Coronary Artery Spasm-Related Heart Failure Syndrome: Literature Review
Abstract
:1. Introduction
2. Epidemiology
3. Clinical Features of CASHF
4. Pathogenesis
4.1. Microvascular CASHF
4.2. Epicardial CASHF
4.3. Cellular and Animal Models of Takotsubo Cardiomyopathy, CAS, and Microvascular CASHrEF
5. Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Jessup, M.; Brozena, S. Heart failure. N. Engl. J. Med. 2003, 348, 2007–2018. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Roger, V.L.; Weston, S.A.; Jiang, R.; Redfield, M.M. Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circ. Heart Fail. 2012, 5, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Redfield, M.M. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 2011, 123, 2006–2013. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J. Clinical practice. Systolic heart failure. N. Engl. J. Med. 2010, 362, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Brucks, S.; Little, W.C.; Chao, T.; Kitzman, D.W.; Wesley-Farrington, D.; Gandhi, S.; Shihabi, Z.K. Contribution of left ventricular diastolic dysfunction to heart failure regardless of ejection fraction. Am. J. Cardiol. 2005, 95, 603–606. [Google Scholar] [CrossRef]
- Lam, C.S.; Lyass, A.; Kraigher-Krainer, E.; Massaro, J.M.; Lee, D.S.; Ho, J.E.; Levy, D.; Redfield, M.M.; Pieske, B.M.; Benjamin, E.J.; et al. Cardiac dysfunction and noncardiac dysfunction as precursors of heart failure with reduced and preserved ejection fraction in the community. Circulation 2011, 124, 24–30. [Google Scholar] [CrossRef]
- Eisman, A.S.; Shah, R.V.; Dhakal, B.P.; Pappagianopoulos, P.P.; Wooster, L.; Bailey, C.; Cunningham, T.F.; Hardin, K.M.; Baggish, A.L.; Ho, J.E.; et al. Pulmonary Capillary Wedge Pressure Patterns During Exercise Predict Exercise Capacity and Incident Heart Failure. Circ. Heart Fail. 2018, 11, e004750. [Google Scholar] [CrossRef]
- Greenberg, B.; Kim, P.J.; Kahn, A.M. Clinical evaluation of heart failure. In Heart Failure: A Companion to Braunwald’s Heart Disease, 4th ed.; Felker, G.M., Mann, D.L., Eds.; Elsevier: Philadelphia, PA, USA, 2020; Chapter 31. [Google Scholar]
- Shah, K.S.; Xu, H.; Matsouaka, R.A.; Bhatt, D.L.; Heidenreich, P.A.; Hernandez, A.F.; Devore, A.D.; Yancy, C.W.; Fonarow, G.C. Heart Failure with Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. J. Am. Coll. Cardiol. 2017, 70, 2476–2486. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017, 14, 591–602. [Google Scholar] [CrossRef]
- Borlaug, B.A. Evaluation and management of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2020, 17, 559–573. [Google Scholar] [CrossRef]
- Obokata, M.; Kane, G.C.; Reddy, Y.N.; Olson, T.P.; Melenovsky, V.; Borlaug, B.A. Role of Diastolic Stress Testing in the Evaluation for Heart Failure With Preserved Ejection Fraction: A Simultaneous Invasive-Echocardiographic Study. Circulation 2017, 135, 825–838. [Google Scholar] [CrossRef]
- Shah, S.J.; Katz, D.H.; Deo, R.C. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail. Clin. 2014, 10, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.J.; Kitzman, D.W.; Borlaug, B.A.; van Heerebeek, L.; Zile, M.R.; Kass, D.A.; Paulus, W.J. Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction: A Multiorgan Roadmap. Circulation 2016, 134, 73–90. [Google Scholar] [CrossRef]
- Senni, M.; Redfield, M.M. Heart failure with preserved systolic function. A different natural history? J. Am. Coll. Cardiol. 2001, 38, 1277–1282. [Google Scholar] [CrossRef]
- Kannel, W.B. Lessons from curbing the coronary artery disease epidemic for confronting the impending epidemic of heart failure. Med. Clin. N. Am. 2004, 88, 1129–1133. [Google Scholar] [CrossRef]
- Vancheri, F.; Longo, G.; Vancheri, S.; Henein, M. Coronary Microvascular Dysfunction. J. Clin. Med. 2020, 9, 2880. [Google Scholar] [CrossRef] [PubMed]
- Cowie, M.R.; Wood, D.A.; Coats, A.J.; Thompson, S.G.; Poole-Wilson, P.A.; Suresh, V.; Sutton, G.C. Incidence and aetiology of heart failure; a population-based study. Eur. Heart J. 1999, 20, 421–428. [Google Scholar] [CrossRef]
- Repetto, A.; Dal Bello, B.; Pasotti, M.; Agozzino, M.; Viganò, M.; Klersy, C.; Tavazzi, L.; Arbustini, E. Coronary atherosclerosis in end-stage idiopathic dilated cardiomyopathy: An innocent bystander? Eur. Heart J. 2005, 26, 1519–1527. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Thompson, R.E.; Hare, J.M.; Hruban, R.H.; Clemetson, D.E.; Howard, D.L.; Baughman, K.L.; Kasper, E.K. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N. Engl. J. Med. 2000, 342, 1077–1084. [Google Scholar] [CrossRef]
- Sueda, S.; Kohno, H.; Oshita, A.; Izoe, Y.; Nomoto, T.; Fukuda, H. Vasospastic heart failure: Multiple spasm may cause transient heart failure? J. Cardiol. 2009, 54, 452–459. [Google Scholar] [CrossRef]
- Inami, T.; Kataoka, M.; Shimura, N.; Ishiguro, H.; Kohshoh, H.; Taguchi, H.; Yanagisawa, R.; Hara, Y.; Satoh, T.; Yoshino, H. Left ventricular dysfunction due to diffuse multiple vessel coronary artery spasm can be concealed in dilated cardiomyopathy. Eur. J. Heart Fail. 2012, 14, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Oda, S.; Fujii, Y.; Takemoto, H.; Nomura, S.; Nakayama, H.; Toyota, Y.; Nakamura, H.; Teragawa, H. Heart failure in which coronary spasms played an important role. Intern. Med. 2014, 53, 227–232. [Google Scholar] [CrossRef] [PubMed]
- MacAlpin, R.N.; Kattus, A.A.; Alvaro, A.B. Angina pectoris at rest with preservation of exercise capacity: Prinzmetal’s variant angina. Circulation 1973, 47, 946–958. [Google Scholar] [CrossRef]
- Prinzmetal, M.; Kennamer, R.; Merliss, R.; Wada, T.; Bor, N. Angina pectoris. I. A variant form of angina pectoris; preliminary report. Am. J. Med. 1959, 27, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Blumgart, H.L.; Schlesinger, M.J.; Davis, D. Studies on the relation of the clinical manifestations of angina pectoris, coronary thrombosis and myocardial infarction to the pathologic findings. Am. Heart J. 1940, 19, 1–91. [Google Scholar] [CrossRef]
- Oliva, P.B.; Potts, D.E.; Pluss, R.G. Coronary arterial spasm in Prinzmetal angina. Documentation by coronary arteriography. N. Engl. J. Med. 1973, 288, 745–751. [Google Scholar] [CrossRef]
- Cheng, T.O.; Bashour, T.; Kelser, G.A., Jr.; Weiss, L.; Bacos, J. Variant angina of prinzmetal with normal coronary arteriograms. A variant of the variant. Circulation 1973, 47, 476–485. [Google Scholar] [CrossRef]
- Maseri, A.; Mimmo, R.; Chierchia, S.; Marchesi, C.; Pesola, A.; L’Abbate, A. Coronary artery spasm as a cause of acute myocardial ischemia in man. Chest 1975, 68, 625–633. [Google Scholar] [CrossRef]
- Cheng, C.W.; Yang, N.I.; Lin, K.J.; Hung, M.J.; Cherng, W.J. Role of coronary spasm for a positive noninvasive stress test result in angina pectoris patients without hemodynamically significant coronary artery disease. Am. J. Med. Sci. 2008, 335, 354–362. [Google Scholar] [CrossRef]
- Hung, M.J.; Hu, P.; Hung, M.Y. Coronary artery spasm: Review and update. Int. J. Med. Sci. 2014, 11, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Zavras, G.M. Histamine-induced coronary artery spasm: The concept of allergic angina. Br. J. Clin. Pract. 1991, 45, 121–128. [Google Scholar] [PubMed]
- Kounis, N.G.; Koniari, I.; Velissaris, D.; Tzanis, G.; Hahalis, G. Kounis Syndrome—Not a Single-organ Arterial Disorder but a Multisystem and Multidisciplinary Disease. Balkan Med. J. 2019, 36, 212–221. [Google Scholar] [CrossRef]
- Maseri, A. Pathogenetic mechanisms of angina pectoris: Expanding views. Br. Heart J. 1980, 43, 648–660. [Google Scholar] [CrossRef]
- Chahine, R.A.; Luchi, R.J. Coronary arterial spasm: Culprit or bystander? Am. J. Cardiol. 1976, 37, 936–937. [Google Scholar] [CrossRef]
- Nasiri-Partovi, A.; Shafiee, A.; Rahmani, R. Intracoronary injection of nitroglycerine can prevent unnecessary percutaneous coronary intervention. BMC Cardiovasc. Disord. 2022, 22, 416. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Velazquez, E.J.; Gardner, L.H.; Smith, P.K.; Newman, M.F.; Landolfo, K.P.; Lee, K.L.; Califf, R.M.; Jones, R.H. Comparison of coronary artery bypass grafting versus medical therapy on long-term outcome in patients with ischemic cardiomyopathy (a 25-year experience from the Duke Cardiovascular Disease Databank). Am. J. Cardiol. 2002, 90, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Alderman, E.L.; Fisher, L.D.; Litwin, P.; Kaiser, G.C.; Myers, W.O.; Maynard, C.; Levine, F.; Schloss, M. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation 1983, 68, 785–795. [Google Scholar] [CrossRef]
- Baker, D.W.; Jones, R.; Hodges, J.; Massie, B.M.; Konstam, M.A.; Rose, E.A. Management of heart failure. III. The role of revascularization in the treatment of patients with moderate or severe left ventricular systolic dysfunction. JAMA 1994, 272, 1528–1534. [Google Scholar] [CrossRef]
- Pigott, J.D.; Kouchoukos, N.T.; Oberman, A.; Cutter, G.R. Late results of surgical and medical therapy for patients with coronary artery disease and depressed left ventricular function. J. Am. Coll. Cardiol. 1985, 5, 1036–1045. [Google Scholar] [CrossRef]
