Mild Chronic Kidney Disease Associated with Low Bone Formation and Decrease in Phosphate Transporters and Signaling Pathways Gene Expression
Abstract
:1. Introduction
2. Results
2.1. Animal Models of Chronic Kidney Disease
2.1.1. Features of Mild Chronic Kidney Disease
2.1.2. Phosphate and Its Regulators
2.1.3. Static Bone Histomorphometry
2.2. Bone Gene Expression in Mild Chronic Kidney Disease Models
2.3. Bone Immunohistochemistry in Mild Chronic Kidney Disease Models
2.4. Correlation Analysis
3. Discussion
Research Limitations
4. Materials and Methods
4.1. Animals
4.2. Laboratory Measurements
4.3. Inductively Coupled Plasma Atomic Emission Spectroscopy
4.4. Real-Time Polymerase Chain Reaction
4.5. Histology and Immunohistochemistry
4.6. Quantitative Morphometry
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hruska, K.A.; Mathew, S.; Lund, R.; Qiu, P.; Pratt, R. Hyperphosphatemia of chronic kidney disease. Kidney Int. 2008, 74, 148–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drüeke, T.B.; Massy, Z.A. Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016, 89, 289–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.W.; Xu, C.; Fan, Y.; Wang, Y.; Xiao, Y.-B. Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS ONE 2014, 9, e102276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bricker, N.S.; Morrin, P.A.; Kime, S.W., Jr. The pathologic physiology of chronic Bright’s disease. An exposition of the “intact nephron hypothesis”. Am. J. Med. 1960, 28, 77–98. [Google Scholar] [CrossRef]
- Isakova, T.; Wolf, M.S. FGF23 or PTH: Which comes first in CKD? Kidney Int. 2010, 78, 947–949. [Google Scholar] [CrossRef] [Green Version]
- Sabbagh, Y.; Graciolli, F.G.; O’Brien, S.; Tang, W.; dos Reis, L.M.; Ryan, S.; Phillips, L.; Boulanger, J.; Song, W.; Bracken, C.; et al. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J. Bone Miner. Res. 2012, 27, 1757–1772. [Google Scholar] [CrossRef]
- Stubbs, J.R.; He, N.; Idiculla, A.; Gillihan, R.; Liu, S.; David, V.; Hong, Y.; Quarles, L.D. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J. Bone Miner. Res. 2012, 27, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.C.; Ferrari, G.O.; Neves, K.R.; Cavallari, R.T.; Dominguez, W.V.; dos Reis, L.M.; Graciolli, F.G.; Oliveira, E.C.; Liu, S.; Sabbagh, Y.; et al. Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney disease--role of sclerostin? PLoS ONE 2013, 8, e79721. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-López, N.; Martínez-Arias, L.; Fernández-Villabrille, S.; Ruiz-Torres, M.P.; Dusso, A.; Cannata-Andía, J.B.; Naves-Díaz, M.; Panizo, S. Role of the RANK/RANKL/OPG and Wnt/β-Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcif. Tissue Int. 2021, 108, 439–451. [Google Scholar] [CrossRef]
- Moe, S.M.; Radcliffe, J.S.; White, K.E.; Gattone, V.H.; Seifert, M.F.; Chen, X.; Aldridge, B.; Chen, N.X. The pathophysiology of early-stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to phosphate binders in the rat. J. Bone Miner. Res. 2011, 26, 2672–2681. [Google Scholar] [CrossRef]
