Nitric Oxide Induced by Ammonium/Nitrate Ratio Ameliorates Low-Light Stress in Brassica pekinesis: Regulation of Photosynthesis and Root Architecture
Abstract
:1. Introduction
2. Results
2.1. Morphyological Parameters and Biomass
2.2. Root Morphology Parameters
2.3. Gas Exchange Parameters
2.4. Chlorophyll Fluorescence Imaging
2.5. Chloroplast Ultrastructure
2.6. NOS and NR Activity
2.7. NO Level in Leaf and Root
3. Discussion
4. Material and Methods
4.1. Plant Material and Experiment Design
4.2. Evaluation of Morphological Parameters and Biomass
4.3. Analysis of Root Morphology Parameters
4.4. Determination of Gas Exchange Parameters
4.5. Measurement of Chlorophyll Fluorescence Imaging
4.6. Observation of Chloroplast Ultrastructure
4.7. Assay of the Nitric Oxide Synthase (NOS) and Nitrate Reductase (NR) Activity
4.8. Assay of the NO Level in Leaf and Root
4.9. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NO | Nitric oxide; |
SNP | Sodium nitroprusside; |
Hb | Hemoglobin; |
L-NAME | Nω-nitro-L-arginine methyl ester; |
NaN3 | Sodium azide; |
Pn | Net photosynthetic rate; |
Gs | Stomata conductance; |
Ci | Intercellular CO2 concentration; |
Tr | Transpiration rate; |
rETR | Relative electron transport rates; |
qP | Photochemical quenching; |
Fv/Fm | Maximum quantum yield of PSII; |
Y(II) | Actual photosynthetic efficiency; |
Y(NO) | Quantum yield of regulated energy dissipation in PS II; |
Y(NPQ) | Quantum yield of non-regulated energy dissipation in PS II. |
References
- Shang, H.; Shen, G. Effect of ammonium/nitrate ratio on pak choi (Brassica chinensis L.) photosynthetic capacity and biomass accumulation under low light intensity and water deficit. Photosynthetica 2018, 56, 1039–1046. [Google Scholar] [CrossRef]
- Liang, W.; Wang, M.; Ai, X. The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress. Sci. Hortic. 2009, 123, 34–38. [Google Scholar] [CrossRef]
- Wang, L.J.; Jiang, W.B.; Huang, B.J. Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol. Plant. 2004, 121, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Arasu, M.V.; Park, S.; Byeon, D.H.; Chung, S.-O.; Park, S.U. LED lights enhance metabolites and antioxidants in chinese cabbage and kale. Braz. Arch. Biol. Technol. 2016, 59. [Google Scholar] [CrossRef] [Green Version]
- Ducsay, L.; Varga, L. Cultivation of Brassica pekinensis under different forms of nitrogen nutrition. Hortic. Sci. 2003, 30, 112. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Yu, J.; Liao, W.; Zhang, G.; Xie, J.; Lv, J.; Xiao, X.; Yang, B.; Zhou, R.; Bu, R. Moderate ammonium: Nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. Sci. Hortic. 2015, 186, 143–153. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, W.; He, J.; Zhang, L.; Wei, Y.; Yang, M. Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicol. Environ. Saf. 2020, 187, 109785. [Google Scholar] [CrossRef]
- Ma, M.; Wendehenne, D.; Philippot, L.; Hänsch, R.; Flemetakis, E.; Hu, B.; Rennenberg, H. Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. Plant Cell Environ. 2020, 43, 2336–2354. [Google Scholar] [CrossRef]
