The Role of TGF-β3 in Radiation Response
Abstract
:1. Introduction
2. Background
2.1. Induction, Upregulation, and Secretion
2.2. Latency and Activation
2.3. Receptor Binding and Signaling
3. Functional Effects of TGF-β3
3.1. Immunoregulation and Inflammation
3.2. Fibrosis and Wound Healing
3.3. Growth Regulation and Carcinogenesis
4. TGF-β3 and Radiation
4.1. Changes in TGF-β3 Expression after Ionizing Radiation
Cell Line | Radiation Regime | Results | Reference |
---|---|---|---|
MCF-7 and MDA-MB-231 | 2–10 Gy, 60Co | TGF-β3 mRNA increased twofold in MCF-7 cells and tenfold in MDA-MB-231 cells 7 days after 6 Gy irradiation. Similar increases were found in protein levels in the supernatant. Inhibition of ALK5 counteracted the increase in the proliferation of surviving cells induced by 6 Gy irradiation. | [108] |
T98G and T-47D | 0.2 Gy, 60Co | Protracted low dose-rate irradiation increased the amount of active TGF-β3 in the cytoplasm of T98G and T-47D cells. | [118] |
Rat Mesangial Cells | 5–20 Gy, 137Cs | TGF-β3 mRNA decreased in a dose-independent manner 24 h after irradiation, with a continued reduction after 48 h. | [104] |
Rat Mesangial Cells | 0.5–20 Gy, 137Cs | TGF-β3 mRNA was downregulated in a dose-dependent manner 24 h after irradiation. However, the level of active TGF-β protein remained relatively constant, and the majority of the active protein was of the TGF-β3 isoform. | [105] |
NRK52E | 1–10 Gy, 137Cs | In quiescent rat tubule epithelial cells, TGF-β3 mRNA levels were downregulated 3, 7 and 24 h after 10 Gy irradiation, and reached baseline after 48 h. | [106] |
GL261 | 8 Gy, 200 kV X-rays | TGF-β3 mRNA was upregulated after 8 Gy. | [107] |
Organ System | Model | Radiation Regime | Results | Reference |
---|---|---|---|---|
GI | C3Hf/Kam mice | 5 Gy, 250 kV X-rays | TGF-β3 protein content decreased 6 days after irradiation in intestinal villi. In intestinal crypts, TGF-β3 protein content increased 1–2 days after irradiation. A negative correlation between TGF-β3 in the crypts and crypt cellularity was observed. | [112] |
GI | Sprague-Dawley rats | 12–21 Gy, 250 kV X-rays | TGF-β3 mRNA expression was increased in rat intestines two weeks after irradiation. | [113] |
GI | DBA mice | 12.5–13.5 Gy, 60Co | TGF-β3 mRNA significantly upregulated in the bowel 18–25 weeks after 12.5 Gy. | [114] |
Lung | C57BL/6 mice | 5–12.5 Gy, 137Cs | Evidence of a dose-dependent reduction in TGF-β3 mRNA in mouse lung 1 day post irradiation. After 14 days, TGF-β3 mRNA was elevated tenfold after 5 Gy, and fourfold after 12.5 Gy. | [109] |
Lung | C57BL/6 mice | 5–12.5 Gy, 137Cs | TGF-β3 mRNA was elevated in mouse lung 1 week after 12.5 Gy irradiation and persisted at 8 weeks before returning to baseline 16 weeks post irradiation. After 5 Gy, TGF-β3 mRNA increased tenfold after 2 weeks, before returning to baseline at 8 weeks post irradiation. | [110] |