- Elefteriades, J.A.; Tolis, G., Jr.; Levi, E.; Mills, L.K.; Zaret, B.L. Coronary artery bypass grafting in severe left ventricular dysfunction: Excellent survival with improved ejection fraction and functional state. J. Am. Coll. Cardiol. 1993, 22, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Larson, M.G.; Leip, E.P.; Beiser, A.; D’Agostino, R.B.; Kannel, W.B.; Murabito, J.M.; Vasan, R.S.; Benjamin, E.J.; Levy, D. Lifetime risk for developing congestive heart failure: The Framingham Heart Study. Circulation 2002, 106, 3068–3072. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.; Kenchaiah, S.; Larson, M.G.; Benjamin, E.J.; Kupka, M.J.; Ho, K.K.; Murabito, J.M.; Vasan, R.S. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 2002, 347, 1397–1402. [Google Scholar] [CrossRef]
- Kenchaiah, S.; Vasan, R.S. Heart Failure in Women--Insights from the Framingham Heart Study. Cardiovasc. Drugs Ther. 2015, 29, 377–390. [Google Scholar] [CrossRef]
- Ho, J.E.; Lyass, A.; Lee, D.S.; Vasan, R.S.; Kannel, W.B.; Larson, M.G.; Levy, D. Predictors of new-onset heart failure: Differences in preserved versus reduced ejection fraction. Circ. Heart Fail. 2013, 6, 279–286. [Google Scholar] [CrossRef]
- Piña, I.L.; Kokkinos, P.; Kao, A.; Bittner, V.; Saval, M.; Clare, B.; Goldberg, L.; Johnson, M.; Swank, A.; Ventura, H.; et al. Baseline differences in the HF-ACTION trial by sex. Am. Heart J. 2009, 158 (Suppl. 4), S16–S23. [Google Scholar] [CrossRef]
- Taylor, C.J.; Ordóñez-Mena, J.M.; Roalfe, A.K.; Lay-Flurrie, S.; Jones, N.R.; Marshall, T.; Hobbs, F.D.R. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000–2017: Population based cohort study. BMJ 2019, 364, l223. [Google Scholar] [CrossRef]
- Beltrame, J.F.; Sasayama, S.; Maseri, A. Racial heterogeneity in coronary artery vasomotor reactivity: Differences between Japanese and Caucasian patients. J. Am. Coll. Cardiol. 1999, 33, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with vasospastic angina (Coronary Spastic Angina) (JCS 2013). Circ. J. 2014, 78, 2779–2801. [Google Scholar] [CrossRef] [PubMed]
- Sueda, S.; Kohno, H.; Fukuda, H.; Ochi, N.; Kawada, H.; Hayashi, Y.; Uraoka, T. Frequency of provoked coronary spasms in patients undergoing coronary arteriography using a spasm provocation test via intracoronary administration of ergonovine. Angiology 2004, 55, 403–411. [Google Scholar] [CrossRef]
- Hung, M.Y.; Hsu, K.H.; Hung, M.J.; Cheng, C.W.; Cherng, W.J. Interactions among gender, age, hypertension and C-reactive protein in coronary vasospasm. Eur. J. Clin. Investig. 2010, 40, 1094–1103. [Google Scholar] [CrossRef]
- Bertrand, M.E.; LaBlanche, J.M.; Tilmant, P.Y.; Thieuleux, F.A.; Delforge, M.R.; Carre, A.G.; Asseman, P.; Berzin, B.; Libersa, C.; Laurent, J.M. Frequency of provoked coronary arterial spasm in 1089 consecutive patients undergoing coronary arteriography. Circulation 1982, 65, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.J.; Cherng, W.J.; Cheng, C.W.; Li, L.F. Comparison of serum levels of inflammatory markers in patients with coronary vasospasm without significant fixed coronary artery disease versus patients with stable angina pectoris and acute coronary syndromes with significant fixed coronary artery disease. Am. J. Cardiol. 2006, 97, 1429–1434. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.J.; Cheng, C.W.; Yang, N.I.; Hung, M.Y.; Cherng, W.J. Coronary vasospasm-induced acute coronary syndrome complicated by life-threatening cardiac arrhythmias in patients without hemodynamically significant coronary artery disease. Int. J. Cardiol. 2007, 117, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.; Athanasiadis, A.; Hill, S.; Vogelsberg, H.; Voehringer, M.; Sechtem, U. Coronary artery spasm as a frequent cause of acute coronary syndrome: The CASPAR (Coronary Artery Spasm in Patients with Acute Coronary Syndrome) Study. J. Am. Coll. Cardiol. 2008, 52, 523–527. [Google Scholar] [CrossRef]
- Goto, A.; Ito, S.; Kondo, H.; Nomura, Y.; Yasue, N.; Suzumura, H.; Takeda, Y.; Tomimoto, S.; Yamada, Y.; Horio, T.; et al. Evaluation of adjunctive intracoronary administration of acetylcholine following intravenous infusion of ergonovine to provoke coronary artery spasm. J. Cardiol. 1999, 34, 309–316. [Google Scholar] [PubMed]
- Yasue, H.; Mizuno, Y.; Harada, E. Coronary artery spasm—Clinical features, pathogenesis and treatment. Proc. Jpn. Acad. Ser. B 2019, 95, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Sueda, S.; Sakaue, T. Racial Differences in Patients with Coronary Vasomotion Disorders. J. Coron. Artery Dis. 2021, 27, 7–17. [Google Scholar] [CrossRef]
- Da, C.A.; Isaaz, K.; Faure, E.; Mourot, S.; Cerisier, A.; Lamaud, M. Clinical characteristics, aetiological factors and long-term prognosis of myocardial infarction with an absolutely normal coronary angiogram; a 3-year follow-up study of 91 patients. Eur. Heart J. 2001, 22, 1459–1465. [Google Scholar]
- Sueda, S.; Kohno, H. The acetylcholine administration time plays the key role for provoked spasm in the spasm provocation test. J. Cardiol. 2017, 70, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.Y.; Hung, M.J.; Cheng, C.W.; Yang, N.I.; Cherng, W.J. Safety and predictors of a positive result of intracoronary ergonovine testing in patients with ischemic heart disease without hemodynamically significant coronary artery stenosis in Taiwan. Acta Cardiol. Sin. 2007, 23, 150–159. [Google Scholar]
- Takagi, Y.; Yasuda, S.; Takahashi, J.; Tsunoda, R.; Ogata, Y.; Seki, A.; Sumiyoshi, T.; Matsui, M.; Goto, T.; Tanabe, Y.; et al. Clinical implications of provocation tests for coronary artery spasm: Safety, arrhythmic complications, and prognostic impact: Multicentre registry study of the Japanese Coronary Spasm Association. Eur. Heart J. 2013, 34, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, P.J.; Faxon, D.P.; Audet, A.M.; Carabello, B.; Dehmer, G.J.; Eagle, K.A.; Legako, R.D.; Leon, D.F.; Murray, J.A.; Nissen, S.E.; et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J. Am. Coll. Cardiol. 1999, 33, 1756–1824. [Google Scholar]
- Hung, M.Y.; Kounis, N.G.; Lu, M.Y.; Hu, P. Myocardial Ischemic Syndromes, Heart Failure Syndromes, Electrocardiographic Abnormalities, Arrhythmic Syndromes and Angiographic Diagnosis of Coronary Artery Spasm: Literature Review. Int. J. Med. Sci. 2020, 17, 1071–1082. [Google Scholar] [CrossRef]
- Baim, D.S. Coronary angiography. In Grossman’s Cardiac Catheterization, Angiography, and Intervention, 7th ed.; Baim, D.S., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Nishi, I.; Ilda, K.; Kawano, S.; Masumi, T.; Fumikura, Y.; Ohtsuka, S.; Watanabe, S.; Yamaguchi, I. Effects of anti-vasospastic agents in Japanese patients with dilated cardiomyopathy and coronary vasospasm. Jpn. Heart J. 2002, 43, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Heupler, F.A., Jr. Provocative testing for coronary arterial spasm: Risk, method and rationale. Am. J. Cardiol. 1980, 46, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, M.E.; Lablanche, J.M.; Tilmant, P.Y.; Thieuleux, F.A.; Delforge, M.G.; Chahine, R.A. The provocation of coronary arterial spasm in patients with recent transmural myocardial infarction. Eur. Heart J. 1983, 4, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Montalescot, G.; Sechtem, U.; Achenbach, S.; Andreotti, F.; Arden, C.; Budaj, A.; Bugiardini, R.; Crea, F.; Cuisset, T.; Di Mario, C.; et al. 2013 ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 2013, 34, 2949–3003. [Google Scholar]
- Beltrame, J.F.; Crea, F.; Kaski, J.C.; Ogawa, H.; Ong, P.; Sechtem, U.; Shimokawa, H.; Bairey Merz, C.N.; Coronary Vasomotion Disorders International Study Group (COVADIS). International standardization of diagnostic criteria for vasospastic angina. Eur. Heart J. 2017, 38, 2565–2568. [Google Scholar] [CrossRef]
- Sakata, K.; Nawada, R.; Ohbayashi, K.; Tamekiyo, H.; Yoshida, H. Diffuse and severe left ventricular dysfunction induced by epicardial coronary artery spasm. Angiology 2000, 51, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, K.; Gordon, S. Effects of ”Essential AD2” Supplement on Blood Acetaldehyde Levels in Individuals Who Have Aldehyde Dehydrogenase (ALDH2) Deficiency. Am. J. Ther. 2019, 26, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Chen, Y.G.; Xue, L.; Li, R.J.; Zhang, H.; Bian, Y.; Zhang, C.; Lv, R.J.; Feng, J.B.; Zhang, Y. Role of aldehyde dehydrogenase 2 Glu504lys polymorphism in acute coronary syndrome. J. Cell. Mol. Med. 2011, 15, 1955–1962. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef] [PubMed]
- Gerber, Y.; Weston, S.A.; Redfield, M.M.; Chamberlain, A.M.; Manemann, S.M.; Jiang, R.; Killian, J.M.; Roger, V.L. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern. Med. 2015, 175, 996–1004. [Google Scholar] [CrossRef]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef]
- Maggioni, A.P.; Dahlström, U.; Filippatos, G.; Chioncel, O.; Crespo Leiro, M.; Drozdz, J.; Fruhwald, F.; Gullestad, L.; Logeart, D.; Fabbri, G.; et al. EURObservational Research Programme: Regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESC-HF Pilot). Eur. J. Heart Fail. 2013, 15, 808–817. [Google Scholar] [CrossRef]
- Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L. Heart Failure with Reduced Ejection Fraction: A Review. JAMA 2020, 324, 488–504. [Google Scholar] [CrossRef] [PubMed]