- Mathew, S.; Lund, R.J.; Strebeck, F.; Tustison, K.S.; Geurs, T.; Hruska, K.A. Reversal of the adynamic bone disorder and decreased vascular calcification in chronic kidney disease by sevelamer carbonate therapy. J. Am. Soc. Nephrol. 2007, 18, 122–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki-Ishizuka, Y.; Yamato, H.; Nii-Kono, T.; Kurokawa, K.; Fukagawa, M. Downregulation of parathyroid hormone receptor gene expression and osteoblastic dysfunction associated with skeletal resistance to parathyroid hormone in a rat model of renal failure with low turnover bone. Nephrol. Dial. Transplant. 2005, 20, 1904–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Ginsberg, C.; Seifert, M.; Agapova, O.; Sugatani, T.; Register, T.C.; Freedman, B.I.; Monier-Faugere, M.-C.; Malluche, H.; Hruska, K.A. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J. Am. Soc. Nephrol. 2014, 25, 1760–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, P.; Sharp, C.A.; Magnusson, M.; Risteli, J.; Davie, M.W.; Larsson, L. Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms. Kidney Int. 2001, 60, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickolas, T.L.; Stein, E.M.; Dworakowski, E.; Nishiyama, K.K.; Komandah-Kosseh, M.; Zhang, C.A.; McMahon, D.J.; Liu, X.S.; Boutroy, S.; Cremers, S.; et al. Rapid cortical bone loss in patients with chronic kidney disease. J. Bone Miner. Res. 2013, 28, 1811–1820. [Google Scholar] [CrossRef]
- Tasnim, N.; Dutta, P.; Nayeem, J.; Masud, P.; Ferdousi, A.; Ghosh, A.S.; Hossain, M.; Rajia, S.; Kubra, K.T.; Sakibuzzaman, M.; et al. Osteoporosis, an Inevitable Circumstance of Chronic Kidney Disease: A Systematic Review. Cureus 2021, 13, e18488. [Google Scholar] [CrossRef]
- Malluche, H.H.; Ritz, E.; Lange, H.P.; Kutschera, J.; Hodgson, M.; Seiffert, U.; Schoeppe, W. Bone histology in incipient and advanced renal failure. Kidney Int. 1976, 9, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Coen, G.; Mazzaferro, S.; Ballanti, P.; Sardella, D.; Chicca, S.; Manni, M.; Bonucci, E.; Taggi, F. Renal bone disease in 76 patients with varying degrees of predialysis chronic renal failure: A cross-sectional study. Nephrol. Dial. Transplant. 1996, 11, 813–819. [Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Canziani, M.E.; Tomiyama, C.; Higa, A.; Mozar, A.; Glorieux, G.; Vanholder, R.; Massy, Z.A.; De Carvalho, A.B. Association between indoxyl sulfate and bone histomorphometry in pre-dialysis chronic kidney disease patients. J. Bras. Nefrol. 2014, 36, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Graciolli, F.G.; Neves, K.R.; Barreto, F.; Barreto, D.V.; Dos Reis, L.M.; Canziani, M.E.; Sabbagh, Y.; Carvalho, A.B.; Jorgetti, V.; Elias, R.M.; et al. The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease. Kidney Int. 2017, 91, 1436–1446. [Google Scholar] [CrossRef]
- Misof, B.M.; Blouin, S.; Roschger, P.; Werzowa, J.; Klaushofer, K.; Lehmann, G. Bone matrix mineralization and osteocyte lacunae characteristics in patients with chronic kidney disease—Mineral bone disorder (CKD-MBD). J. Musculoskelet. Neuronal Interact. 2019, 19, 196–206. [Google Scholar]