Lung | C57BL/6 and C3H/HeJ mice | 5–12.5 Gy, 137Cs | TGF-β3 mRNA increased twofold 8 weeks after 12.5 Gy in the lung of radiosensitive C57BL/6 mice and returned to baseline within 16 weeks. After 5 Gy, TGF-β3 mRNA was significantly reduced in C57BL/6 mice after 16 weeks and returned to baseline within 26 weeks. Radioresistant C3H/HeJ mice displayed no significant change in lung TGF-β levels. | [111] |
Liver | Sprague-Dawley rats | 25 Gy, 60Co | TGF-β3 mRNA increased steadily from 1 day after irradiation, peaked at 4.8-fold on day 7, before gradually declining until day 28. On day 7, increased positive staining for TGF-β3 protein was observed. | [115] |
Skin | Wistar rats | 3 × 10 Gy (=30 Gy) over 14 days, 6 MeV protons | TGF-β3 protein content was reduced in rat skin starting directly after irradiation and up to 11 days. In preoperatively irradiated skin, TGF-β3 levels were still reduced 7–28 days after surgery (35–56 days after irradiation). | [116] |
Skin | Wistar rats | 36 Gy, 60Co | TGF-β3 protein content in rat skin increased 21 days after irradiation. | [117] |
4.2. Treatment with Exogenous TGF-β3 and Irradiation
4.3. The Role of TGF-β3 in Response to Low-Dose Irradiation
4.4. TGF-β3 and Chemotherapy
Organ System | Model | Drug | Results | Reference |
---|---|---|---|---|
Lung | Sprague-Dawley Rat | Bleomycin | Endogenous TGF-β3 protein increased in rat lungs 28 days after bleomycin treatment. Incubation with exogenous TGF-β3 inhibited proliferation in explanted rat alveolar epithelial cells. | [134] |
Lung | Human Fetal Lung Fibroblasts and B6D2F1 Mice | Bleomycin | Treatment with TGF-β3 increased procollagen production in cultured human fetal lung fibroblasts. TGF-β3 mRNA expression was stable after bleomycin-induced pulmonary fibrosis in mice. | [135] |
Lung | CCL64 Cells | 5-FU | Incubation with TGF-β3 for 24 h increased proliferation 7 days after cycle-selective chemotherapy. | [137] |
Lung | CCL64 Cells | Vinblastine, Vincristine, Etoposide, Taxol, Ara-C, Methotrexate, and 5-FU | Pretreatment with TGF-β3 for 24 h increased cell survival in the clonogenic assay for chemotherapy drugs that were cytotoxic in the S- or M phase of the cell cycle. | [136] |
Oral | HNSCC | Cisplatin and Paclitaxel | Knockout of TGF-β3 sensitized cells to chemotherapy. The addition of exogenous TGF-β3 to the knockout cells abrogated this sensitivity. | [20] |
Oral | Syrian Golden Hamster | 5-FU | Repeated topical application of TGF-β3 prior to chemotherapy reduced the severity of oral mucositis, reduced weight loss, and improved survival. | [137] |
Oral | Syrian Golden Hamster | 5-FU | Repeated topical application of TGF-β3 reduced the cycling of buccal epithelium and reduced white blood cell count after 3 h. Topical TGF-β3 treatment before chemotherapy reduced the severity of oral mucositis, reduced weight loss, and improved survival. | [138] |
Oral | Human | Combinations of Cyclophosphamide, Epirubicin, 5-FU, Carboplatin and Thiotepa | Repeated treatments with TGF-β3 mouthwash before and during chemotherapy were well tolerated and neither systemic absorption nor the development of antibodies was observed. | [139] |
