar] [CrossRef]
- Fischer, M.; Schade, A.E.; Branigan, T.B.; Müller, G.A.; DeCaprio, J.A. Coordinating Gene Expression during the Cell Cycle. Trends Biochem. Sci. 2022, 47, 1009–1022. [Google Scholar] [CrossRef]
- Henley, S.A.; Dick, F.A. The Retinoblastoma Family of Proteins and Their Regulatory Functions in the Mammalian Cell Division Cycle. Cell Div. 2012, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bueno, M.J.; Malumbres, M. MicroRNAs and the Cell Cycle. Biochim. Biophys. Acta 2011, 1812, 592–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, L.H.; He, X.H. Macro-Management of MicroRNAs in Cell Cycle Progression of Tumor Cells and Its Implications in Anti-Cancer Therapy. Acta Pharmacol. Sin. 2011, 32, 1311–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Baserga, R.; Chen, L.; Wang, C.; Lisanti, M.P.; Pestell, R.G. MicroRNA, Cell Cycle, and Human Breast Cancer. Am. J. Pathol. 2010, 176, 1058–1064. [Google Scholar] [CrossRef]
- Loh, H.Y.; Norman, B.P.; Lai, K.S.; Rahman, N.M.A.N.A.; Alitheen, N.B.M.; Osman, M.A. The Regulatory Role of MicroRNAs in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 4940. [Google Scholar] [CrossRef] [Green Version]
- Fariha, A.; Hami, I.; Tonmoy, M.I.Q.; Akter, S.; Al Reza, H.; Bahadur, N.M.; Rahaman, M.M.; Hossain, M.S. Cell Cycle Associated MiRNAs as Target and Therapeutics in Lung Cancer Treatment. Heliyon 2022, 8, e11081. [Google Scholar] [CrossRef] [PubMed]
- Mullany, L.E.; Herrick, J.S.; Sakoda, L.C.; Samowitz, W.; Stevens, J.R.; Wolff, R.K.; Slattery, M.L. MiRNA Involvement in Cell Cycle Regulation in Colorectal Cancer Cases. Genes Cancer 2018, 9, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekarek, L.; Fraile-Martinez, O.; Garcia-Montero, C.; Saez, M.A.; Barquero-Pozanco, I.; Del Hierro-Marlasca, L.; de Castro Martinez, P.; Romero-Bazán, A.; Alvarez-Mon, M.A.; Monserrat, J.; et al. Clinical Applications of Classical and Novel Biological Markers of Pancreatic Cancer. Cancers 2022, 14, 1866. [Google Scholar] [CrossRef] [PubMed]
- Le Sage, C.; Nagel, R.; Egan, D.A.; Schrier, M.; Mesman, E.; Mangiola, A.; Anile, C.; Maira, G.; Mercatelli, N.; Ciafrè, S.A.; et al. Regulation of the P27(Kip1) Tumor Suppressor by MiR-221 and MiR-222 Promotes Cancer Cell Proliferation. EMBO J. 2007, 26, 3699–3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Wang, W.; Lu, L.; Xie, Y.; Yan, J.; Chen, Y.; Di, C.; Gan, L.; Si, J.; Zhang, H.; et al. MicroRNA-16-5p Regulates Cell Survival, Cell Cycle and Apoptosis by Targeting AKT3 in Prostate Cancer Cells. Oncol. Rep. 2020, 44, 1282–1292. [Google Scholar] [CrossRef]
- Pekarek, L.; Ortega, M.A.; Fraile-Martinez, O.; García-Montero, C.; Casanova, C.; Saez, M.A.; García-Honduvilla, N.; Alvarez-Mon, M.; Buján, J.; Diez-Nicolas, V.; et al. Clinical and Novel Biomarkers in Penile Carcinoma: A Prospective Review. J. Pers. Med. 2022, 12, 1364. [Google Scholar] [CrossRef]