- Mohri, M.; Takeshita, A. Coronary microvascular disease in humans. Jpn. Heart J. 1999, 40, 97–108. [Google Scholar] [CrossRef]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [PubMed]
- Bairey Merz, C.N.; Pepine, C.J.; Walsh, M.N.; Fleg, J.L. Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation 2017, 135, 1075–1092. [Google Scholar] [CrossRef]
- Jespersen, L.; Hvelplund, A.; Abildstrøm, S.Z.; Pedersen, F.; Galatius, S.; Madsen, J.K.; Jørgensen, E.; Kelbæk, H.; Prescott, E. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur. Heart J. 2012, 33, 734–744. [Google Scholar] [CrossRef]
- Maddox, T.M.; Stanislawski, M.A.; Grunwald, G.K.; Bradley, S.M.; Ho, P.M.; Tsai, T.T.; Patel, M.R.; Sandhu, A.; Valle, J.; Magid, D.J.; et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA 2014, 312, 1754–1763. [Google Scholar] [CrossRef]
- Petersen, J.W.; Johnson, B.D.; Kip, K.E.; Anderson, R.D.; Handberg, E.M.; Sharaf, B.; Mehta, P.K.; Kelsey, S.F.; Merz, C.N.; Pepine, C.J. TIMI frame count and adverse events in women with no obstructive coronary disease: A pilot study from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE). PLoS ONE 2014, 9, e96630. [Google Scholar] [CrossRef]
- Gulati, M.; Cooper-DeHoff, R.M.; McClure, C.; Johnson, B.D.; Shaw, L.J.; Handberg, E.M.; Zineh, I.; Kelsey, S.F.; Arnsdorf, M.F.; Black, H.R.; et al. Adverse cardiovascular outcomes in women with nonobstructive coronary artery disease: A report from the Women’s Ischemia Syndrome Evaluation Study and the St James Women Take Heart Project. Arch. Intern. Med. 2009, 169, 843–850. [Google Scholar] [CrossRef]
- Brainin, P.; Frestad, D.; Prescott, E. The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: A systematic review and meta-analysis. Int. J. Cardiol. 2018, 254, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Herscovici, R.; Sedlak, T.; Wei, J.; Pepine, C.J.; Handberg, E.; Bairey Merz, C.N. Ischemia and No Obstructive Coronary Artery Disease (INOCA): What Is the Risk? J. Am. Heart Assoc. 2018, 7, e008868. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; Berglund, L.; Larsson, A.; Sundström, J. Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation 2011, 123, 1545–1551. [Google Scholar] [CrossRef]
- Maseri, A.; Severi, S.; Nes, M.D.; L’Abbate, A.; Chierchia, S.; Marzilli, M.; Ballestra, A.M.; Parodi, O.; Biagini, A.; Distante, A. “Variant” angina: One aspect of a continuous spectrum of vasospastic myocardial ischemia. Pathogenetic mechanisms, estimated incidence and clinical and coronary arteriographic findings in 138 patients. Am. J. Cardiol. 1978, 42, 1019–1035. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.Y.; Mao, C.T.; Hung, M.J.; Wang, J.K.; Lee, H.C.; Yeh, C.T.; Hu, P.; Chen, T.H.; Chang, N.C. Coronary Artery Spasm as Related to Anxiety and Depression: A Nationwide Population-Based Study. Psychosom. Med. 2019, 81, 237–245. [Google Scholar] [CrossRef]
- Sueda, S.; Kohno, H.; Yoshino, H. The real world in the clinic before and after the establishment of guidelines for coronary artery spasm: A questionnaire for members of the Japanese Cine-angio Association. Heart Vessel. 2017, 32, 637–643. [Google Scholar] [CrossRef]
- Schang, S.J., Jr.; Pepine, C.J. Transient asymptomatic S-T segment depression during daily activity. Am. J. Cardiol. 1977, 39, 396–402. [Google Scholar] [CrossRef]
- Mudge, G.H., Jr.; Grossman, W.; Mills, R.M., Jr.; Lesch, M.; Braunwald, E. Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N. Engl. J. Med. 1976, 295, 1333–1337. [Google Scholar] [CrossRef]
- Priedberg, C.K. Some comments and reflections on changing interests and new developments in angina pectoris. Circulation 1972, 46, 1037–1047. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Abrams, J.; Chatterjee, K.; Daley, J.; Deedwania, P.C.; Douglas, J.S.; Ferguson, T.B., Jr.; Fihn, S.D.; Fraker, T.D., Jr.; Gardin, J.M.; et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina—Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation 2003, 107, 149–158. [Google Scholar]
- Apstein, C.S.; Grossman, W. Opposite initial effects of supply and demand ischemia on left ventricular diastolic compliance: The ischemia-diastolic paradox. J. Mol. Cell. Cardiol. 1987, 19, 119–128. [Google Scholar] [CrossRef]
- Wilson, R.F.; Marcus, M.L.; White, C.W. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 1987, 75, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Maseri, A.; Parodi, O.; Severi, S.; Pesola, A. Transient transmural reduction of myocardial blood flow demonstrated by thallium-201 scintigraphy, as a cause of variant angina. Circulation 1976, 54, 280–288. [Google Scholar] [CrossRef]
- Arrebola-Moreno, A.L.; Arrebola, J.P.; Moral-Ruiz, A.; Ramirez-Hernandez, J.A.; Melgares-Moreno, R.; Kaski, J.C. Coronary microvascular spasm triggers transient ischemic left ventricular diastolic abnormalities in patients with chest pain and angiographically normal coronary arteries. Atherosclerosis 2014, 236, 207e–214e. [Google Scholar] [CrossRef] [PubMed]
- Sonnenblick, E.H.; Fein, F.; Capasso, J.M.; Factor, S.M. Microvascular spasm as a cause of cardiomyopathies and the calcium-blocking agent verapamil as potential primary therapy. Am. J. Cardiol. 1985, 55, 179B–184B. [Google Scholar] [CrossRef] [PubMed]
- Pries, A.R.; Reglin, B. Coronary microcirculatory pathophysiology: Can we afford it to remain a black box? Eur. Heart J. 2017, 38, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.F.; Barrett-O’Keefe, Z.; Garten, R.S.; Nelson, A.D.; Ryan, J.J.; Nativi, J.N.; Richardson, R.S.; Wray, D.W. Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart 2016, 102, 278–284. [Google Scholar] [CrossRef]
- De Boer, R.A.; Pinto, Y.M.; Van Veldhuisen, D.J. The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: The role of microvascular growth and abnormalities. Microcirculation 2003, 10, 113–126. [Google Scholar] [CrossRef]
- Ong, P.; Athanasiadis, A.; Borgulya, G.; Mahrholdt, H.; Kaski, J.C.; Sechtem, U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronaryVAsomotion in patients with stable angina and unobstructed coronary arteries). J. Am. Coll. Cardiol 2013, 59, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.B.; Wexler, L.; Silverman, J.F.; Schroeder, J.S. Clinical and arteriographic features of Prinzmetal’s variant angina: Documentation of etiologic factors. Am. J. Cardiol. 1976, 37, 831–839. [Google Scholar] [CrossRef]
- Parchure, N.; Batchvarov, V.; Malik, M.; Camm, A.J.; Kaski, J.C. Increased QT dispersion in patients with Prinzmetal’s variant angina and cardiac arrest. Cardiovasc. Res. 2001, 50, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Selzer, A.; Langston, M.; Ruggeroli, C.; Cohn, K. Clinical syndrome of variant angina with normal coronary arteriogram. N. Engl. J. Med. 1976, 295, 1343–1347. [Google Scholar] [CrossRef]
- Dalen, J.E.; Ockene, I.S.; Alpert, J.S. Coronary spasm, coronary thrombosis, and myocardial infarction: A hypothesis concerning the pathophysiology of acute myocardial infarction. Am. Heart J. 1982, 104 Pt 1, 1119–1124. [Google Scholar] [CrossRef]
- Farmer, D.M.; Swygman, C.A.; Wang, P.J.; Mark Estes, N.A., 3rd; Link, M.S. Evidence that nonsustained polymorphic ventricular tachycardia causes syncope (data from implantable cardioverter defibrillators). Am. J. Cardiol. 2003, 91, 606–609. [Google Scholar] [CrossRef]
- Kamakura, T.; Wada, M.; Ishibashi, K.; Inoue, Y.Y.; Miyamoto, K.; Okamura, H.; Nagase, S.; Noda, T.; Aiba, T.; Yasuda, S.; et al. Significance of Coronary Artery Spasm Diagnosis in Patients with Early Repolarization Syndrome. J. Am. Heart Assoc. 2018, 7, e007942. [Google Scholar] [CrossRef]
- Ali, A.; Butt, N.; Sheikh, A.S. Early repolarization syndrome: A cause of sudden cardiac death. World J. Cardiol. 2015, 7, 466–475. [Google Scholar] [CrossRef]
- Sueda, S.; Fujimoto, K.; Sasaki, Y.; Habara, H.; Kohno, H. Cardiogenic Shock due to Pulseless Electrical Activity Arrest Associated with Severe Coronary Artery Spasm. Intern. Med. 2018, 57, 2853–2857. [Google Scholar] [CrossRef]
- Letsas, K.P.; Filippatos, G.S.; Efremidis, M.; Sideris, A.; Kardaras, F. Secondary prevention of sudden cardiac death in coronary artery spasm: Is implantable cardioverter defibrillator always efficient? Int. J. Cardiol. 2007, 117, 141–143. [Google Scholar] [CrossRef]
- Nakamura, M. Our animal model of coronary spasm—My personal view. J. Atheroscler. Thromb. 2000, 6, 1–12. [Google Scholar] [CrossRef]
- Nobuyoshi, M.; Tanaka, M.; Nosaka, H.; Kimura, T.; Yokoi, H.; Hamasaki, N.; Kim, K.; Shindo, T.; Kimura, K. Progression of coronary atherosclerosis: Is coronary spasm related to progression? J. Am. Coll. Cardiol. 1991, 18, 904–910. [Google Scholar] [CrossRef]
- Kuga, T.; Tagawa, H.; Tomoike, H.; Mitsuoka, W.; Egashira, S.; Ohara, Y.; Takeshita, A.; Nakamura, M. Role of coronary artery spasm in progression of organic coronary stenosis and acute myocardial infarction in a swine model. Importance of mode of onset and duration of coronary artery spasm. Circulation 1993, 87, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Hokimoto, S.; Harada, E.; Kinoshita, K.; Nakagawa, K.; Yoshimura, M.; Ogawa, H.; Yasue, H. Variant Aldehyde Dehydrogenase 2 (ALDH2*2) Is a Risk Factor for Coronary Spasm and ST-Segment Elevation Myocardial Infarction. J. Am. Heart Assoc. 2016, 5, e003247. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Nakagawa, K.; Yoshida, N.; Taguchi, Y.; Inoue, H. Lipoprotein(a) is a risk factor for occurrence of acute myocardial infarction in patients with coronary vasospasm. J. Am. Coll. Cardiol. 2000, 35, 1200–1205. [Google Scholar] [CrossRef]