Oral | Human | Any regimen with severe-grade oral mucositis incidence >50% | Repeated treatments with TGF-β3 mouthwash before and during chemotherapy did not influence the onset, duration, or severity of oral mucositis in 116 patients with breast cancers, lymphomas, and other solid cancers. There were no clinical differences between treatment and placebo regarding safety, and no evidence of systemic absorption of TGF-β3. | [140] |
5. Discussion
5.1. Variations in Endogenous TGF-β3 Expression after Irradiation
5.2. Radio- and Chemoprotective Effects of TGF-β3
5.3. TGF-β3 and Low Dose-Rate Irradiation—Sustained Induction or Perpetual Activation?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zakrzewski, P.K. Canonical TGF β Signaling and Its Contribution to Endometrial Cancer Development and Progression—Underestimated Target of Anticancer Strategies. J. Clin. Med. 2021, 10, 3900. [Google Scholar] [CrossRef] [PubMed]
- ten Dijke, P.; Hansen, P.; Iwata, K.K.; Pieler, C.; Foulkes, J.G. Identification of Another Member of the Transforming Growth Factor Type Beta Gene Family. Proc. Natl. Acad. Sci. USA 1988, 85, 4715–4719. [Google Scholar] [CrossRef] [PubMed]
- Derynck, R.; Lindquist, P.B.; Lee, A.; Wen, D.; Tamm, J.; Graycar, J.L.; Rhee, L.; Mason, A.J.; Miller, D.A.; Coffey, R.J. A New Type of Transforming Growth Factor-Beta, TGF-Beta 3. EMBO J. 1988, 7, 3737–3743. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Kulkarni, A.B.; Huh, C.G.; Becker, D.; Geiser, A.; Lyght, M.; Flanders, K.C.; Roberts, A.B.; Sporn, M.B.; Ward, J.M.; Karlsson, S. Transforming Growth Factor Β1 Null Mutation in Mice Causes Excessive Inflammatory Response and Early Death. Proc. Natl. Acad. Sci. USA 1993, 90, 770–774. [Google Scholar] [CrossRef]
- Sanford, L.P.; Ormsby, I.; Gittenberger-De Groot, A.C.; Sariola, H.; Friedman, R.; Boivin, G.P.; Cardell, E.L.; Doetschman, T. TGFβ2 Knockout Mice Have Multiple Developmental Defects That Are Non-Overlapping with Other TGFβ Knockout Phenotypes. Development 1997, 124, 2659–2670. [Google Scholar] [CrossRef]
- Kaartinen, V.; Voncken, J.W.; Shuler, C.; Warburton, D.; Bu, D.; Heisterkamp, N.; Groffen, J. Abnormal Lung Development and Cleft Palate in Mice Lacking TGF–Β3 Indicates Defects of Epithelial–Mesenchymal Interaction. Nat. Genet. 1995, 11, 415–421. [Google Scholar] [CrossRef]
- Proetzel, G.; Pawlowski, S.A.; Wiles, M.V.; Yin, M.; Boivin, G.P.; Howles, P.N.; Ding, J.; Ferguson, M.W.J.; Doetschman, T. Transforming Growth Factor–Β3 Is Required for Secondary Palate Fusion. Nat. Genet. 1995, 11, 409–414. [Google Scholar] [CrossRef]
- Yang, L.T.; Kaartinen, V. Tgfb1 Expressed in the Tgfb3 Locus Partially Rescues the Cleft Palate Phenotype of Tgfb3 Null Mutants. Dev. Biol. 2007, 312, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Barcellos-Hoff, M.H. The Radiobiology of TGFβ. Semin. Cancer Biol. 2022, 86, 857–867. [Google Scholar] [CrossRef]