- Metzger, C.E.; Swallow, E.A.; Stacy, A.J.; Allen, M.R. Strain-specific alterations in the skeletal response to adenine-induced chronic kidney disease are associated with differences in parathyroid hormone levels. Bone 2021, 148, 115963. [Google Scholar] [CrossRef]
- Dussold, C.; Gerber, C.; White, S.; Wang, X.; Qi, L.; Francis, C.; Capella, M.; Courbon, G.; Wang, J.; Li, C.; et al. DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Res. 2019, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, H.S.; Behets, G.; Viaene, L.; Bammens, B.; Claes, K.; Meijers, B.; Naesens, M.; Sprangers, B.; Kuypers, D.; D’Haese, P.C.; et al. Static histomorphometry allows for a diagnosis of bone turnover in renal osteodystrophy in the absence of tetracycline labels. Bone 2021, 152, 116066. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-W.; Huang, T.-H.; Chang, Y.-H.; Liou, H.-H.; Chou, Y.-H.; Sue, Y.-M.; Hung, P.-H.; Chang, Y.-T.; Ho, P.-C.; Tsai, K.-J. Exercise Alleviates Osteoporosis in Rats with Mild Chronic Kidney Disease by Decreasing Sclerostin Production. Int. J. Mol. Sci. 2019, 20, 2044. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, C.A.; Plotkin, L.I.; Galli, C.; Goellner, J.J.; Gortazar, A.R.; Allen, M.R.; Robling, A.G.; Bouxsein, M.; Schipani, E.; Turner, C.H.; et al. Control of Bone Mass and Remodeling by PTH Receptor Signaling in Osteocytes. PLoS ONE 2008, 3, e2942. [Google Scholar] [CrossRef] [Green Version]
- Rhee, Y.; Allen, M.R.; Condon, K. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J. Bone Miner. Res. 2011, 26, 1035–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ureña, P.; Mannstadt, M.; Hruby, M.; Ferreira, A.; Schmitt, F.; Silve, C.; Ardaillou, R.; Lacour, B.; Abou-Samra, A.-B.; Segre, G.V.; et al. Parathyroidectomy does not prevent the renal PTH/PTHrP receptor down-regulation in uremic rats. Kidney Int. 1995, 47, 1797–1805. [Google Scholar] [CrossRef] [Green Version]
- Picton, M.L.; Moore, P.R.; Mawer, E.B.; Houghton, D.; Freemont, A.J.; Hutchison, A.; Gokal, R.; Hoyland, J.A. Down-regulation of human osteoblast PTH/PTHrP receptor mRNA in end-stage renal failure. Kidney Int. 2000, 58, 1440–1449. [Google Scholar] [CrossRef] [Green Version]
- Camalier, C.E.; Yi, M.; Yu, L.-R.; Hood, B.L.; Conrads, K.A.; Lee, Y.J.; Lin, Y.; Garneys, L.M.; Bouloux, G.F.; Young, M.R.; et al. An integrated understanding of the physiological response to elevated extracellular phosphate. J. Cell. Physiol. 2013, 228, 1536–1550. [Google Scholar] [CrossRef] [Green Version]
- Hoshikawa, S.; Shimizu, K.; Watahiki, A.; Chiba, M.; Saito, K.; Wei, W.; Fukumoto, S.; Inuzuka, H. Phosphorylation-dependent osterix degradation negatively regulates osteoblast differentiation. FASEB J. 2020, 34, 14930–14945. [Google Scholar] [CrossRef]
- Lezaki, T.; Onishi, Y.; Ozaki, K.; Fukasawa, K.; Takahata, Y.; Nakamura, Y.; Fujikawa, K.; Takarada, T.; Yoneda, Y.; Yamashita, Y.; et al. The Transcriptional Modulator Interferon-Related Developmental Regulator 1 in Osteoblasts Suppresses Bone Formation and Promotes Bone Resorption. J. Bone Miner. Res. 2016, 31, 573–584. [Google Scholar]