- Pekarek, L.; De la Torre-Escuredo, B.; Fraile-Martinez, O.; García-Montero, C.; Saez, M.A.; Cobo-Prieto, D.; Guijarro, L.G.; Saz, J.V.; De Castro-Martinez, P.; Torres-Carranza, D.; et al. Towards the Search for Potential Biomarkers in Osteosarcoma: State-of-the-Art and Translational Expectations. Int. J. Mol. Sci. 2022, 23, 14939. [Google Scholar] [CrossRef]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in Cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
- Holopainen, T.; Bry, M.; Alitalo, K.; Saaristo, A. Perspectives on Lymphangiogenesis and Angiogenesis in Cancer. J. Surg. Oncol. 2011, 103, 484–488. [Google Scholar] [CrossRef]
- Zheng, Q.; Hou, W. Regulation of Angiogenesis by MicroRNAs in Cancer. Mol. Med. Rep. 2021, 24, 583. [Google Scholar] [CrossRef]
- Annese, T.; Tamma, R.; De Giorgis, M.; Ribatti, D. MicroRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front. Oncol. 2020, 10, 2610. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Z.; Li, C.; Chen, Q.; Jing, Y.; Carpenter, R.; Jiang, Y.; Kung, H.F.; Lai, L.; Jiang, B.H. MiR-21 Induced Angiogenesis through AKT and ERK Activation and HIF-1α Expression. PLoS ONE 2011, 6, e19139. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Ni, S.; Cao, Y.; Zhang, T.; Wu, T.; Yin, X.; Lang, Y.; Lu, H. The Angiogenic Effect of MicroRNA-21 Targeting TIMP3 through the Regulation of MMP2 and MMP9. PLoS ONE 2016, 11, e0149537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, B.; Jin, Y.; Zhang, H.; Zhao, R.; Sun, M.; Sun, M.; Yuan, X.; Wang, W.; Wang, X.; Chen, Z.; et al. MicroRNA-21 Contributes to Renal Cell Carcinoma Cell Invasiveness and Angiogenesis via the PDCD4/c-Jun (AP-1) Signalling Pathway. Int. J. Oncol. 2020, 56, 178. [Google Scholar] [CrossRef]
- Liu, B.; Peng, X.C.; Zheng, X.L.; Wang, J.; Qin, Y.W. MiR-126 Restoration down-Regulate VEGF and Inhibit the Growth of Lung Cancer Cell Lines in Vitro and in Vivo. Lung Cancer 2009, 66, 169–175. [Google Scholar] [CrossRef]
- Esser, J.S.; Saretzki, E.; Pankratz, F.; Engert, B.; Grundmann, S.; Bode, C.; Moser, M.; Zhou, Q. Bone Morphogenetic Protein 4 Regulates MicroRNAs MiR-494 and MiR-126-5p in Control of Endothelial Cell Function in Angiogenesis. Thromb. Haemost. 2017, 117, 734–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.; Dasgupta, D.; Ghosh, A.; Roychoudhury, S.; Kumar, D.; Gorain, M.; Butti, R.; Datta, S.; Agarwal, S.; Gupta, S.; et al. MiRNA199a-3p Suppresses Tumor Growth, Migration, Invasion and Angiogenesis in Hepatocellular Carcinoma by Targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death Dis. 2017, 8, e2706. [Google Scholar] [CrossRef] [PubMed]
- Würdinger, T.; Tannous, B.A.; Saydam, O.; Skog, J.; Grau, S.; Soutschek, J.; Weissleder, R.; Breakefield, X.O.; Krichevsky, A.M. MiR-296 Regulates Growth Factor Receptor Overexpression in Angiogenic Endothelial Cells. Cancer Cell 2008, 14, 382–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Deng, H.; Hu, J.; Huang, S.; Xiong, J.; Deng, J. The Promising Role of MiR-296 in Human Cancer. Pathol.-Res. Pract. 2018, 214, 1915–1922. [Google Scholar] [CrossRef]