- Annes, J.P.; Munger, J.S.; Rifkin, D.B. Making Sense of Latent TGFbeta Activation. J. Cell Sci. 2003, 116, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Todorovic, V.; Rifkin, D.B. LTBPs, More than Just an Escort Service. J. Cell. Biochem. 2012, 113, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Rifkin, D.; Sachan, N.; Singh, K.; Sauber, E.; Tellides, G.; Ramirez, F. The Role of LTBPs in TGF Beta Signaling. Dev. Dyn. 2022, 251, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Oida, T.; Weiner, H.L. Overexpression of TGF-Β1 Gene Induces Cell Surface Localized Glucose-Regulated Protein 78-Associated Latency-Associated Peptide/TGF-β. J. Immunol. 2010, 185, 3529–3535. [Google Scholar] [CrossRef]
- Miyazono, K.; Olofsson, A.; Colosetti, P.; Heldin, C.H. A Role of the Latent TGF-Β1-Binding Protein in the Assembly and Secretion of TGF-Β1. EMBO J. 1991, 10, 1091–1101. [Google Scholar] [CrossRef]
- Rodrigues-Junior, D.M.; Tsirigoti, C.; Lim, S.K.; Heldin, C.H.; Moustakas, A. Extracellular Vesicles and Transforming Growth Factor β Signaling in Cancer. Front. Cell Dev. Biol. 2022, 10. [Google Scholar] [CrossRef]
- Goulet, C.R.; Bernard, G.; Tremblay, S.; Chabaud, S.; Bolduc, S.; Pouliot, F. Exosomes Induce Fibroblast Differentiation into Cancer-Associated Fibroblasts through TGFb Signaling. Mol. Cancer Res. 2018, 16, 1196–1204. [Google Scholar] [CrossRef]
- Shelke, G.V.; Yin, Y.; Jang, S.C.; Lässer, C.; Wennmalm, S.; Hoffmann, H.J.; Li, L.; Gho, Y.S.; Nilsson, J.A.; Lötvall, J. Endosomal Signalling via Exosome Surface TGFβ-1. J. Extracell. Vesicles 2019, 8, 1650458. [Google Scholar] [CrossRef]
- De La Cuesta, F.; Passalacqua, I.; Rodor, J.; Bhushan, R.; Denby, L.; Baker, A.H. Extracellular Vesicle Cross-Talk between Pulmonary Artery Smooth Muscle Cells and Endothelium during Excessive TGF-β Signalling: Implications for PAH Vascular Remodelling. Cell Commun. Signal. 2019, 17, 143. [Google Scholar] [CrossRef]
- Rodrigues-Junior, D.M.; Tan, S.S.; Lim, S.K.; Leong, H.S.; Melendez, M.E.; Ramos, C.R.N.; Viana, L.D.S.; Tan, D.S.W.; Carvalho, A.L.; Iyer, N.G.; et al. Circulating Extracellular Vesicle-Associated TGFβ3 Modulates Response to Cytotoxic Therapy in Head and Neck Squamous Cell Carcinoma. Carcinogenesis 2019, 40, 1452–1461. [Google Scholar] [CrossRef]
- Hanson, I.; Pitman, K.E.; Altanerova, U.; Altaner, Č.; Malinen, E.; Edin, N.F.J. Low-Dose-Rate Radiation-Induced Secretion of TGF-Β3 Together with an Activator in Small Extracellular Vesicles Modifies Low-Dose Hyper-Radiosensitivity through ALK1 Binding. Int. J. Mol. Sci. 2022, 23, 8147. [Google Scholar] [CrossRef]
- Brown, P.D.; Wakefield, L.M.; Levinson, A.D.; Sporn, M.B. Physicochemical Activation of Recombinant Latent Transforming Growth Factor-Beta’s 1, 2, and 3. Growth Factors 1990, 3, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Barcellos-Hoff, M.H. Latency and Activation in the Control of TGF-Beta. J. Mammary Gland Biol. Neoplasia 1996, 1, 353–363. [Google Scholar] [CrossRef]
- Jobling, M.F.; Mott, J.D.; Finnegan, M.T.; Jurukovski, V.; Erickson, A.C.; Walian, P.J.; Taylor, S.E.; Ledbetter, S.; Lawrence, C.M.; Rifkin, D.B.; et al. Isoform-Specific Activation of Latent Transforming Growth Factor β (LTGF-β) by Reactive Oxygen Species. Radiat. Res. 2006, 166, 839–848. [Google Scholar] [CrossRef]