- Kubota, K.; Sakikawa, C.; Katsumata, M.; Nakamura, T.; Wakabayashi, K. Platelet-derived growth factor BB secreted from osteoclasts acts as an osteoblastogenesis inhibitory factor. J. Bone Miner. Res. 2002, 17, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.W.; Park, J.; Habib, M.M.; Beck, G.R., Jr. Nano-Hydroxyapatite Stimulation of Gene Expression Requires Fgf Receptor, Phosphate Transporter, and Erk1/2 Signaling. ACS Appl. Mater. Interfaces 2017, 9, 39185–39196. [Google Scholar] [CrossRef] [PubMed]
- Bon, N.; Couasnay, G.; Bourgine, A.; Sourice, S.; Beck-Cormier, S.; Guicheux, J.; Beck, L. Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake. J. Biol. Chem. 2018, 293, 2102–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.F.P.; Hernández, M.J.; de Oliveira, I.B.; Siqueira, F.R.; Dominguez, W.V.; dos Reis, L.M.; Carvalho, A.B.; Moysés, R.M.A.; Jorgetti, V. Comparison of clinical, biochemical and histomorphometric analysis of bone biopsies in dialysis patients with and without fractures. J. Bone Miner. Metab. 2019, 37, 125–133. [Google Scholar] [CrossRef]
- Xu, W.; Luo, F.; Wang, Q.; an, Q.; Huang, J.; Zhou, S.; Wang, Z.; Sun, X.; Kuang, L.; Jin, M.; et al. Inducible Activation of FGFR2 in Adult Mice Promotes Bone Formation after Bone Marrow Ablation. J. Bone Miner. Res. 2017, 32, 2194–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, S.; Wallingford, M.C.; Borgeia, S. Loss of PiT-2 results in abnormal bone development and decreased bone mineral density and length in mice. Biochem. Biophys. Res. Commun. 2018, 495, 553–559. [Google Scholar] [CrossRef]
- Albano, G.; Moor, M.; Dolder, S.; Siegrist, M.; Wagner, C.A.; Biber, J.; Hernando, N.; Hofstetter, W.; Bonny, O.; Fuster, D.G. Sodium-dependent phosphate transporters in osteoclast differentiation and function. PLoS ONE 2015, 10, e0125104. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, D.; Touhami, J.; Charnet, P.; Sitbon, M.; Battini, J.L. Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep. 2013, 3, 1866–1873. [Google Scholar] [CrossRef] [Green Version]
- Szeri, F.; Niaziorimi, F.; Donnelly, S.; Fariha, N.; Tertyshnaia, M.; Patel, D.; Lundkvist, S.; Wetering, K. The Mineralization Regulator ANKH Mediates Cellular Efflux of ATP, Not Pyrophosphate. J. Bone Miner. Res. 2022, 37, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Beck, L.; Beck-Cormier, S. Extracellular phosphate sensing in mammals: What do we know? J. Mol. Endocrinol. 2020, 65, R53–R63. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.N.; Stephen, L.A.; Dillon, S.; Milne, E.; Javaheri, B.; Pitsillides, A.A.; Novak, A.; Millán, J.L.; MacRae, V.E.; A Staines, K.; et al. Increased PHOSPHO1 expression mediates cortical bone mineral density in renal osteodystrophy. J. Endocrinol. 2022, 254, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.R.; Carvalho, A.B.; Bittencourt, A.L.; Rochitte, C.E.; Canziani, M.E.F. Cortical unlike trabecular bone loss is not associated with vascular calcification progression in CKD patients. BMC Nephrol. 