- Fan, Y.C.; Mei, P.J.; Chen, C.; Miao, F.A.; Zhang, H.; Li, Z.L. MiR-29c Inhibits Glioma Cell Proliferation, Migration, Invasion and Angiogenesis. J. Neurooncol. 2013, 115, 179–188. [Google Scholar] [CrossRef]
- De Palma, M.; Biziato, D.; Petrova, T.V. Microenvironmental Regulation of Tumour Angiogenesis. Nat. Rev. Cancer 2017, 17, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.T.; Chen, P.S.; Johansson, G.; Chu, C.Y.; Wang, M.Y.; Jeng, Y.M.; Yu, S.L.; Chen, J.S.; Chang, K.J.; Jee, S.H.; et al. MicroRNA-519c Suppresses Hypoxia-Inducible Factor-1alpha Expression and Tumor Angiogenesis. Cancer Res. 2010, 70, 2675–2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Pu, J.; Qi, T.; Qi, M.; Yang, C.; Li, S.; Huang, K.; Zheng, L.; Tong, Q. MicroRNA-145 Inhibits the Growth, Invasion, Metastasis and Angiogenesis of Neuroblastoma Cells through Targeting Hypoxia-Inducible Factor 2 Alpha. Oncogene 2012, 33, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Ioannidou, E.; Moschetta, M.; Shah, S.; Parker, J.S.; Ozturk, M.A.; Pappas-Gogos, G.; Sheriff, M.; Rassy, E.; Boussios, S. Angiogenesis and Anti-Angiogenic Treatment in Prostate Cancer: Mechanisms of Action and Molecular Targets. Int. J. Mol. Sci. 2021, 22, 9926. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Xu, Q.; Mao, F.; Li, D.; Bian, C.; Liu, L.Z.; Jiang, Y.; Chen, X.; Qi, Y.; Zhang, X.; et al. MiR-145 Inhibits Tumor Angiogenesis and Growth by N-RAS and VEGF. Cell Cycle 2012, 11, 2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.-X.; Liu, Z.; Deng, F.; Wang, D.-D.; Li, X.-W.; Tian, T.; Zhang, J.; Tang, J.-H. MiR-145: A Potential Biomarker of Cancer Migration and Invasion. Am. J. Transl. Res. 2019, 11, 6739. [Google Scholar] [PubMed]
- Cui, S.Y.; Wang, R.; Chen, L.B. MicroRNA-145: A Potent Tumour Suppressor That Regulates Multiple Cellular Pathways. J. Cell. Mol. Med. 2014, 18, 1913. [Google Scholar] [CrossRef]
- Yan, H.L.; Xue, G.; Mei, Q.; Wang, Y.Z.; Ding, F.X.; Liu, M.F.; Lu, M.H.; Tang, Y.; Yu, H.Y.; Sun, S.H. Repression of the MiR-17-92 Cluster by P53 Has an Important Function in Hypoxia-Induced Apoptosis. EMBO J. 2009, 28, 2719–2732. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kuscu, C.; Banach, A.; Zhang, Q.; Pulkoski-Gross, A.; Kim, D.; Liu, J.; Roth, E.; Li, E.; Shroyer, K.R.; et al. MiR-181a-5p Inhibits Cancer Cell Migration and Angiogenesis via Downregulation of Matrix Metalloproteinase-14. Cancer Res. 2015, 75, 2674–2685. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Qi, M.; Li, S.; Qi, T.; Mei, H.; Huang, K.; Zheng, L.; Tong, Q. MicroRNA-9 Targets Matrix Metalloproteinase 14 to Inhibit Invasion, Metastasis, and Angiogenesis of Neuroblastoma Cells. Mol. Cancer Ther. 2012, 11, 1454–1466. [Google Scholar] [CrossRef] [Green Version]
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular Principles of Metastasis: A Hallmark of Cancer Revisited. Signal Transduct. Target. Ther. 2020, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, K.; Massagué, J. Targeting Metastatic Cancer. Nat. Med. 2021, 27, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Irani, S. Emerging Insights into the Biology of Metastasis: A Review Article. Iran. J. Basic Med. Sci. 2019, 22, 833–847. [Google Scholar] [CrossRef] [PubMed]