- Munger, J.S.; Sheppard, D. Cross Talk among TGF-Beta Signaling Pathways, Integrins, and the Extracellular Matrix. Cold Spring Harb. Perspect. Biol. 2011, 116, 217–224. [Google Scholar] [CrossRef]
- Annes, J.P.; Rifkin, D.B.; Munger, J.S. The Integrin αVβ6 Binds and Activates Latent TGFβ3. FEBS Lett. 2002, 511, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Fujio, K.; Komai, T.; Inoue, M.; Morita, K.; Okamura, T.; Yamamoto, K. Revisiting the Regulatory Roles of the TGF-β Family of Cytokines. Autoimmun. Rev. 2016, 15, 917–922. [Google Scholar] [CrossRef]
- del Re, E.; Babitt, J.L.; Pirani, A.; Schneyer, A.L.; Lin, H.Y. In the Absence of Type III Receptor, the Transforming Growth Factor (TGF)-β Type II-B Receptor Requires the Type I Receptor to Bind TGF-β2. J. Biol. Chem. 2004, 279, 22765–22772. [Google Scholar] [CrossRef]
- Maeda, S.; Dean, D.D.; Gay, I.; Schwartz, Z.; Boyan, B.D. Activation of Latent Transforming Growth Factor Β1 by Stromelysin 1 in Extracts of Growth Plate Chondrocyte-Derived Matrix Vesicles. J. Bone Miner. Res. 2001, 16, 1281–1290. [Google Scholar] [CrossRef]
- Mu, D.; Cambier, S.; Fjellbirkeland, L.; Baron, J.L.; Munger, J.S.; Kawakatsu, H.; Sheppard, D.; Courtney Broaddus, V.; Nishimura, S.L. The Integrin Aνβ8 Mediates Epithelial Homeostasis through MT1-MMP-Dependent Activation of TGF-Β1. J. Cell Biol. 2002, 157, 493–507. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, D.; Spinetti, G.; Zhang, J.; Jiang, L.Q.; Pintus, G.; Monticone, R.; Lakatta, E.G. Matrix Metalloproteinase 2 Activation of Transforming Growth Factor-Β1 (TGF-Β1) and TGF-Β1-Type II Receptor Signaling within the Aged Arterial Wall. Arter. Thromb. Vasc. Biol. 2006, 26, 1503–1509. [Google Scholar] [CrossRef]
- Ge, G.; Greenspan, D.S. BMP1 Controls TGFβ1 Activation via Cleavage of Latent TGFβ-Binding Protein. J. Cell Biol. 2006, 175, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Bourd-Boittin, K.; Bonnier, D.; Leyme, A.; Mari, B.; Tuffery, P.; Samson, M.; Ezan, F.; Baffet, G.; Theret, N. Protease Profiling of Liver Fibrosis Reveals the ADAM Metallopeptidase with Thrombospondin Type 1 Motif, 1 as a Central Activator of Transforming Growth Factor Beta. Hepatology 2011, 54, 2173–2184. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kim, H.J.; Liu, X.; Sugiura, H.; Kohyama, T.; Fang, Q.; Wen, F.Q.; Abe, S.; Wang, X.; Atkinson, J.J.; et al. Matrix Metalloproteinase-9 Activates TGF-β and Stimulates Fibroblast Contraction of Collagen Gels. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014, 306, 1006–10015. [Google Scholar] [CrossRef]
- Dong, H.; Diao, H.; Zhao, Y.; Xu, H.; Pei, S.; Gao, J.; Wang, J.; Hussain, T.; Zhao, D.; Zhou, X.; et al. Overexpression of Matrix Metalloproteinase-9 in Breast Cancer Cell Lines Remarkably Increases the Cell Malignancy Largely via Activation of Transforming Growth Factor Beta/SMAD Signalling. Cell Prolif. 2019, 52, e12633. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, M.; Billings, P.C.; Pacifici, M.; Leboy, P.S.; Kirsch, T. Authentic Matrix Vesicles Contain Active Metalloproteases (MMP): A Role for Matrix Vesicle-Associated MMP-13 in Activation of Transforming Growth Factor-β. J. Biol. Chem. 2001, 276, 11347–11353. [Google Scholar] [CrossRef]