- Abedi, S.; Iranbakhsh, A.; Ardebili, Z.O.; Ebadi, M. Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): Potential benefits and risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 3136–3148. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, X.; Hou, Y.; Wang, X.; Li, X. Postharvest nitric oxide treatment delays the senescence of winter jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit during cold storage by regulating reactive oxygen species metabolism. Sci. Hortic. 2020, 261, 109009. [Google Scholar] [CrossRef]
- Kaya, C.; Akram, N.A.; Sürücü, A.; Ashraf, M. Alleviating effect of nitric oxide on oxidative stress and antioxidant defence system in pepper (Capsicum annuum L.) plants exposed to cadmium and lead toxicity applied separately or in combination. Sci. Hortic. 2019, 255, 52–60. [Google Scholar] [CrossRef]
- Tiwari, S.; Verma, N.; Singh, V.P.; Prasad, S.M. Nitric oxide ameliorates aluminium toxicity in Anabaena PCC 7120: Regulation of aluminium accumulation, exopolysaccharides secretion, photosynthesis and oxidative stress markers. Environ. Exp. Bot. 2019, 161, 218–227. [Google Scholar] [CrossRef]
- da Silva Leite, R.; do Nascimento, M.N.; Tanan, T.T.; Neto, L.P.G.; da Silva Ramos, C.A.; da Silva, A.L. Alleviation of water deficit in Physalis angulata plants by nitric oxide exogenous donor. Agric. Water Manag. 2019, 216, 98–104. [Google Scholar] [CrossRef]
- Munawar, A.; Akram, N.A.; Ahmad, A.; Ashraf, M. Nitric oxide regulates oxidative defense system, key metabolites and growth of broccoli (Brassica oleracea L.) plants under water limited conditions. Sci. Hortic. 2019, 254, 7–13. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Liu, Q.; Zong, B.; Yuan, X.; Sun, H.; Wang, J.; Zang, L.; Ma, Z.; Liu, H. Nitric oxide is involved in abscisic acid-induced photosynthesis and antioxidant system of tall fescue seedlings response to low-light stress. Environ. Exp. Bot. 2018, 155, 226–238. [Google Scholar] [CrossRef]
- Sehar, Z.; Masood, A.; Khan, N.A. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ. Exp. Bot. 2019, 161, 277–289. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Bhuyan, M.B.; Oku, H.; Fujita, M. Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiol. Biochem. 2018, 126, 173–186. [Google Scholar] [CrossRef]
- Ding, Y.; Gardiner, D.M.; Xiao, D.; Kazan, K. Regulators of nitric oxide signaling triggered by host perception in a plant pathogen. Proc. Natl. Acad. Sci. USA 2020, 117, 11147–11157. [Google Scholar] [CrossRef]
- Tejada-Jimenez, M.; Llamas, A.; Galván, A.; Fernández, E. Role of nitrate reductase in NO production in photosynthetic eukaryotes. Plants 2019, 8, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabi, R.B.S.; Tayade, R.; Hussain, A.; Kulkarni, K.P.; Imran, Q.M.; Mun, B.-G.; Yun, B.-W. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ. Exp. Bot. 2019, 161, 120–133. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Oku, H.; Nahar, K.; Bhuyan, M.B.; Al Mahmud, J.; Baluska, F.; Fujita, M. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol. Rep. 2018, 12, 77–92. [Google Scholar] [CrossRef]
- Simontacchi, M.; Galatro, A.; Ramos-Artuso, F.; Santa-María, G.E. Plant survival in a changing environment: The role of nitric oxide in plant responses to abiotic stress. Front. Plant Sci. 2015, 6, 977. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.K.; Chakrabarti, A.K. Vegetables of Temperate Climates|Commercial and Dietary Importance—ScienceDirect. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Elsevier Science BV: Amsterdam, The Netherlands, 2003; pp. 5925–5932. [Google Scholar]