- Welch, D.R.; Hurst, D.R. Defining the Hallmarks of Metastasis. Cancer Res. 2019, 79, 3011. [Google Scholar] [CrossRef]
- Hurst, D.R.; Edmonds, M.D.; Welch, D.R. Metastamir: The Field of Metastasis-Regulatory MicroRNA Is Spreading. Cancer Res. 2009, 69, 7495. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.H.; Tsao, C.J. Emerging Role of MicroRNA-21 in Cancer. Biomed. Rep. 2016, 5, 395. [Google Scholar] [CrossRef] [Green Version]
- Najjary, S.; Mohammadzadeh, R.; Mokhtarzadeh, A.; Mohammadi, A.; Kojabad, A.B.; Baradaran, B. Role of MiR-21 as an Authentic Oncogene in Mediating Drug Resistance in Breast Cancer. Gene 2020, 738, 144453. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Wei, F.; Li, B. Multiple Functions of Hypoxia-Regulated MiR-210 in Cancer. J. Exp. Clin. Cancer Res. 2014, 33, 50. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Xie, X. Association of Exosomal MiR-210 with Signaling Pathways Implicated in Lung Cancer. Genes 2021, 12, 1248. [Google Scholar] [CrossRef]
- Hong, L.; Yang, J.; Han, Y.; Lu, Q.; Cao, J.; Syed, L. High Expression of MiR-210 Predicts Poor Survival in Patients with Breast Cancer: A Meta-Analysis. Gene 2012, 507, 135–138. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, B.; Wang, P.; Yao, F.; Zhang, C.; Yu, G. Overview of MicroRNA-199a Regulation in Cancer. Cancer Manag. Res. 2019, 11, 10327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, K.; Li, T.; Zhang, W.; Ren, J.; Li, Z.; Wu, G. MiR-199a-3p Inhibits Cell Proliferation and Induces Apoptosis by Targeting YAP1, Suppressing Jagged1-Notch Signaling in Human Hepatocellular Carcinoma. J. Biomed. Sci. 2016, 23, 79. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.C.-W.; Chen, J.; Cheuk, I.W.-Y.; Siu, M.-T.; Shin, V.Y.; Kwong, A. MicroRNA-199a-3p Promotes Drug Sensitivity in Triple Negative Breast Cancer by down-Regulation of BRCA1. Am. J. Transl. Res. 2022, 14, 2021. [Google Scholar] [PubMed]
- He, S.; Huang, Y.; Dong, S.; Qiao, C.; Yang, G.; Zhang, S.; Wang, C.; Xu, Y.; Zheng, F.; Yan, M. MiR-199a-3p/5p Participated in TGF-β and EGF Induced EMT by Targeting DUSP5/MAP3K11 in Pterygium. J. Transl. Med. 2020, 18, 332. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, F.; Zhang, T.; Wang, W.; Xi, W.; Li, Y.; Zhang, D.; Huo, Y.; Zhang, J.; Yang, A.; et al. MiR-9 Promotes Tumorigenesis and Angiogenesis and Is Activated by MYC and OCT4 in Human Glioma. J. Exp. Clin. Cancer Res. 2019, 38, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Young, J.; Prabhala, H.; Pan, E.; Mestdagh, P.; Muth, D.; Teruya-Feldstein, J.; Reinhardt, F.; Onder, T.T.; Valastyan, S.; et al. MiR-9, a MYC/MYCN-Activated MicroRNA, Regulates E-Cadherin and Cancer Metastasis. Nat. Cell Biol. 2010, 12, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, Q.; Xi, T.; Zheng, L.; Li, X. MicroRNA-9 as a Paradoxical but Critical Regulator of Cancer Metastasis: Implications in Personalized Medicine. Genes Dis. 2021, 8, 759. [Google Scholar] [CrossRef]