- Yu, Q.; Stamenkovic, I. Cell Surface-Localized Matrix Metalloproteinase-9 Proteolytically Activates TGF-B and Promotes Tumor Invasion and Angiogenesis. Genes Dev. 2000, 14, 163–176. [Google Scholar] [CrossRef]
- Liu, C.; Xu, P.; Lamouille, S.; Xu, J.; Derynck, R. TACE-Mediated Ectodomain Shedding of the Type I TGF-β Receptor Downregulates TGF-β Signaling. Mol. Cell 2009, 35, 26–36. [Google Scholar] [CrossRef]
- Mu, Y.; Sundar, R.; Thakur, N.; Ekman, M.; Kumar Gudey, S.; Yakymovych, M.; Hermansson, A.; Dimitriou, H.; Bengoechea-Alonso, M.T.; Ericsson, J.; et al. TRAF6 Ubiquitinates TGFbeta Type I Receptor to Promote Its Cleavage and Nuclear Translocation in Cancer. Nat. Commun. 2011, 2, 330. [Google Scholar] [CrossRef]
- Ishimoto, T.; Miyake, K.; Nandi, T.; Yashiro, M.; Onishi, N.; Huang, K.K.; Lin, S.J.; Kalpana, R.; Tay, S.T.; Suzuki, Y.; et al. Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-Associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells. Gastroenterology 2017, 153, 191–204.e16. [Google Scholar] [CrossRef]
- Sun, T.; Huang, Z.; Liang, W.C.; Yin, J.; Lin, W.Y.; Wu, J.; Vernes, J.M.; Lutman, J.; Caplazi, P.; Jeet, S.; et al. TGFβ2 and TGFβ3 Isoforms Drive Fibrotic Disease Pathogenesis. Sci. Transl. Med. 2021, 13, eabe0407. [Google Scholar] [CrossRef]
- Wrighton, K.H.; Lin, X.; Feng, X.-H. Phospho-Control of TGF-Beta Superfamily Signaling. Cell Res. 2009, 19, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Hinck, A.P.; Mueller, T.D.; Springer, T.A. Structural biology and evolution of the TGF-β family. Cold Spring Harb. Perspect. Biol. 2016, 8, a022103. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Massagué, J. Mechanisms of TGF-B Signaling from Cell Membrane to the Nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef]
- Hart, P.J.; Deep, S.; Taylor, A.B.; Shu, Z.; Hinck, C.S.; Hinck, A.P. Crystal Structure of the Human TβR2 Ectodomain-TGF-Β3 Complex. Nat. Struct. Biol. 2002, 9, 203–208. [Google Scholar] [CrossRef]
- Laverty, H.G.; Wakefield, L.M.; Occleston, N.L.; O’Kane, S.; Ferguson, M.W.J. TGF-Β3 and Cancer: A Review. Cytokine Growth Factor Rev. 2009, 20, 305–317. [Google Scholar] [CrossRef]
- Huang, T.; Schor, S.L.; Hinck, A.P. Biological Activity Differences between TGF-Β1 and TGF-Β3 Correlate with Differences in the Rigidity and Arrangement of Their Component Monomers. Biochemistry 2014, 53, 5737–5749. [Google Scholar] [CrossRef]
- Chen, Y.G.; Massagué, J. Smad1 Recognition and Activation by the ALK1 Group of Transforming Growth Factor-β Family Receptors. J. Biol. Chem. 1999, 274, 3672–3677. [Google Scholar] [CrossRef]
- Lux, A.; Attisano, L.; Marchuk, D.A. Assignment of Transforming Growth Factor 1 and 3 and a Third New Ligand to the Type I Receptor ALK-1*. J. Biol. Chem. 1999, 274, 9984–9992. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.P.; Seki, T.; Goss, K.A.; Imamura, T.; Yi, Y.; Donahoe, P.K.; Li, L.; Miyazono, K.; Ten Dijke, P.; Kim, S.; et al. Activin Receptor-like Kinase 1 Modulates Transforming Growth Factor-Β1 Signaling in the Regulation of Angiogenesis. Proc. Natl. Acad. Sci. USA 2000, 97, 2626–2631. [Google Scholar] [CrossRef]