- Sugiishi, M.; Takatsu, F. Cigarette smoking is a major risk factor for coronary spasm. Circulation 1993, 87, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.Y.; Hsu, K.H.; Hung, M.J.; Cheng, C.W.; Kuo, L.T.; Cherng, W.J. Interaction between cigarette smoking and high-sensitivity C-reactive protein in the development of coronary vasospasm in patients without hemodynamically significant coronary artery disease. Am. J. Med. Sci. 2009, 338, 440–446. [Google Scholar] [CrossRef]
- Hung, M.J.; Hsu, K.H.; Hu, W.S.; Chang, N.C.; Hung, M.Y. C-reactive protein for predicting prognosis and its gender-specific associations with diabetes mellitus and hypertension in the development of coronary artery spasm. PLoS ONE 2013, 8, e77655. [Google Scholar] [CrossRef]
- D’Amario, D.; Migliaro, S.; Borovac, J.A.; Restivo, A.; Vergallo, R.; Galli, M.; Leone, A.M.; Montone, R.A.; Niccoli, G.; Aspromonte, N.; et al. Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Front. Physiol. 2019, 10, 1347. [Google Scholar] [CrossRef]
- Kandabashi, T.; Shimokawa, H.; Miyata, K.; Kunihiro, I.; Kawano, Y.; Fukata, Y.; Higo, T.; Egashira, K.; Takahashi, S.; Kaibuchi, K.; et al. Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta. Circulation 2000, 101, 1319–1323. [Google Scholar] [CrossRef]
- Shimokawa, H.; Tomoike, H.; Nabeyama, S.; Yamamoto, H.; Ishii, Y.; Tanaka, K.; Nakamura, M. Coronary artery spasm induced in miniature swine: Angiographic evidence and relation to coronary atherosclerosis. Am. Heart J. 1985, 110, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Kandabashi, T.; Shimokawa, H.; Miyata, K.; Kunihiro, I.; Eto, Y.; Morishige, K.; Matsumoto, Y.; Obara, K.; Nakayama, K.; Takahashi, S.; et al. Evidence for protein kinase C-mediated activation of Rho-kinase in a porcine model of coronary artery spasm. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 2209–2214. [Google Scholar] [CrossRef]
- Chutkow, W.A.; Pu, J.; Wheeler, M.T.; Wada, T.; Makielski, J.C.; Burant, C.F.; McNally, E.M. Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 K(ATP) channels. J. Clin. Investig. 2002, 110, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, R.; Ye, B.; Stoller, D.A.; Smelley, M.; Shi, N.Q.; Galles, K.; Hadhazy, M.; Makielski, J.C.; McNally, E.M. Spontaneous coronary vasospasm in KATP mutant mice arises from a smooth muscle-extrinsic process. Circ. Res. 2006, 98, 682–689. [Google Scholar] [CrossRef]
- Chen, C.C.; Lamping, K.G.; Nuno, D.W.; Barresi, R.; Prouty, S.J.; Lavoie, J.L.; Cribbs, L.L.; England, S.K.; Sigmund, C.D.; Weiss, R.M.; et al. Abnormal coronary function in mice deficient in α1H T-type Ca2+ channels. Science 2003, 302, 1416–1418. [Google Scholar] [CrossRef]
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, C.M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar] [PubMed]
- Hung, M.J.; Hsu, K.H.; Chang, N.C.; Hung, M.Y. Increased Numbers of Coronary Events in Winter and Spring Due to Coronary Artery Spasm: Effect of Age, Sex, Smoking, and Inflammation. J. Am. Coll. Cardiol. 2015, 65, 2047–2048. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Psaty, B.M.; Kronmal, R.A. Modifiable Risk Factors for Incident Heart Failure in the Coronary Artery Surgery Study. Arch. Intern. Med. 1994, 154, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Polese, A.; Fiorentini, C.; Magrini, F.; Bartorelli, C. Left ventricular performance and related haemodynamic changes in Prinzmetal’s variant angina pectoris. Br. Heart J. 1971, 33, 84–94. [Google Scholar] [CrossRef]
- Westermann, D.; Lindner, D.; Kasner, M.; Zietsch, C.; Savvatis, K.; Escher, F.; von Schlippenbach, J.; Skurk, C.; Steendijk, P.; Riad, A.; et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 2011, 4, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.F.; Hussain, S.; Mirzoyev, S.A.; Edwards, W.D.; Maleszewski, J.J.; Redfield, M.M. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2015, 131, 550–559. [Google Scholar] [CrossRef]
- Van Heerebeek, L.; Borbély, A.; Niessen, H.W.; Bronzwaer, J.G.; van der Velden, J.; Stienen, G.J.; Linke, W.A.; Laarman, G.J.; Paulus, W.J. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 2006, 113, 1966–1973. [Google Scholar] [CrossRef]
- Burchfield, J.S.; Xie, M.; Hill, J.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation 2013, 128, 388–400. [Google Scholar] [CrossRef]
- Sanders-van Wijk, S.; van Empel, V.; Davarzani, N.; Maeder, M.T.; Handschin, R.; Pfisterer, M.E.; Brunner-La Rocca, H.P.; TIME-CHF investigators. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur. J. Heart Fail. 2015, 17, 1006–1014. [Google Scholar] [CrossRef]
- Wijns, W.; Vatner, S.F.; Camici, P.G. Hibernating myocardium. N. Engl. J. Med. 1998, 339, 173–181. [Google Scholar] [CrossRef]
- Kloner, R.A.; Przyklenk, K. Hibernation and stunning of the myocardium. N. Engl. J. Med. 1991, 325, 1877–1879. [Google Scholar] [CrossRef]
- Bolli, R. Myocardial ‘stunning’ in man. Circulation 1992, 86, 1671–1691. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, M.A.; Schöder, H.; Hoh, C.; Gambhir, S.S.; Yaghoubi, S.; Sayre, J.W.; Silverman, D.; Phelps, M.E.; Schelbert, H.R.; Czernin, J. Prevalence of myocardial viability as detected by positron emission tomography in patients with ischemic cardiomyopathy. Circulation 1999, 99, 2921–2926. [Google Scholar] [CrossRef]
- Wei, L.; Kadoya, M.; Momose, M.; Kurozumi, M.; Matsushita, T.; Yamada, A. Serial assessment of left ventricular function in various patient groups with Tl-201 gated myocardial perfusion SPECT. Radiat. Med. 2007, 25, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.P.; Fabian, J.; Watkins, M.W.; LeWinter, M.M. Decrease in forces responsible for diastolic suction during acute coronary occlusion. Circulation 1997, 96, 2348–2352. [Google Scholar] [CrossRef] [PubMed]
- Firstenberg, M.S.; Smedira, N.G.; Greenberg, N.L.; Prior, D.L.; McCarthy, P.M.; Garcia, M.J.; Thomas, J.D. Relationship between early diastolic intraventricular pressure gradients, an index of elastic recoil, and improvements in systolic and diastolic function. Circulation 2001, 104 (Suppl. S1), I330–I335. [Google Scholar] [CrossRef]
- Uren, N.G.; Melin, J.A.; De Bruyne, B.; Wijns, W.; Baudhuin, T.; Camici, P.G. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N. Engl. J. Med. 1994, 330, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Di Carli, M.; Czernin, J.; Hoh, C.K.; Gerbaudo, V.H.; Brunken, R.C.; Huang, S.C.; Phelps, M.E.; Schelbert, H.R. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995, 91, 1944–1951. [Google Scholar] [CrossRef]
- Jackson, M.; Marks, L.; May, G.H.W.; Wilson, J.B. The genetic basis of disease. Essays Biochem. 2018, 62, 643–723. [Google Scholar] [CrossRef]
- Franczyk, B.; Dybiec, J.; Frąk, W.; Krzemińska, J.; Kućmierz, J.; Młynarska, E.; Szlagor, M.; Wronka, M.; Rysz, J. Cellular Mechanisms of Coronary Artery Spasm. Biomedicines 2022, 10, 2349. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hokimoto, S.; Harada, E.; Kinoshita, K.; Yoshimura, M.; Yasue, H. Variant Aldehyde Dehydrogenase 2 (ALDH2*2) in East Asians Interactively Exacerbates Tobacco Smoking Risk for Coronary Spasm-Possible Role of Reactive Aldehydes. Circ. J. 2016, 81, 96–102. [Google Scholar] [CrossRef]
- Mizuno, Y.; Harada, E.; Morita, S.; Kinoshita, K.; Hayashida, M.; Shono, M.; Morikawa, Y.; Murohara, T.; Nakayama, M.; Yoshimura, M.; et al. East asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: Possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 2015, 131, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Jansen, T.; Wenzel, P.; Daiber, A.; Münzel, T. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid. Redox Signal. 2008, 10, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Vettel, C.; Lämmle, S.; Ewens, S.; Cervirgen, C.; Emons, J.; Ongherth, A.; Dewenter, M.; Lindner, D.; Westermann, D.; Nikolaev, V.O.; et al. PDE2-mediated cAMP hydrolysis accelerates cardiac fibroblast to myofibroblast conversion and is antagonized by exogenous activation of cGMP signaling pathways. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1246–H1252. [Google Scholar] [CrossRef] [PubMed]
- Crea, F.; Bairey Merz, C.N.; Beltrame, J.F.; Kaski, J.C.; Ogawa, H.; Ong, P.; Sechtem, U.; Shimokawa, H.; Camici, P.G.; Coronary Vasomotion Disorders International Study Group (COVADIS). The parallel tales of microvascular angina and heart failure with preserved ejection fraction: A paradigm shift. Eur. Heart J. 2017, 38, 473–477. [Google Scholar] [CrossRef]
- Tschöpe, C.; Post, H. Latent ischaemia as a trigger for a circulus vitiosus of inflammation, fibrosis, and stiffness in HFPEF. Eur. J. Heart Fail. 2015, 17, 1210–1212. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.G.; Patel, B.; Blankstein, R.; Lima, J.A.; Blumenthal, R.S.; Nasir, K.; Blaha, M.J. Impact of Race, Ethnicity, and Multimodality Biomarkers on the Incidence of New-Onset Heart Failure with Preserved Ejection Fraction (from the Multi-Ethnic Study of Atherosclerosis). Am. J. Cardiol. 2016, 117, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- Hein, S.; Arnon, E.; Kostin, S.; Schönburg, M.; Elsässer, A.; Polyakova, V.; Bauer, E.P.; Klövekorn, W.P.; Schaper, J. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: Structural deterioration and compensatory mechanisms. Circulation 2003, 107, 984–991. [Google Scholar] [CrossRef]