- Song, J.; Kim, D.; Chun, C.-H.; Jin, E.-J. MicroRNA-375, a New Regulator of Cadherin-7, Suppresses the Migration of Chondrogenic Progenitors. Cell. Signal. 2013, 25, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.W.; Lin, J.S.; He, X.X. The Emerging Role of MiR-375 in Cancer. Int. J. Cancer 2014, 135, 1011–1018. [Google Scholar] [CrossRef]
- Wei, J.; Lu, Y.; Wang, R.; Xu, X.; Liu, Q.; He, S.; Pan, H.; Liu, X.; Yuan, B.; Ding, Y.; et al. MicroRNA-375: Potential Cancer Suppressor and Therapeutic Drug. Biosci. Rep. 2021, 41, BSR20211494. [Google Scholar] [CrossRef]
- Ma, L.; Reinhardt, F.; Pan, E.; Soutschek, J.; Bhat, B.; Marcusson, E.G.; Teruya-Feldstein, J.; Bell, G.W.; Weinberg, R.A. Therapeutic Silencing of MiR-10b Inhibits Metastasis in a Mouse Mammary Tumor Model. Nat. Biotechnol. 2010, 28, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.; Kavishwar, A.; Ross, A.; Wang, P.; Tabassum, D.P.; Polyak, K.; Barteneva, N.; Petkova, V.; Pantazopoulos, P.; Tena, A.; et al. Combining MiR-10b-Targeted Nanotherapy with Low-Dose Doxorubicin Elicits Durable Regressions of Metastatic Breast Cancer. Cancer Res. 2015, 75, 4407–4415. [Google Scholar] [CrossRef] [Green Version]
- Sheedy, P.; Medarova, Z. The Fundamental Role of MiR-10b in Metastatic Cancer. Am. J. Cancer Res. 2018, 8, 1674. [Google Scholar]
- Ma, L. Role of MiR-10b in Breast Cancer Metastasis. Breast Cancer Res. 2010, 12, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.-G.; Kong, L.-M.; Zhou, P.; Yang, X.-L.; Huang, J.-G.; Zhang, H.-L.; Lu, N. MiR-10b Is Overexpressed in Hepatocellular Carcinoma and Promotes Cell Proliferation, Migration and Invasion through RhoC, UPAR and MMPs. J. Transl. Med. 2014, 12, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Yao, F.; Xiao, Z.; Sun, Y.; Ma, L. MicroRNAs and Metastasis: Small RNAs Play Big Roles. Cancer Metastasis Rev. 2018, 37, 5. [Google Scholar] [CrossRef]
- Klicka, K.; Grzywa, T.M.; Mielniczuk, A.; Klinke, A.; Włodarski, P.K. The Role of MiR-200 Family in the Regulation of Hallmarks of Cancer. Front. Oncol. 2022, 12, 4468. [Google Scholar] [CrossRef]
- Fontana, A.; Barbano, R.; Dama, E.; Pasculli, B.; Rendina, M.; Morritti, M.G.; Melocchi, V.; Castelvetere, M.; Valori, V.M.; Ravaioli, S.; et al. Combined Analysis of MiR-200 Family and Its Significance for Breast Cancer. Sci. Rep. 2021, 11, 2980. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Ma, D.-N.; Chen, Q.-D.; Zhang, J.-J.; Tian, Y.-R.; Wang, Z.-C.; Cai, H.; Lin, Y.; Sun, H.-C. MicroRNA-200a Inhibits Cell Growth and Metastasis by Targeting Foxa2 in Hepatocellular Carcinoma. J. Cancer 2017, 8, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wu, G.; Wu, Z.; Yao, X.; Li, G. MiR-200a Suppresses the Proliferation and Metastasis in Pancreatic Ductal Adenocarcinoma through Downregulation of DEK Gene. Transl. Oncol. 