- He, Y.K.; Xue, W.X.; Sun, Y.D.; Yu, X.H.; Liu, P.L. Leafy head formation of the progenies of transgenic plants of Chinese cabbage with exogenous auxin genes. Cell Res. 2000, 10, 151–160. [Google Scholar] [CrossRef]
- Yu, X.; Peng, J.; Feng, X.; Yang, S.; Zheng, Z.; Tang, X.; Shen, R.; Liu, P.; He, Y. Cloning and structural and expressional characterization of BcpLH gene preferentially expressed in folding leaf of Chinese cabbage. Sci. China Ser. C Life Sci. 2000, 43, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Jang, J.J.; Kim, N.H.; Lee, N.Y.; Cho, T.J.; Kim, S.H.; Rhee, M.S. Factors that determine the microbiological quality of ready-to-use salted napa cabbage (Brassica pekinensis): Season and distribution temperature. Food Control 2018, 87, 1–8. [Google Scholar] [CrossRef]
- Li, L.; Tian, S.L.; Jiang, J.; Wang, Y. Regulation of nitric oxide to Capsicum under lower light intensities. S. Afr. J. Bot. 2020, 132, 268–276. [Google Scholar] [CrossRef]
- Ball, K.A.; Castello, P.R.; Poyton, R.O. Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J. Photochem. Photobiol. B-Biol. 2011, 102, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.V.; Harper, J.E. Nitric Oxide and Nitrous Oxide Production by Soybean and Winged Bean during the in Vivo Nitrate Reductase Assay. Plant Physiol. 1986, 82, 718–723. [Google Scholar] [CrossRef] [Green Version]
- Yoneyama, T.; Suzuki, A. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of N-15-tracing, enzymes involved, reductant supply, and nitrate signaling: A review and synthesis. Plant Physiol. Biochem. 2019, 136, 245–254. [Google Scholar] [CrossRef]
- Astier, J.; Gross, I.; Durner, J. Nitric oxide production in plants: An update. J. Exp. Bot. 2018, 69, 3401–3411. [Google Scholar] [CrossRef]
- Kolbert, Z.; Barroso, J.B.; Brouquisse, R.; Corpas, F.J.; Gupta, K.J.; Lindermayr, C.; Loake, G.J.; Palma, J.M.; Petrivalsky, M.; Wendehenne, D.; et al. A forty year journey: The generation and roles of NO in plants. Nitric Oxide-Biol. Chem. 2019, 93, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Rockel, P.; Strube, F.; Rockel, A.; Wildt, J.; Kaiser, W.M. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 2002, 53, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Pagnussat, G.C.; Simontacchi, M.; Puntarulo, S.; Lamattina, L. Nitric oxide is required for root organogenesis. Plant Physiol. 2002, 129, 954–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Zhang, Y.; Liu, L.; Liu, X.; Li, B.; Jin, C.; Lin, X. Molecular functions of nitric oxide and its potential applications in horticultural crops. Hortic. Res. 2021, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Correa-Aragunde, N.; Graziano, M.; Lamattina, L. Nitric oxide plays a central role in determining lateral root development in tomato. Planta 2004, 218, 900–905. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Liao, W.; Hu, L.; Dawuda, M.M.; Jin, X.; Tang, Z.; Yang, J.; Yu, J. Nitric oxide is involved in the brassinolide-induced adventitious root development in cucumber. BMC Plant Biol. 2020, 20, 102. [Google Scholar] [CrossRef] [Green Version]
- Gouvea, C.; Souza, J.; Magalhaes, A.; Martins, I. NO—releasing substances that induce growth elongation in maize root segments. Plant Growth Regul. 1997, 21, 183–187. [Google Scholar] [CrossRef]