- Schirone, L.; Forte, M.; Palmerio, S.; Yee, D.; Nocella, C.; Angelini, F.; Pagano, F.; Schiavon, S.; Bordin, A.; Carrizzo, A.; et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxidative Med. Cell. Longev. 2017, 2017, 3920195. [Google Scholar] [CrossRef]
- Lehnart, S.E.; Maier, L.S.; Hasenfuss, G. Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail. Rev. 2009, 14, 213–224. [Google Scholar] [CrossRef]
- Jugdutt, B.I. Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough? Circulation 2003, 108, 1395–1403. [Google Scholar] [CrossRef]
- Barouch, L.A.; Gao, D.; Chen, L.; Miller, K.L.; Xu, W.; Phan, A.C.; Kittleson, M.M.; Minhas, K.M.; Berkowitz, D.E.; Wei, C.; et al. Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity. Circ. Res. 2006, 98, 119–124. [Google Scholar] [CrossRef]
- Kleinbongard, P.; Schulz, R.; Heusch, G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail. Rev. 2011, 16, 49–69. [Google Scholar] [CrossRef]
- Koitabashi, N.; Danner, T.; Zaiman, A.L.; Pinto, Y.M.; Rowell, J.; Mankowski, J.; Zhang, D.; Nakamura, T.; Takimoto, E.; Kass, D.A. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload. J. Clin. Investig. 2011, 121, 2301–2312. [Google Scholar] [CrossRef]
- Yamauchi-Takihara, K.; Ihara, Y.; Ogata, A.; Yoshizaki, K.; Azuma, J.; Kishimoto, T. Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 1995, 91, 1520–1524. [Google Scholar] [CrossRef]
- Shioi, T.; Matsumori, A.; Kihara, Y.; Inoko, M.; Ono, K.; Iwanaga, Y.; Yamada, T.; Iwasaki, A.; Matsushima, K.; Sasayama, S. Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ. Res. 1997, 81, 664–671. [Google Scholar] [CrossRef]
- Kandalam, V.; Basu, R.; Moore, L.; Fan, D.; Wang, X.; Jaworski, D.M.; Oudit, G.Y.; Kassiri, Z. Lack of tissue inhibitor of metalloproteinases 2 leads to exacerbated left ventricular dysfunction and adverse extracellular matrix remodeling in response to biomechanical stress. Circulation 2011, 124, 2094–2105. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Seth, A.; McCulloch, C.A. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H1871–H1881. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.E.; Turner, N.A. Cardiac fibroblasts: At the heart of myocardial remodeling. Pharmacol. Ther. 2009, 123, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Segura, A.M.; Frazier, O.H.; Buja, L.M. Fibrosis and heart failure. Heart Fail. Rev. 2014, 19, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Shimojo, N.; Terasaki, F.; Otsuka, K.; Hosotani, N.; Kohda, Y.; Tanaka, T.; Nishioka, T.; Yoshida, T.; Hiroe, M.; et al. Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessel. 2013, 28, 646–657. [Google Scholar] [CrossRef]
- Sarkar, S.; Vellaichamy, E.; Young, D.; Sen, S. Influence of cytokines and growth factors in ANG II-mediated collagen upregulation by fibroblasts in rats: Role of myocytes. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H107–H117. [Google Scholar] [CrossRef] [PubMed]
- Zeisberg, E.M.; Tarnavski, O.; Zeisberg, M.; Dorfman, A.L.; McMullen, J.R.; Gustafsson, E.; Chandraker, A.; Yuan, X.; Pu, W.T.; Roberts, A.B.; et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 2007, 13, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Appari, M.; Breitbart, A.; Brandes, F.; Szaroszyk, M.; Froese, N.; Korf-Klingebiel, M.; Mohammadi, M.M.; Grund, A.; Scharf, G.M.; Wang, H.; et al. C1q-TNF-Related Protein-9 Promotes Cardiac Hypertrophy and Failure. Circ. Res. 2017, 120, 66–77. [Google Scholar] [CrossRef]
- Mortensen, R.M. Immune cell modulation of cardiac remodeling. Circulation 2012, 125, 1597–1600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chancey, A.L.; Tzeng, H.P.; Zhou, Z.; Lavine, K.J.; Gao, F.; Sivasubramanian, N.; Barger, P.M.; Mann, D.L. The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumor necrosis factor requires mast cell-fibroblast interactions. Circulation 2011, 124, 2106–2116. [Google Scholar] [CrossRef]
- Lakhani, I.; Wong, M.V.; Hung, J.K.F.; Gong, M.; Waleed, K.B.; Xia, Y.; Lee, S.; Roever, L.; Liu, T.; Tse, G.; et al. Diagnostic and prognostic value of serum C-reactive protein in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Heart Fail. Rev. 2021, 26, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.L. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circ. Res. 2015, 116, 1254–1268. [Google Scholar] [CrossRef] [PubMed]
- Bartekova, M.; Radosinska, J.; Jelemensky, M.; Dhalla, N.S. Role of cytokines and inflammation in heart function during health and disease. Heart Fail. Rev. 2018, 23, 733–758. [Google Scholar] [CrossRef]
- Frati, G.; Schirone, L.; Chimenti, I.; Yee, D.; Biondi-Zoccai, G.; Volpe, M.; Sciarretta, S. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc. Res. 2017, 113, 378–388. [Google Scholar] [CrossRef]
- Neubauer, S. The failing heart—An engine out of fuel. N. Engl. J. Med. 2007, 356, 1140–1151. [Google Scholar] [CrossRef]
- Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr. Rev. 1999, 20, 649–688. [Google Scholar]
- Duncan, J.G.; Finck, B.N. The PPARalpha-PGC-1alpha Axis Controls Cardiac Energy Metabolism in Healthy and Diseased Myocardium. PPAR Res. 2008, 2008, 253817. [Google Scholar] [CrossRef]
- Arany, Z.; He, H.; Lin, J.; Hoyer, K.; Handschin, C.; Toka, O.; Ahmad, F.; Matsui, T.; Chin, S.; Wu, P.H.; et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005, 1, 259–271. [Google Scholar] [CrossRef]
- Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1alpha. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef]
- Hsieh, M.C.F.; Das, D.; Sambandam, N.; Zhang, M.Q.; Nahlé, Z. Regulation of the PDK4 isozyme by the Rb-E2F1 complex. J. Biol. Chem. 2008, 283, 27410–27417. [Google Scholar] [CrossRef]
- Oudit, G.Y.; Sun, H.; Kerfant, B.G.; Crackower, M.A.; Penninger, J.M.; Backx, P.H. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J. Mol. Cell. Cardiol. 2004, 37, 449–471. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Kusakari, Y.; Xiao, C.Y.; Kinsella, S.D.; Rosenberg, M.A.; Scherrer-Crosbie, M.; Hara, K.; Rosenzweig, A.; Matsui, T. mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am. J. Physiol. Cell Physiol. 2010, 299, C1256–C1266. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, G.; Di Gioia, C.R.; Bombardi, C.; Catalucci, D.; Corradi, B.; Gualazzi, M.G.; Leopizzi, M.; Mancini, M.; Zerbini, G.; Condorelli, G.; et al. MiR-133a regulates collagen 1A1, potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J. Cell. Physiol. 2012, 227, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.F.; Johnson, S.C.; Villarin, J.J.; Chin, M.T.; Nieves-Cintrón, M.; Chen, T.; Marcinek, D.J.; Dorn, G.W., 2nd; Kang, Y.J.; Prolla, T.A.; et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ. Res. 2011, 108, 837–846. [Google Scholar] [CrossRef]
- Arany, Z.; Novikov, M.; Chin, S.; Ma, Y.; Rosenzweig, A.; Spiegelman, B.M. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc. Natl. Acad. Sci. USA 2006, 103, 10086–10091. [Google Scholar] [CrossRef]
- Riehle, C.; Wende, A.R.; Zaha, V.G.; Pires, K.M.; Wayment, B.; Olsen, C.; Bugger, H.; Buchanan, J.; Wang, X.; Moreira, A.B.; et al. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ. Res. 2011, 109, 783–793. [Google Scholar] [CrossRef]
- Amorim, P.A.; Nguyen, T.D.; Shingu, Y.; Schwarzer, M.; Mohr, F.W.; Schrepper, A.; Doenst, T. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. J. Thorac. Cardiovasc. Surg. 2010, 140, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Ikeuchi, M.; Matsusaka, H.; Kang, D.; Matsushima, S.; Ide, T.; Kubota, T.; Fujiwara, T.; Hamasaki, N.; Takeshita, A.; Sunagawa, K.; et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 2005, 112, 683–690. [Google Scholar] [CrossRef]
- Sciarretta, S.; Yee, D.; Shenoy, V.; Nagarajan, N.; Sadoshima, J. The importance of autophagy in cardioprotection. High Blood Press. Cardiovasc. Prev. 2014, 21, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Erickson, J.R.; Joiner, M.L.; Guan, X.; Kutschke, W.; Yang, J.; Oddis, C.V.; Bartlett, R.K.; Lowe, J.S.; O’Donnell, S.E.; Aykin-Burns, N.; et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 2008, 133, 462–474. [Google Scholar] [CrossRef]
- Lee, B.K.; Lim, H.S.; Fearon, W.F.; Yong, A.S.; Yamada, R.; Tanaka, S.; Lee, D.P.; Yeung, A.C.; Tremmel, J.A. Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. Circulation 2015, 131, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Khuddus, M.A.; Pepine, C.J.; Handberg, E.M.; Bairey Merz, C.N.; Sopko, G.; Bavry, A.A.; Denardo, S.J.; McGorray, S.P.; Smith, K.M.; Sharaf, B.L.; et al. An intravascular ultrasound analysis in women experiencing chest pain in the absence of obstructive coronary artery disease: A substudy from the National Heart, Lung and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). J. Interv. Cardiol. 2010, 23, 511–519. [Google Scholar] [CrossRef]