2016, 9, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Pichler, M.; Ress, A.L.; Winter, E.; Stiegelbauer, V.; Karbiener, M.; Schwarzenbacher, D.; Scheideler, M.; Ivan, C.; Jahn, S.W.; Kiesslich, T.; et al. MiR-200a Regulates Epithelial to Mesenchymal Transition-Related Gene Expression and Determines Prognosis in Colorectal Cancer Patients. Br. J. Cancer 2014, 110, 1614–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boussios, S.; Ozturk, M.A.; Moschetta, M.; Karathanasi, A.; Zakynthinakis-Kyriakou, N.; Katsanos, K.H.; Christodoulou, D.K.; Pavlidis, N. The Developing Story of Predictive Biomarkers in Colorectal Cancer. J. Pers. Med. 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdeva, M.; Zhu, S.; Wu, F.; Wu, H.; Walia, V.; Kumar, S.; Elble, R.; Watabe, K.; Mo, Y.Y. P53 Represses C-Myc through Induction of the Tumor Suppressor MiR-145. Proc. Natl. Acad. Sci. USA 2009, 106, 3207–3212. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tang, K.; Wang, Y.; Chen, Y.; Yang, M.; Gu, C.; Wang, J.; Wang, Y.; Yuan, Y. Elevated MicroRNA-145-5p Increases Matrix Metalloproteinase-9 by Activating the Nuclear Factor-ΚB Pathway in Rheumatoid Arthritis. Mol. Med. Rep. 2019, 20, 2703. [Google Scholar] [CrossRef] [Green Version]
- Pang, W.; Su, J.; Wang, Y.; Feng, H.; Dai, X.; Yuan, Y.; Chen, X.; Yao, W. Pancreatic Cancer-Secreted MiR-155 Implicates in the Conversion from Normal Fibroblasts to Cancer-Associated Fibroblasts. Cancer Sci. 2015, 106, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Mees, S.T.; Mardin, W.A.; Wendel, C.; Baeumer, N.; Willscher, E.; Senninger, N.; Schleicher, C.; Colombo-Benkmann, M.; Haier, J. EP300—A MiRNA-Regulated Metastasis Suppressor Gene in Ductal Adenocarcinomas of the Pancreas. Int. J. Cancer 2010, 126, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Xiong, S.; Chen, Q.; Zhu, S.; Zhou, X. Novel Role of MicroRNA-126 in Digestive System Cancers: From Bench to Bedside. Oncol. Lett. 2019, 17, 31. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, C.; Zhang, X.; Peng, W.; Wen, T. MiR-143-3p Suppresses Tumorigenesis in Pancreatic Ductal Adenocarcinoma by Targeting KRAS. Biomed. Pharmacother. 2019, 119, 109424. [Google Scholar] [CrossRef]
- Bijkerk, R.; de Bruin, R.G.; van Solingen, C.; Duijs, J.M.; Kobayashi, K.; van der Veer, E.P.; Dijke, P.T.; Rabelink, T.J.; Goumans, M.J.; van Zonneveld, A.J. MicroRNA-155 Functions as a Negative Regulator of RhoA Signaling in TGF-β-Induced Endothelial to Mesenchymal Transition. MicroRNA 2012, 1, 2–10. [Google Scholar] [CrossRef]
- Chan, S.H.; Wang, L.H. Regulation of Cancer Metastasis by MicroRNAs. J. Biomed. Sci. 2015, 22, 9. [Google Scholar] [CrossRef] [Green Version]
- Ell, B.; Mercatali, L.; Ibrahim, T.; Campbell, N.; Schwarzenbach, H.; Pantel, K.; Amadori, D.; Kang, Y. Tumor-Induced Osteoclast MiRNA Changes as Regulators and Biomarkers of Osteolytic Bone Metastasis. Cancer Cell 2013, 24, 542–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbri, M.; Paone, A.; Calore, F.; Galli, R.; Gaudio, E.; Santhanam, R.; Lovat, F.; Fadda, P.; Mao, C.; Nuovo, G.J.; et al. MicroRNAs Bind to Toll-like Receptors to Induce Prometastatic Inflammatory Response. Proc. Natl. Acad. Sci. USA 2012, 109, E2110–E2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, T.; Lv, H.; Lv, G.; Li, T.; Wang, C.; Han, Q.; Yu, L.; Su, B.; Guo, L.; Huang, S.; et al. Tumor-Derived Exosomal MiR-1247-3p Induces Cancer-Associated Fibroblast Activation to Foster Lung Metastasis of Liver Cancer. Nat. Commun. 2018, 9, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