2020, 21, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lezin, E.; Simonet, L.; Pravenec, M.; Kurtz, T.W. Hypertensive strains and normotensive ‘control’ strains. How closely are they related? Hypertension 1992, 19, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, H.; Vorberg, E.; Thurow, K.; Warkentin, M.; Behrend, D. Determination of Calcium and Phosphor in Bones Using Microwave Digestion and ICP-MS. In Imeko Tc19 Symp, 5th ed.; International Measurement Confederation (IMEKO): Lecce, Italy, 2014; ISBN 978-92-990073-6-5. [Google Scholar]
- Erben, R.G.; Glösmann, M. Histomorphometry in Rodents. In Bone Research Protocols. Methods in Molecular Biology; Idris, A., Ed.; Humana Press: New York, NY, USA, 2019; Volume 1914. [Google Scholar]
- Dempster, D.W.; Compston, J.E.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R.; Parfitt, A.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2013, 28, 2–17. [Google Scholar] [CrossRef] [Green Version]
Name | WKY2 | SO2 | SO6 | Nx2 | Nx6 |
---|---|---|---|---|---|
Group number | (1) | (2) | (3) | (4) | (5) |
Strain | Wistar Kyoto rats | Spontaneously hypertensive rats | |||
Model | normotensive control | control | mild CKD models | ||
Surgery | sham-operated | sham-operated | sham-operated | 3/4 nephrectomy | 3/4 nephrectomy |
Duration of the experiment, mo | 2 | 2 | 6 | 2 | 6 |
Rats number, n | 8 | 8 | 8 | 8 | 8 |
Initial body weight, g | 228 (224;230) | 220 (215;226) | 215 (207;228) | 224 (217;228) | 222 (212;229) |
Final body weight, g | 345 (336;361) | 317 (311;337) | 317 (306;336) | 320 (300;370) | 331 (309;365) |
Systolic blood pressure, mmHg | 135 (130;142) 2–4# | 170 (160;182) 3,4*5# | 195 (183;200) | 195 (180;205) | 208 (195;223) |
Serum creatinine, μmol/L | 74 (69;79) 3–5# | 73 (68;77) 3–5‡ | 83 (81;86) 4,5# | 93 (91;97) 5# | 107 (102;110) |
Urea, mmol/L | 4.89 (3.81;6.93) 3–5# | 5.36 (4.19;6.41) 4,5† | 5.37 (4.36;7.09) 4,5# | 7.10 (6.95;7.58) 5# | 10.7 (9.63;12.4) |
Creatinine clearance, mL/min/100 g | 0.20 (0.15;0.26) | 0.27 (0.20;0.35) 4,5‡ | 0.23 (0.14;0.30) | 0.19 (0.16;0.23) | 0.19 (0.16;0.25) |
Urinary albumin/creatinine, mg/mg | 0.026 (0.017;0.035) 3–5# | 0.043 (0.031;0.065) 3–5‡ | 0.288 (0.237;0.336) | 0.327 (0.153–0.370) | 0.543 (0.345;1.114) |
Renal interstitial fibrosis, % | 2.5 (1.6;3.1) 3–5# | 1.9 (0.1;3.3) 3–5# | 5.8 (3.5;7.2) 5# | 6.9 (3.9;7.7) 5# | 14.5 (13.2;17.2) |
Serum Klotho, pg/mL | 2698 (2413;2831) | 2916 (2520;5374) 3–5* | 2043 (1676;2663) | 2304 (2074;2524) | 2259 (1428;2696) |
Serum inorganic phosphate, mmol/L | 1.47 (1.22;1.60) 3–5# | 1.89 (1.79;1.95) 5* | 1.90 (1.80;1.98) 5‡ | 1.60 (1.50;1.84) 5* | 2.21 (2.15;2.28) |
Urinary phosphate/creatinine, mg/mg | 5.6 (4.5;6.5) 5* | 8.9 (6.9;10.1) | 8.6 (7.9;9.8) | 10.1 (7.6;12.7) | 9.3 (8.9;11.2) |
Bone phosphorus, g/kg | 58.6 (33.4;62.7) | 63.5 (58.1;64.5) | 62.8 (61.8;64.1) | 62.8 (55.2;65.6) | 59.7 (58.9;63.6) |
Kidney phosphorus, mg/kg | 818 (770;877) | 872 (606;1241) | 822 (637;1024) | 699 (668;825) | 734 (671;862) |