- Jenkins, M.J.; Edgley, A.J.; Sonobe, T.; Umetani, K.; Schwenke, D.O.; Fujii, Y.; Brown, R.D.; Kelly, D.J.; Shirai, M.; Pearson, J.T. Dynamic synchrotron imaging of diabetic rat coronary microcirculation in vivo. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 370–377. [Google Scholar] [CrossRef]
- Konst, R.E.; Guzik, T.J.; Kaski, J.C.; Maas, A.H.E.M.; Elias-Smale, S.E. The pathogenic role of coronary microvascular dysfunction in the setting of other cardiac or systemic conditions. Cardiovasc. Res. 2020, 116, 817–828. [Google Scholar] [CrossRef]
- Lanza, G.A.; Crea, F. Primary coronary microvascular dysfunction: Clinical presentation, pathophysiology, and management. Circulation 2010, 121, 2317–2325. [Google Scholar] [CrossRef]
- Reilkoff, R.A.; Bucala, R.; Herzog, E.L. Fibrocytes: Emerging effector cells in chronic inflammation. Nat. Rev. Immunol. 2011, 11, 427–435. [Google Scholar] [CrossRef]
- Pilling, D.; Buckley, C.D.; Salmon, M.; Gomer, R.H. Inhibition of fibrocyte differentiation by serum amyloid P. J. Immunol. 2003, 171, 5537–5546. [Google Scholar] [CrossRef]
- Li, P.; Wang, D.; Lucas, J.; Oparil, S.; Xing, D.; Cao, X.; Novak, L.; Renfrow, M.B.; Chen, Y.F. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ. Res. 2008, 102, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Pepine, C.J.; Petersen, J.W.; Bairey Merz, C.N. A microvascular-myocardial diastolic dysfunctional state and risk for mental stress ischemia: A revised concept of ischemia during daily life. JACC Cardiovasc. Imaging 2014, 7, 362–365. [Google Scholar] [CrossRef]
- Bork, N.I.; Molina, C.E.; Nikolaev, V.O. cGMP signalling in cardiomyocyte microdomains. Biochem. Soc. Trans. 2019, 47, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Van Heerebeek, L.; Hamdani, N.; Falcão-Pires, I.; Leite-Moreira, A.F.; Begieneman, M.P.; Bronzwaer, J.G.; van der Velden, J.; Stienen, G.J.; Laarman, G.J.; Somsen, A.; et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 2012, 126, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ma, C.; Yang, H.; Zhang, P.Y. Transforming growth factor β and its role in heart disease. Exp. Ther. Med. 2017, 13, 2123–2128. [Google Scholar] [CrossRef]
- Harvey, A.; Montezano, A.C.; Lopes, R.A.; Rios, F.; Touyz, R.M. Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications. Can. J. Cardiol. 2016, 32, 659–668. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, E.; Mendelev, N.; Patschan, S.; Patschan, D.; Eskander, J.; Cohen-Gould, L.; Chander, P.; Goligorsky, M.S. Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H285–H294. [Google Scholar] [CrossRef]
- Tschöpe, C.; Van Linthout, S. New insights in (inter)cellular mechanisms by heart failure with preserved ejection fraction. Curr. Heart Fail. Rep. 2014, 11, 436–444. [Google Scholar] [CrossRef]
- Samady, H.; Eshtehardi, P.; McDaniel, M.C.; Suo, J.; Dhawan, S.S.; Maynard, C.; Timmins, L.H.; Quyyumi, A.A.; Giddens, D.P. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 2011, 124, 779–788. [Google Scholar] [CrossRef]
- Lerman, A.; Holmes, D.R.; Herrmann, J.; Gersh, B.J. Microcirculatory dysfunction in ST-elevation myocardial infarction: Cause, consequence, or both? Eur. Heart J. 2007, 28, 788–797. [Google Scholar] [CrossRef]
- Martínez Pereyra, V.; Hubert, A.; Seitz, A.; Bekeredjian, R.; Sechtem, U.; Ong, P. Epicardial and microvascular coronary spasm in the same patient?-acetylcholine testing pointing towards a common pathophysiological background. Coron. Artery Dis. 2020, 31, 398–399. [Google Scholar] [CrossRef] [PubMed]
- Egashira, K.; Inou, T.; Yamada, A.; Hirooka, Y.; Takeshita, A. Preserved endothelium-dependent vasodilation at the vasospastic site in patients with variant angina. J. Clin. Investig. 1992, 89, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Akita, H.; Kanazawa, K.; Yamada, S.; Shiga, N.; Terashima, M.; Matsuda, Y.; Takai, E.; Iwai, C.; Takaoka, H.; et al. Systemic endothelial function is preserved in men with both active and inactive variant angina pectoris. Am. J. Cardiol. 1999, 84, 1347–1349. [Google Scholar] [CrossRef]
- Casas, J.P.; Cavalleri, G.L.; Bautista, L.E.; Smeeth, L.; Humphries, S.E.; Hingorani, A.D. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular disease: A HuGE review. Am. J. Epidemiol. 2006, 164, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Lanza, G.A.; Careri, G.; Crea, F. Mechanisms of coronary artery spasm. Circulation 2011, 124, 1774–1782. [Google Scholar] [CrossRef]
- Factor, S.M.; Minase, T.; Cho, S.; Dominitz, R.; Sonnenblick, E.H. Microvascular spasm in the cardiomyopathic Syrian hamster: A preventable cause of focal myocardial necrosis. Circulation 1982, 66, 342–354. [Google Scholar] [CrossRef]
- Gaasch, W.H.; Adyanthaya, A.V.; Wang, V.H.; Pickering, E.; Quinones, M.A.; Alexander, J.K. Prinzmetal’s variant angina: Hemodynamic and angiographic observations during pain. Am. J. Cardiol. 1975, 35, 683–690. [Google Scholar] [CrossRef]
- Awad, H.H.; McNeal, A.R.; Goyal, H. Reverse Takotsubo cardiomyopathy: A comprehensive review. Ann. Transl. Med. 2018, 6, 460. [Google Scholar] [CrossRef]
- Greco, C.A.; De Rito, V.; Petracca, M.; Garzya, M.; Donateo, M.; Magliari, F. Takotsubo syndrome in a newborn. J. Am. Soc. Echocardiogr. 2011, 24, 471.e5–471.e7. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yang, G.; Kowitz, J.; Akin, I.; Zhou, X.; El-Battrawy, I. Takotsubo Syndrome: Translational Implications and Pathomechanisms. Int. J. Mol Sci. 2022, 23, 1951. [Google Scholar] [CrossRef]
- Adameova, A.; Abdellatif, Y.; Dhalla, N.S. Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Can. J. Physiol. Pharmacol. 2009, 87, 493–514. [Google Scholar] [CrossRef]
- Zhou, S.; Paz, O.; Cao, J.M.; Asotra, K.; Chai, N.N.; Wang, C.; Chen, L.S.; Fishbein, M.C.; Sharifi, B.; Chen, P.S. Differential beta-adrenoceptor expression induced by nerve growth factor infusion into the canine right and left stellate ganglia. Heart Rhythm. 2005, 2, 1347–1355. [Google Scholar] [CrossRef]
- Tsuchihashi, K.; Ueshima, K.; Uchida, T.; Oh-mura, N.; Kimura, K.; Owa, M.; Yoshiyama, M.; Miyazaki, S.; Haze, K.; Ogawa, H.; et al. Transient left ventricular apical ballooning without coronary artery stenosis: A novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan. J. Am. Coll. Cardiol. 2001, 38, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Angelini, P. Transient left ventricular apical ballooning: A unifying pathophysiologic theory at the edge of Prinzmetal angina. Catheter. Cardiovasc. Interv. 2008, 71, 342–352. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Q.; Guo, X. Alternate recurrent coronary artery spasm and stress cardiomyopathy: A case report. BMC Cardiovasc. Disord. 2020, 20, 476. [Google Scholar] [CrossRef]
- Gisterå, A.; Ketelhuth, D.F.J.; Malin, S.G.; Hansson, G.K. Animal Models of Atherosclerosis-Supportive Notes and Tricks of the Trade. Circ. Res. 2022, 130, 1869–1887. [Google Scholar] [CrossRef]
- Borchert, T.; Hübscher, D.; Guessoum, C.I.; Lam, T.D.; Ghadri, J.R.; Schellinger, I.N.; Tiburcy, M.; Liaw, N.Y.; Li, Y.; Haas, J.; et al. Catecholamine-Dependent β-Adrenergic Signaling in a Pluripotent Stem Cell Model of Takotsubo Cardiomyopathy. J. Am. Coll. Cardiol. 2017, 70, 975–991. [Google Scholar] [CrossRef]
- Hung, M.Y.; Wu, Y.H.; Bamodu, O.A.; Chen, X.; Lin, Y.K.; Hu, P.; Chang, N.C.; Pang, J.S.; Yeh, C.T. Activation of the monocytic α7 nicotinic acetylcholine receptor modulates oxidative stress and inflammation-associated development of coronary artery spasm via a p38 MAP-kinase signaling-dependent pathway. Free Radic. Biol. Med. 2018, 120, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.K.; Yeh, C.T.; Kuo, K.T.; Fong, I.H.; Yadav, V.K.; Kounis, N.G.; Hu, P.; Hung, M.Y. Apolipoprotein (a)/Lipoprotein(a)-Induced Oxidative-Inflammatory α7-nAChR/p38 MAPK/IL-6/RhoA-GTP Signaling Axis and M1 Macrophage Polarization Modulate Inflammation-Associated Development of Coronary Artery Spasm. Oxidative Med. Cell. Longev. 2022, 2022, 9964689. [Google Scholar] [CrossRef]
- Henry, P.D.; Yokoyama, M. Supersensitivity of atherosclerotic rabbit aorta to ergonovine. Mediation by a serotonergic mechanism. J. Clin. Investig. 1980, 66, 306–313. [Google Scholar] [CrossRef]
- Noguchi, K.; Tomoike, H.; Kawachi, Y.; Maruoka, Y.; Nakamura, M. Angiographic evaluation of the coronary asodilating effect of trapidil in anesthetized closed-chest dogs. J. Cardiovasc. Pharmacol. 1982, 4, 1049–1054. [Google Scholar] [CrossRef]
- Kawachi, Y.; Tomoike, H.; Maruoka, Y.; Kikuchi, Y.; Araki, H.; Ishii, Y.; Tanaka, K.; Nakamura, M. Selective hypercontraction caused by ergonovine in the canine coronary artery under conditions of induced atherosclerosis. Circulation 1984, 69, 441–450. [Google Scholar] [CrossRef]
- Shimokawa, H.; Tomoike, H.; Nabeyama, S.; Yamamoto, H.; Araki, H.; Nakamura, M.; Ishii, Y.; Tanaka, K. Coronary artery spasm induced in atherosclerotic miniature swine. Science 1983, 221, 560–562. [Google Scholar] [CrossRef]