- Tian, Q.Y.; Sun, D.H.; Zhao, M.G.; Zhang, W.H. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol. 2007, 174, 322–331. [Google Scholar] [CrossRef]
- Terrón-Camero, L.C.; Del Val, C.; Sandalio, L.M.; Romero-Puertas, M.C. Low endogenous NO levels in roots and antioxidant systems are determinants for the resistance of Arabidopsis seedlings grown in Cd. Environ. Pollut. 2020, 256, 113411. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Serrano, M.; Romero-Puertas, M.C.; Zabalza, A.; Corpas, F.J.; Gomez, M.; Del Rio, L.A.; Sandalio, L.M. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 2006, 29, 1532–1544. [Google Scholar] [CrossRef] [PubMed]
- Bartha, B.; Kolbert, Z.; Erdei, L. Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. Acta Biol. Szeged. 2005, 49, 9–12. [Google Scholar]
- Procházková, D.; Haisel, D.; Wilhelmová, N.; Pavlíková, D.; Száková, J. Effects of exogenous nitric oxide on photosynthesis. Photosynthetica 2013, 51, 483–489. [Google Scholar] [CrossRef]
- Hill, A.C.; Bennett, J. Inhibition of apparent photosynthesis by nitrogen oxides. Atmos. Environ. 1970, 4, 341–348. [Google Scholar] [CrossRef]
- Jhanji, S.; Setia, R.; Kaur, N.; Kaur, P.; Setia, N. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L. J. Environ. Biol. 2012, 33, 1027. [Google Scholar] [PubMed]
- Shao, R.; Zheng, H.; Jia, S.; Jiang, Y.; Yang, Q.; Kang, G. Nitric Oxide Enhancing Resistance to PEG-Induced Water Deficiency is Associated with the Primary Photosynthesis Reaction in Triticum aestivum L. Int. J. Mol. Sci. 2018, 19, 2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Zhang, Z.; Gao, S.; Lv, Y.; Chen, Z.; Cao, B.; Xu, K. Different responses of two Chinese cabbage (Brassica rapa L. ssp. pekinensis) cultivars in photosynthetic characteristics and chloroplast ultrastructure to salt and alkali stress. Planta 2021, 254, 102. [Google Scholar]
- Liao, W.-B.; Huang, G.-B.; Yu, J.-H.; Zhang, M.-L. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol. Biochem. 2012, 58, 6–15. [Google Scholar] [CrossRef]
- Sami, F.; Siddiqui, H.; Alam, P.; Hayat, S. Nitric Oxide Mitigates the Salt-Induced Oxidative Damage in Mustard by UpRegulating the Activity of Various Enzymes. J. Plant Growth Regul. 2021, 40, 2409–2432. [Google Scholar] [CrossRef]
- Hu, L.; Liao, W.; Dawuda, M.M.; Yu, J.; Lv, J. Appropriate NH4+: NO3− ratio improves low light tolerance of mini Chinese cabbage seedlings. BMC Plant Biol. 2017, 17, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, A.J.; Critchley, C. Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth. Res. 1999, 59, 63–72. [Google Scholar] [CrossRef]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New Fluorescence Parameters for the Determination of QA Redox State and Excitation Energy Fluxes. Photosynth. Res. 2004, 79, 209. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wu, Y.; Dawuda, M.M.; Liao, W.; Lv, J.; Li, Y.; Yu, J.; Xie, J.; Feng, Z.; Zhang, G. Appropriate Ammonium/Nitrate Mitigates Low Light Stress in Brassica pekinensis by Regulating the Nitrogen Metabolism and Expression Levels of Key Proteins. J. Plant Growth Regul. 2021, 40, 574–593. [Google Scholar] [CrossRef]
Treatment | Leaf Area (cm2) | Canopy Spread (cm2) | Leaf Number (No·plant−1) | Fresh Weight of Shoot (g) | Fresh Weight of Root (g) | Dry Weight of Shoot (g) | Dry Weight of Root (g) |
---|---|---|---|---|---|---|---|