Intact parathyroid hormone, pg/mL | 55.1(12.7;112.9) | 76.6 (18.4;111.0) | 45.5 (12.6;67.1) | 45.9 (21.2;76.6) | 33.5 (9.6;84.9) |
Intact fibroblast growth factor 23, pg/mL | 351 (290;836) | 361 (330;1530) | 468 (326;694) | 676 (330;793) | 630 (330;953) |
Serum dickkopf-1, pg/mL | 965 (845;1175) | 1221(975;1534) | 466(100;979) 4*5† | 1402 (994;1605) | 1017 (876;1264) |
Serum sclerostin, pg/mL | 233 (161;292) | 246 (157;433) | 94 (50;169) 5* | 212 (119;251) | 221 (161;263) |
PTH, pg/mL | FGF23, pg/mL | Serum Pi, mmol/L | Urinary Pi/Cr, mg/mg | Serum Cr, mmol/L | |
---|---|---|---|---|---|
N.Ot/T.Ar, no/mm2 | 0.11 | 0.20 | −0.10 | 0.16 | −0.31 * |
N.Ob/B.Pm, no/mm | −0.38 | −0.22 | −0.10 | −0.26 | −0.32 * |
N.Oc/B.Pm, no/mm | −0.16 | −0.11 | −0.37 * | −0.11 | 0.06 |
E.Pm.%B.Pm | −0.12 | 0.09 | −0.48 * | −0.10 | −0.22 |
Slc20a1 | −0.05 | 0.05 | 0.29 | −0.24 | −0.39 * |
Slc20a2 | −0.14 | 0.04 | 0.16 | −0.37 * | −0.43 * |
Xpr1 | −0.54 * | −0.004 | −0.03 | −0.16 | −0.50 * |
Ankh | −0.26 | 0.03 | 0.14 | −0.16 | −0.40 * |
Fgf23 | −0.07 | −0.18 | 0.06 | 0.04 | 0.45 * |
Fgfr2 | −0.08 | −0.06 | 0.04 | −0.03 | −0.37 * |
Mapk1 | 0.01 | 0.20 | 0.24 | −0.30 | −0.57 ** |
Mapk3 | −0.28 | −0.07 | −0.13 | −0.26 | −0.50 * |
Sp7 | 0.12 | 0.15 | 0.03 | 0.02 | −0.44 * |
Ctnnb1 | −0.17 | 0.05 | −0.08 | −0.15 | −0.43 * |
Wnt10b | −0.06 | −0.08 | 0.01 | −0.08 | −0.34 * |
Vdr | −0.02 | 0.02 | 0.06 | 0.04 | −0.34 * |
Bmp4 | 0.12 | 0.24 | −0.13 | −0.03 | −0.42 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanova, E.; Sadykov, A.; Ivanova, G.; Zubina, I.; Beresneva, O.; Semenova, N.; Galkina, O.; Parastaeva, M.; Sharoyko, V.; Dobronravov, V. Mild Chronic Kidney Disease Associated with Low Bone Formation and Decrease in Phosphate Transporters and Signaling Pathways Gene Expression. Int. J. Mol. Sci. 2023, 24, 7270. https://doi.org/10.3390/ijms24087270
Bogdanova E, Sadykov A, Ivanova G, Zubina I, Beresneva O, Semenova N, Galkina O, Parastaeva M, Sharoyko V, Dobronravov V. Mild Chronic Kidney Disease Associated with Low Bone Formation and Decrease in Phosphate Transporters and Signaling Pathways Gene Expression. International Journal of Molecular Sciences. 2023; 24(8):7270. https://doi.org/10.3390/ijms24087270
Chicago/Turabian StyleBogdanova, Evdokia, Airat Sadykov, Galina Ivanova, Irina Zubina, Olga Beresneva, Natalia Semenova, Olga Galkina, Marina Parastaeva, Vladimir Sharoyko, and Vladimir Dobronravov. 2023. "Mild Chronic Kidney Disease Associated with Low Bone Formation and Decrease in Phosphate Transporters and Signaling Pathways Gene Expression" International Journal of Molecular Sciences 24, no. 8: 7270. https://doi.org/10.3390/ijms24087270
APA StyleBogdanova, E., Sadykov, A., Ivanova, G., Zubina, I., Beresneva, O., Semenova, N., Galkina, O., Parastaeva, M., Sharoyko, V., & Dobronravov, V. (2023). Mild Chronic Kidney Disease Associated with Low Bone Formation and Decrease in Phosphate Transporters and Signaling Pathways Gene Expression. International Journal of Molecular Sciences, 24(8), 7270. https://doi.org/10.3390/ijms24087270