miRNAs | Type of Cancer | Expression | Targets Involved in Cell Cycle | Ref. |
---|---|---|---|---|
miR-497, miR-16, miR-30c-2-3p, miR-483-3p, miR-424, miR-543, miR-26a, miR-206, miR-15a, miR-30b, miR-708 | Breast cancer | Downregulated | Cyclin E1, cyclin E2, cyclin D1, CDK1, CDK4, c-myc, E2F7, ERK/MAPK | [40] |
miR-1207-5p, miR-492, miR-135b | Breast cancer | Upregulated | Cyclin D1, CDK2, c-myc, CDKN1A, CDKN-1B | [40] |
17 oncomiRs and 39 tsmiRs | Lung cancer | Upregulated (oncomiRs) Downregulated (tsmiRs) | Cyclin D1, D2, E1, c-Myc, CDK2, CDK4, CDK6, Rb, p21, p53 | [41] |
Paralogous clusters of miR-17~92, miR-106a~363 and miR-106b~25 | Colorectal cancer | Upregulated and downregulated | E2F and c-myc | [42] |
tsmiRs: miR-124, miR-203 oncomiR: miR-221 | Pancreatic cancer | Downregulated Upregulated | Rac1, survivin, p27 | [23] |
miR 221 and miR 222 | Nasopharyngeal carcinoma | Upregulated | p27 kip1 | [44] |
miR-16 | Prostate cancer | Downregulated | AKT3 | [45] |
tsmiRs: miR-145 OncomiRs: miR-223-3p, miR-107 and miR-21-5p | Penile cancer | Downregulated Upregulated | c-myc PTEN/MAPK signaling | [46] |
AngiomiRs | Expression | Targets Involved in Angiogenesis | Refs. |
---|---|---|---|
miR-21 | Upregulated | VEGF, TGF-β, HIF-1α, MMPs, Ang-1 | [52,53,54] |
miR-126 | Downregulated | VEGF, TSP-1 | [55,56] |
miR-199a-3p | Upregulated | VEGF, VEGFR, HGF, MMPs | [57] |
miR-296 | Upregulated | VEGFR2, PDGFRβ | [58,59,64] |
miR-29-c | Upregulated | VEGF | [60] |
miR-519c | Downregulated | HIF-1α | [62] |
miR-145 | Downregulated | HIF-2α | [63,65,66,67] |
miR-30d and miR-323 | Upregulated | VEGF | [64] |
miR-182 | Upregulated | HIF-1α | [64] |
miR-146 | Downregulated | EGFR and MMP2 | [64] |
miR-9 miR-181-5p | Downregulated Upregulated | MMP-14 | [69,70] |
MetastamiRs | Expression | Implications in Metastasis | Refs. |
---|---|---|---|
miR-21 | Upregulated | miR-21 enhances the ability of cancer cells to resist apoptosis and promote angiogenesis and tumor growth in metastatic disease. miR-21 expression was identified as being an independent prognostic biomarker for worse overall survival. | [76,77,110] |
miR-210 | Upregulated | MiR-210 is related with metastasis and poor survival in patients with breast cancer. | [78,79,80] |
miR-199a-3p | Upregulated | Overexpressed in multiple types of metastatic cancers including hepatocellular carcinoma, colorectal cancer, non-small cell lung cancer and breast cancer. miR-199a-3p is involved in the modulation of the PI3K/Akt, MAPK and Wnt signaling pathways. | [81,82,83,84] |
miR-9 | Upregulated | Induces an aggressive tumor behavior by targeting several angiogenic and metastatic markers (i.e., PI3K and MAPKs). | [85,86,87,109] |