- Egashira, K.; Tomoike, H.; Yamamoto, Y.; Yamada, A.; Hayashi, Y.; Nakamura, M. Histamine-induced coronary spasm in regions of intimal thickening in miniature pigs: Roles of serum cholesterol and spontaneous or induced intimal thickening. Circulation 1986, 74, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, H.; Ito, A.; Fukumoto, Y.; Kadokami, T.; Nakaike, R.; Sakata, M.; Takayanagi, T.; Egashira, K.; Takeshita, A. Chronic treatment with interleukin-1 beta induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J. Clin. Investig. 1996, 97, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T.; Shimokawa, H.; Fukumoto, Y.; Kobayashi, S.; Owada, M.K.; Kadokami, T.; Ito, A.; Kuwata, K.; Egashira, K.; Shiraishi, T.; et al. Tyrosine kinase inhibitor markedly suppresses the development of coronary lesions induced by long-term treatment with platelet-derived growth factor in pigs in vivo. J. Cardiovasc. Pharmacol. 1997, 29, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.T.; Jenkins, M.J.; Edgley, A.J.; Sonobe, T.; Joshi, M.; Waddingham, M.T.; Fujii, Y.; Schwenke, D.O.; Tsuchimochi, H.; Yoshimoto, M.; et al. Acute Rho-kinase inhibition improves coronary dysfunction in vivo, in the early diabetic microcirculation. Cardiovasc. Diabetol. 2013, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Kinjo, T.; Tanaka, M.; Osanai, T.; Shibutani, S.; Narita, I.; Tanno, T.; Nishizaki, K.; Ichikawa, H.; Kimura, Y.; Ishida, Y.; et al. Enhanced p122RhoGAP/DLC-1 Expression Can Be a Cause of Coronary Spasm. PLoS ONE 2015, 10, e0143884. [Google Scholar] [CrossRef]
- Shibutani, S.; Osanai, T.; Oya, H.; Sagara, S.; Izumiyama, K.; Yamamoto, Y.; Hanada, K.; Tomita, H.; Okumura, K. Mutation analysis ABCC9 gene in Japanese patients with coronary spastic angina. Hirosaki Med. J. 2011, 62, 27–33. [Google Scholar]
- Malester, B.; Tong, X.; Ghiu, I.; Kontogeorgis, A.; Gutstein, D.E.; Xu, J.; Hendricks-Munoz, K.D.; Coetzee, W.A. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium: Effects on coronary flow and endothelin-1 secretion. FASEB J. 2007, 21, 2162–2172. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Sasaki, S.; Osanai, T.; Nakano, T.; Higuma, T.; Yokoyama, J.; Hanada, H.; Yasujima, M.; Okumura, K. Mutational analysis of Kir6.1 in Japanese patients with coronary spastic angina. Int. J. Mol. Med. 2006, 18, 589–591. [Google Scholar] [CrossRef]
- Emanuele, E.; Falcone, C.; Carabela, M.; Minoretti, P.; D’Angelo, A.; Montagna, L.; Geroldi, D. Absence of Kir6.1/KCNJ8 mutations in Italian patients with abnormal coronary vasomotion. Int. J. Mol. Med. 2003, 12, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Shibutani, S.; Osanai, T.; Ashitate, T.; Sagara, S.; Izumiyama, K.; Yamamoto, Y.; Hanada, K.; Echizen, T.; Tomita, H.; Fujita, T.; et al. Coronary vasospasm induced in transgenic mouse with increased phospholipase C-δ1 activity. Circulation 2012, 125, 1027–1036. [Google Scholar] [CrossRef]
- Yamada, S.; Saitoh, S.; Machii, H.; Mizukami, H.; Hoshino, Y.; Misaka, T.; Ishigami, A.; Takeishi, Y. Coronary artery spasm related to thiol oxidation and senescence marker protein-30 in aging. Antioxid. Redox Signal. 2013, 19, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Gevaert, A.B.; Kataria, R.; Zannad, F.; Sauer, A.J.; Damman, K.; Sharma, K.; Shah, S.J.; Van Spall, H.G.C. Heart failure with preserved ejection fraction: Recent concepts in diagnosis, mechanisms and management. Heart 2022, 108, 1342–1350. [Google Scholar] [CrossRef]
- Figulla, H.R.; Vetterlein, F.; Glaubitz, M.; Kreuzer, H. Inhomogenous capillary flow and its prevention by verapamil and hydralazine in the cardiomyopathic Syrian hamster. Circulation 1987, 76, 208–216. [Google Scholar] [CrossRef]
- Figulla, H.R.; Rechenberg, J.V.; Wiegand, V.; Soballa, R.; Kreuzer, H. Beneficial effects of long-term diltiazem treatment in dilated cardiomyopathy. J. Am. Coll. Cardiol. 1989, 13, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Multicenter Diltiazem Postinfarction Trial Research Group. The effect of diltiazem on mortality and reinfarction after myocardial infarction. N. Engl. J. Med. 1988, 319, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013, 128, e240–e327. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, A.; Mohri, M.; Shimokawa, H.; Urakami, L.; Usui, M.; Takeshita, A. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 2002, 105, 1545–1547. [Google Scholar] [CrossRef] [PubMed]
- Martínez Pereyra, V.; Seitz, A.; Hubert, A.; Beck, S.; Hofmann, U.; Schwab, M.; Bekeredjian, R.; Sechtem, U.; Ong, P. Repurposing Riociguat for Treatment of Refractory Angina Resulting From Coronary Spasm. JACC Case Rep. 2021, 3, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ho, P.C.; Wong, F.C.; Sethi, G.; Wang, L.Z.; Goh, B.C. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett. 2015, 362, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, X.; Yang, L. Cardioprotective effects of garcinol following myocardial infarction in rats with isoproterenol-induced heart failure. AMB Express 2020, 10, 137. [Google Scholar] [CrossRef]
- Chang, N.C.; Yeh, C.T.; Lin, Y.K.; Kuo, K.T.; Fong, I.H.; Kounis, N.G.; Hu, P.; Hung, M.Y. Garcinol Attenuates Lipoprotein(a)-Induced Oxidative Stress and Inflammatory Cytokine Production in Ventricular Cardiomyocyte through α7-Nicotinic Acetylcholine Receptor-Mediated Inhibition of the p38 MAPK and NF-κB Signaling Pathways. Antioxidants 2021, 10, 461. [Google Scholar] [CrossRef]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L., Jr. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
- Everett, B.M.; Cornel, J.H.; Lainscak, M.; Anker, S.D.; Abbate, A.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Anti-Inflammatory Therapy With Canakinumab for the Prevention of Hospitalization for Heart Failure. Circulation 2019, 139, 1289–1299. [Google Scholar] [CrossRef]
- Yu, L.; Ruifrok, W.P.; Meissner, M.; Bos, E.M.; van Goor, H.; Sanjabi, B.; van der Harst, P.; Pitt, B.; Goldstein, I.J.; Koerts, J.A.; et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ. Heart Fail. 2013, 6, 107–117. [Google Scholar] [CrossRef]
- Calvier, L.; Martinez-Martinez, E.; Miana, M.; Cachofeiro, V.; Rousseau, E.; Sádaba, J.R.; Zannad, F.; Rossignol, P.; López-Andrés, N. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC Heart Fail. 2015, 3, 59–67. [Google Scholar] [CrossRef]
- Varga, Z.; Sabzwari, S.R.A.; Vargova, V. Cardiovascular Risk of Nonsteroidal Anti-Inflammatory Drugs: An Under-Recognized Public Health Issue. Cureus 2017, 9, e1144. [Google Scholar] [CrossRef] [PubMed]
- Arfè, A.; Scotti, L.; Varas-Lorenzo, C.; Nicotra, F.; Zambon, A.; Kollhorst, B.; Schink, T.; Garbe, E.; Herings, R.; Straatman, H.; et al. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: Nested case-control study. BMJ 2016, 354, i4857. [Google Scholar] [CrossRef] [PubMed]
- Fildes, J.E.; Shaw, S.M.; Yonan, N.; Williams, S.G. The immune system and chronic heart failure: Is the heart in control? J. Am. Coll. Cardiol. 2009, 53, 1013–1020. [Google Scholar] [CrossRef]
- Levine, G.N.; Cohen, B.E.; Commodore-Mensah, Y.; Fleury, J.; Huffman, J.C.; Khalid, U.; Labarthe, D.R.; Lavretsky, H.; Michos, E.D.; Spatz, E.S.; et al. Psychological Health, Well-Being, and the Mind-Heart-Body Connection: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e763–e783. [Google Scholar] [CrossRef] [PubMed]
Etiology | Mechanism |
---|---|
| |
| |
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Models | Mimicry of Human Disease | Year | Author | Comments |
---|---|---|---|---|
| ||||
| Takotsubo cardiomyopathy | 2022 | Fan et al. [224] | Catecholamine-treated hiPSC-CMs or Takotsubo cardiomyopathy-specific iPSC-CMs mimic characteristics in line with those found in subjects with Takotsubo cardiomyopathy. Additionally, Takotsubo cardiomyopathy -iPSC-CMs provide a feasible and valid cell source for research of pathophysiological mechanisms, drug tests, ion channels, and gene functions. |
Characteristics: For the first time, after treatment with high levels of catecholamines hiPSC-CMs generated from 2 Takotsubo cardiomyopathy patients showed increased β-adrenergic signaling in iPSC-CMs [231]. | ||||
| CAS | 2018 and 2022 | Hung et al. [232] and Lin et al. [233] | |
Characteristics:
| ||||
| ||||
| CAS | 1980 | Henry et al. [234] | |
Characteristics: Both male and female New Zealand White rabbits weighing between 2.0 and 2.5 kg were assigned randomly to 2 dietary groups. One group was maintained on standard pellets, and the other received 2% cholesterol pellets for 9–10 weeks. Then the rabbits were sacrificed and the descending thoracic aorta was quickly excised and cut into strips, then mounted for the measurement of isometric force in an organ bath. Spasm was provoked in atherosclerotic arteries by ergonovine and phenylephrine but not serotonin. | ||||
| Hereditary microvascular CASHFrEF | 1982 | Factor et al. [220] | Verapamil completely prevented myocardial necrosis and fibrosis and possibly the ultimate development of ventricular failure in the Syrian hamster. |
Characteristics: Both male and female Syrian hamsters of the BIO 53.58 strain obtained from Telaco laboratory were evaluated, predominantly at 30, 50, and 150 ± 14 days of age. A few hamsters were also studied at 90 and 210 days of age. Each cardiomyopathic hamster was compared with an age- and sex-matched noncardiomyopathic control shipped in the same batch. Hamsters were fed standard chow. To elucidate the pathogenesis of microvascular CAS, perfusion of silicone rubber solutions revealed numerous areas of microvascular constriction, diffuse vessel narrowing, and luminal irregularity. Pretreatment of young hamsters with verapamil during the period when they developed myocardial necrosis prevented myocytolytic lesions and abolished microvascular hyperreactivity. Hence, focal, transient CAS of small blood vessels, probably secondary to vasoactive substances, may cause myocytolytic necrosis in this model. | ||||