CK | 19.17 ± 1.12 b * | 99.95 ± 5.25 b | 5.8 ± 0.13 abc | 2.23 ± 0.18 ab | 0.103 ± 0.006 b | 0.133 ± 0.005 ab | 0.008 ± 0.003 ab |
N | 24.21 ± 1.70 a | 150.24 ± 9.03 a | 6.2 ± 0.20 a | 2.60 ± 0.47 a | 0.193 ± 0.025 a | 0.183 ± 0.013 a | 0.009 ± 0.001 a |
SNP | 23.42 ± 1.86 a | 135.02 ± 6.11 a | 5.9 ± 0.23 ab | 2.53 ± 0.34 a | 0.180 ± 0.005 a | 0.164 ± 0.019 a | 0.009 ± 0.003 a |
N + Hb | 14.01 ± 0.55 c | 78.2 ± 5.09 c | 5.3 ± 0.15 c | 1.50 ± 0.30 b | 0.032 ± 0.004 c | 0.102 ± 0.008 b | 0.001 ± 0 b |
N + NaN3 | 15.09 ± 0.96 bc | 85.5 ± 7.02 bc | 5.3 ± 0.15 c | 1.47 ± 0.12 b | 0.057 ± 0.009 c | 0.107 ± 0.027 b | 0.006 ± 0.002 ab |
N + L-NAME | 15.86 ± 1.67 bc | 96.49 ± 8.00 bc | 5.5 ± 0.17 bc | 1.47 ± 0.12 b | 0.060 ± 0.017 c | 0.109 ± 0.007 b | 0.005 ± 0.002 ab |
Treatment | Total Root Length (cm) | Surface Area (cm2) | Average Diameter (mm) | Root Volume (cm3) | Root Tips |
---|---|---|---|---|---|
CK | 243.09 ± 3.85 bc * | 25.14 ± 2.50 ab | 0.25 ± 0.02 c | 0.17 ± 0.01 bc | 181.33 ± 1.86 bc |
N | 304.52 ± 31.03 ab | 30.43 ± 1.21 a | 0.30 ± 0.02 bc | 0.28 ± 0.07 ab | 230.67 ± 16.42 b |
SNP | 415.71 ± 96.33 a | 31.37 ± 6.07 a | 0.25 ± 0.01 c | 0.39 ± 0.07 a | 501.67 ± 91.63 a |
N + Hb | 125.52 ± 17.45 c | 16.33 ± 2.31 b | 0.55 ± 0.08 a | 0.12 ± 0.01 c | 63.33 ± 3.84 c |
N + NaN3 | 145.58 ± 20.90 c | 18.10 ± 3.98 b | 0.43 ± 0.08 ab | 0.13 ± 0.02 c | 72.67 ± 12.57 c |
N + L-NAME | 182.80 ± 14.92 bc | 16.52 ± 1.80 b | 0.29 ± 0.03 bc | 0.12 ± 0.03 c | 109 ± 11.93 bc |
Treatment | Pn (molCO2 m−2 s−1) | Gs (mmol·H2O m−2 s−1) | Tr (mmol·H2O m−2 s−1) | Ci (mol CO2 mol−1) |
---|---|---|---|---|
CK | 5.03 ± 0.32 b | 126 ± 19.89 bc | 2.53 ± 0.28 abc | 369 ± 11.53 bc |
N | 7.23 ± 0.38 a | 186 ± 38.59 ab | 3.33 ± 0.50 ab | 360 ± 12.44 c |
SNP | 7.53 ± 0.64 a | 217 ± 35.59 a | 3.67 ± 0.47 a | 368 ± 4.16 bc |
N + Hb | 1.37 ± 0.22 c | 63 ± 3.93 c | 1.30 ± 0.00 c | 406 ± 4.33 ab |
N + NaN3 | 1.90 ± 0.15 c | 132 ± 22.36 bc | 1.87 ± 0.46 c | 422 ± 7.02 a |
N + L-NAME | 3.00 ± 1.21 c | 120 ± 15.10 bc | 2.27 ± 0.35 bc | 408 ± 24.94 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Gao, X.; Li, Y.; Lyu, J.; Xiao, X.; Zhang, G.; Yu, J. Nitric Oxide Induced by Ammonium/Nitrate Ratio Ameliorates Low-Light Stress in Brassica pekinesis: Regulation of Photosynthesis and Root Architecture. Int. J. Mol. Sci. 2023, 24, 7271. https://doi.org/10.3390/ijms24087271
Hu L, Gao X, Li Y, Lyu J, Xiao X, Zhang G, Yu J. Nitric Oxide Induced by Ammonium/Nitrate Ratio Ameliorates Low-Light Stress in Brassica pekinesis: Regulation of Photosynthesis and Root Architecture. International Journal of Molecular Sciences. 2023; 24(8):7271. https://doi.org/10.3390/ijms24087271
Chicago/Turabian StyleHu, Linli, Xueqin Gao, Yutong Li, Jian Lyu, Xuemei Xiao, Guobin Zhang, and Jihua Yu. 2023. "Nitric Oxide Induced by Ammonium/Nitrate Ratio Ameliorates Low-Light Stress in Brassica pekinesis: Regulation of Photosynthesis and Root Architecture" International Journal of Molecular Sciences 24, no. 8: 7271. https://doi.org/10.3390/ijms24087271
APA StyleHu, L., Gao, X., Li, Y., Lyu, J., Xiao, X., Zhang, G., & Yu, J. (2023). Nitric Oxide Induced by Ammonium/Nitrate Ratio Ameliorates Low-Light Stress in Brassica pekinesis: Regulation of Photosynthesis and Root Architecture. International Journal of Molecular Sciences, 24(8), 7271. https://doi.org/10.3390/ijms24087271