miR-375 | Downregulated | Targeting of several genes involved in the cascade of EMT. | [88,89,90] |
miR-10b | Upregulated | Promotes cell migration and invasion through various target genes and pathways (PTEN/Akt, NF-κB signaling, RAS, DYRK1A and those involved in EMT). | [91,92,93,94,95] |
miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) | Downregulated in 10 types of cancer and upregulated in 2 cancer types | Exert a dual role in the invasion–metastasis cascade by suppressing EMT, tumor invasion and dissemination at the primary sites, but promote colonization in distant anatomic sites. | [96,97,98,99,100,101,102] |
miR-145 | Downregulated | Prevents metastatic disease by downregulating the expression of the protein c-MYC and MMP-9. | [103,104] |
miR-218, miR-155 | Upregulated | Stimulate epidermal growth factors, TGFβ, MMPs and endothelial growth factors in addition to inhibiting suppressor genes of metastases such as EP300, acting together in such a way that the vascular invasion of tumor cells is promoted. | [105,106] |
miR-143, let-7-d and miR-126 | Upregulated | These miRNAs stimulate the expression of oncogenes such as KRAS and favor tumor growth, cell migration and metastatic invasion. | [107,108] |
miR-29 | Upregulated | Activation of ZEB, Twist or TGFβ, limiting the transcription of the E cadherin gene. | [110] |
miR 16 and miR 378 | Upregulated | Activate NFkB which is a marker of osteoclastogenesis and is related to a higher incidence of metastatic bone proliferation. | [111] |
miR 1247-3p | Upregulated | Favors metastasis via its effects on EMT and angiogenesis. | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pekarek, L.; Torres-Carranza, D.; Fraile-Martinez, O.; García-Montero, C.; Pekarek, T.; Saez, M.A.; Rueda-Correa, F.; Pimentel-Martinez, C.; Guijarro, L.G.; Diaz-Pedrero, R.; et al. An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis. Int. J. Mol. Sci. 2023, 24, 7268. https://doi.org/10.3390/ijms24087268
Pekarek L, Torres-Carranza D, Fraile-Martinez O, García-Montero C, Pekarek T, Saez MA, Rueda-Correa F, Pimentel-Martinez C, Guijarro LG, Diaz-Pedrero R, et al. An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis. International Journal of Molecular Sciences. 2023; 24(8):7268. https://doi.org/10.3390/ijms24087268
Chicago/Turabian StylePekarek, Leonel, Diego Torres-Carranza, Oscar Fraile-Martinez, Cielo García-Montero, Tatiana Pekarek, Miguel A. Saez, Francisco Rueda-Correa, Carolina Pimentel-Martinez, Luis G. Guijarro, Raul Diaz-Pedrero, and et al. 2023. "An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis" International Journal of Molecular Sciences 24, no. 8: 7268. https://doi.org/10.3390/ijms24087268
APA StylePekarek, L., Torres-Carranza, D., Fraile-Martinez, O., García-Montero, C., Pekarek, T., Saez, M. A., Rueda-Correa, F., Pimentel-Martinez, C., Guijarro, L. G., Diaz-Pedrero, R., Alvarez-Mon, M., & Ortega, M. A. (2023). An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis. International Journal of Molecular Sciences, 24(8), 7268. https://doi.org/10.3390/ijms24087268