| CAS | 1982 | Noguchi et al. [235] | |
Characteristics: Dogs of either sex weighing 14–22 kg were anesthetized with intravenous sodium pentobarbital (25 mg/kg avenously). To obtain maximal vasoconstriction in dogs, 0.4 mg/dog of ergonovine maleate was given intravenously as a bolus. All drugs were diluted with isotonic sodium chloride solution (saline). | ||||
1984 | Kawachi et al. [236] |
| ||
Characteristics: In mongrel dogs, selective coronary endothelial denudation by means of cardiac catheterization of either the left anterior or circumflex coronary artery was repeated twice at 1 month intervals. Thereafter, a high-cholesterol diet (20 g/day) was given for 3 and 6 months. No CAS was provoked by intravenous ergonovine before or immediately after endothelial denudation, but a significant reduction in the luminar diameter at the denuded sites, compared with the non-denuded site and the contralateral coronary arteries, was noted angiographically in 1–6 months. A progressive intensity of vasoconstriction in the denuded site after ergonovine was noted for up to 6 months. | ||||
| CAS | 1983 | Shimokawa et al. [237] | |
Characteristics: Endothelium denudation: Male Gottingen miniature swine (4–6 months of age; 11–22 kg body weight) were fed on a diet containing 2% cholesterol for 3 months after they were subjected to endothelial balloon denudation of the left circumflex coronary artery. CAS was defined as the transient excess vasoconstriction that subsides either spontaneously or after the administration of nitroglycerin and that is characterized by a decrease of >75% in coronary diameter compared with that after the intravenous nitroglycerin (20 μg/kg). CAS was provoked by intracoronary or intravenous histamine in doses of 100 to 400 μg. Ergonovine or serotonin was ineffective to produce CAS. CAS occurred only in the denuded portion of the left circumflex coronary artery. | ||||
1986 | Egashira et al. [238] | The degree of hypercholesterolemia did not affect the provocation of CAS by histamine in pigs. | ||
Characteristics: Thirty-six disease-free male Göttingen miniature pigs that were 4–6 months old and weighed 13–21 kg were fed low-cholesterol regular swine chow before the experiment. The intracoronary histamine-induced CAS before endothelial denudation in 5 of 36 consecutive pigs | ||||
1996 | Shimokawa et al. [239] | |||
Characteristics: Endothelium non-denudation: Male Yorkshire pigs, 2–4 months old and weighing 20–30 kg, were used. They were sedated with intramuscular administration of ketamine hydrochloride (12.5 mg/kg) and anesthetized with intravenous sodium pentobarbital (25 mg/kg). The proximal left anterior and circumflex coronary artery adventitia was treated with IL-1β-bound beads for 1–4 weeks. Intracoronary serotonin, histamine, or platelet-activating factor caused CAS at the IL-1β-treated segment, but not at the control site. Treatment of the adventitia with platelet-derived growth factor also mimicked the effect of IL-1β [240]. | ||||
| Acquired microvascular CASHFrEF | 1985 | Sonnenblick et al. [102] | This model will allow specific drug therapy to be designed to prevent the progression of microvascular CASHFrEF. |
Characteristics:
| ||||
Acquired microvascular CAS | 2013 | Pearson et al. [241] | ||
Characteristics: Male Sprague Dawley rats aged 7 weeks old received either a vehicle injection of sodium citrate or streptozotocin to induce type I diabetes. All rats were given food and water ad libitum. Three weeks after vehicle or streptozotocin injection all rats underwent angiography. Endothelium-dependent and -independent response: Serial angiograms were documented at the end of 5 min infusions of vehicle, acetylcholine, and sodium nitroprusside, during vehicle infusion 30 min after inhibited production of both nitric oxide and prostacyclin with Nω-nitro-l-arginine methyl ester and sodium meclofenamate, respectively. A final image series was recorded 10 min after administration of fasudil hydrochloride. | ||||
| CAS | 1999 | Kinjo et al. [242] | |
Characteristics: The mouse p122RhoGAP/DLC-1 cDNA was subcloned into a plasmid. The resultant recombinant construct was then microinjected into the pronuclei of fertilized mouse embryos at the single-cell stage to produce transgenic mice (C57BL/6J strain). Then experiments were conducted at the age of 20–30 weeks. After the mice were anesthetized via intraperitoneal drugs injection, then the hearts were quickly excised and transfused via a cannula placed just distal of the intact aortic valve. Coronary arteries were perfused by either ergometrine for 20 min or vehicle, followed by the infusion of Microfil, a liquid latex medium. Coronary angiography with the Microfilms were obtained by X-Ray Inspection Systems | ||||
2002 | Kakkar et al. [129] | No genetic mutation is noted in association with amino acid substitution of SUR in 9 Japanese CAS patients [243]. | ||
Characteristics: The 2B isoform of SUR2 (SUR2B) was amplified from a mouse heart cDNA library and placed between the terminal 441 base pairs (bp) of the SM22α promoter and the bovine growth hormone termination and polyadenylation signal sequence. The plasmid (SM22-SUR2B) was injected into fertilized oocytes. Spontaneous CAS and sudden death in SUR2 KATP null mice arise from a coronary artery vascular smooth muscle-extrinsic process. | ||||
2003 | Chen et al. [130] | Their relevance to CAS in humans remains to be elucidated. | ||
Characteristics: Mice lacking α1H T-type calcium channels have reduced relaxation in response to acetylcholine. | ||||
2006 | Chutkow et al. [128] | No genetic mutation is noted in association with amino acid substitution of SUR in 9 Japanese CAS patients [243]. | ||
Characteristics: Episodic CAS and hypertension develop in the absence of SUR2 KATP channels in SUR2 gene-targeted mice (SUR2–/–). | ||||
2007 | Malester et al. [244] | No mutation that alters primary structure of Kir6.1 is detected in 19 Japanese [245] or 18 Italian [246] patients with CAS. | ||
Characteristics: A transgenic mouse model was generatedto specifically target endothelial KATP channels by expressing a dominant negative Kir6.1 subunit only in the endothelium. There was no evidence of increased susceptibility to ergonovine-induced CAS, but basal endothelin-1 release was significantly elevated in the coronary effluent from these hearts. Spontaneous coronary spasm occurred and consequently led to sudden death. | ||||
2012 | Shibutani et al. [247] | |||
Characteristics: The R257H variant PLC-δ1 cDNA was subcloned into the plasmid pBsKS(-) including a 4.7-kb fragment of the mouse α-smooth muscle actin promoter. The resultant recombinant construct was microinjected into the pronuclei of fertilized mouse embryos at the single-cell stage to generate transgenic mice (C57BL/6 strain). The experiments were conducted at the age of 20–30 weeks. After anesthesia, ergometrine maleate in two doses (15 and 50 mg/kg) was administered into the mice’s jugular vein over 10 min. The electrocardiogram lead II before and after ergometrine injection was continuously recorded. ST-segment changes, specifically elevation, were in comparison with the baseline electrocardiograms. | ||||
2013 | Yamada et al. [248] | The relevance of SMP30 to CAS in humans remains to be elucidated. | ||
Characteristics: SMP30 knockout mice bred from C57BL/6 mice were generated by a gene-targeting technique. Wild-type C57BL/6 and SMP30 knockout mice (age 8–10 weeks, weight 22.5 ± 2.6 g) were used for the experiments. After the mice were anesthetized with an intraperitoneal drug injection, acetylcholine was administered through a catheter from the cervical artery to the aortic sinus in the SMP30 knockout and wild-type mice. The standard limb leads, aVR, aVL, and aVF were recorded constantly by an electrocardiograph at 1-min intervals. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, M.-J.; Yeh, C.-T.; Kounis, N.G.; Koniari, I.; Hu, P.; Hung, M.-Y. Coronary Artery Spasm-Related Heart Failure Syndrome: Literature Review. Int. J. Mol. Sci. 2023, 24, 7530. https://doi.org/10.3390/ijms24087530
Hung M-J, Yeh C-T, Kounis NG, Koniari I, Hu P, Hung M-Y. Coronary Artery Spasm-Related Heart Failure Syndrome: Literature Review. International Journal of Molecular Sciences. 2023; 24(8):7530. https://doi.org/10.3390/ijms24087530
Chicago/Turabian StyleHung, Ming-Jui, Chi-Tai Yeh, Nicholas G. Kounis, Ioanna Koniari, Patrick Hu, and Ming-Yow Hung. 2023. "Coronary Artery Spasm-Related Heart Failure Syndrome: Literature Review" International Journal of Molecular Sciences 24, no. 8: 7530. https://doi.org/10.3390/ijms24087530
APA StyleHung, M. -J., Yeh, C. -T., Kounis, N. G., Koniari, I., Hu, P., & Hung, M. -Y. (2023). Coronary Artery Spasm-Related Heart Failure Syndrome: Literature Review. International Journal of Molecular Sciences, 24(8), 7530. https://doi.org/10.3390/ijms24087530