- Goumans, M.J.; Valdimarsdottir, G.; Itoh, S.; Rosendahl, A.; Sideras, P.; ten Dijke, P. Balancing the Activation State of the Endothelium via Two Distinct TGF-β Type I Receptors. EMBO J. 2002, 21, 1743–1753. [Google Scholar] [CrossRef]
- Finnson, K.W.; Parker, W.L.; Ten Dijke, P.; Thorikay, M.; Philip, A. ALK1 Opposes ALK5/Smad3 Signaling and Expression of Extracellular Matrix Components in Human Chondrocytes. J. Bone Miner. Res. 2008, 23, 896–906. [Google Scholar] [CrossRef]
- Park, S.O.; Lee, Y.J.; Seki, T.; Hong, K.-H.; Fliess, N.; Jiang, Z.; Park, A.; Wu, X.; Kaartinen, V.; Roman, B.L.; et al. ALK5-and TGFBR2-Independent Role of ALK1 in the Pathogenesis of Hereditary Hemorrhagic Telangiectasia Type 2. Blood 2008, 111, 633–642. [Google Scholar] [CrossRef]
- Zhang, Y.E. Non-Smad Pathways in TGF-β Signaling. Cell Res. 2009, 19, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Komai, T.; Okamura, T.; Inoue, M.; Yamamoto, K.; Fujio, K. Reevaluation of Pluripotent Cytokine TGF-Β3 in Immunity. Int. J. Mol. Sci. 2018, 19, 2261. [Google Scholar] [CrossRef]
- Lee, Y.; Awasthi, A.; Yosef, N.; Quintana, F.J.; Xiao, S.; Peters, A.; Wu, C.; Kleinewietfeld, M.; Kunder, S.; Hafler, D.A.; et al. Induction and Molecular Signature of Pathogenic T H 17 Cells. Nat. Immunol. 2012, 13, 991–999. [Google Scholar] [CrossRef]
- Komai, T.; Inoue, M.; Okamura, T.; Morita, K.; Iwasaki, Y.; Sumitomo, S.; Shoda, H.; Yamamoto, K.; Fujio, K. Transforming Growth Factor-β and Interleukin-10 Synergistically Regulate Humoral Immunity via Modulating Metabolic Signals. Front. Immunol. 2018, 9, 1364. [Google Scholar] [CrossRef]
- Shah, S.; Qiao, L. Resting B Cells Expand a CD4+CD25+Foxp3+ Treg Population via TGF-Β3. Eur. J. Immunol. 2008, 38, 2488–2498. [Google Scholar] [CrossRef]
- Tsuchida, Y.; Sumitomo, S.; Ishigaki, K.; Suzuki, A.; Kochi, Y.; Tsuchiya, H.; Ota, M.; Komai, T.; Inoue, M.; Morita, K.; et al. TGF-Β3 Inhibits Antibody Production by Human B Cells. PLoS ONE 2017, 12, e0169646. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Sumitomo, S.; Morita, K.; Iwasaki, Y.; Inoue, M.; Nakachi, S.; Komai, T.; Shoda, H.; Miyazaki, J.I.; Fujio, K.; et al. TGF-Β3-Expressing CD4+CD25-LAG3+ Regulatory T Cells Control Humoral Immune Responses. Nat. Commun. 2015, 6, 6329. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Lefaix, J.-L.; Sylvie, D. TGF-Beta1 and radiation fibrosis: A master switch and a specific therapeutic target? Int. J. Radiat. Oncol. 2000, 47, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Durani, P.; Occleston, N.; O’Kane, S.; Ferguson, M.W.J. Avotermin: A Novel Antiscarring Agent. Int. J. Low. Extrem. Wounds 2008, 7, 160–168. [Google Scholar] [CrossRef]
- Kim, K.K.; Sheppard, D.; Chapman, H.A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol. 2018, 10, a022293. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Transforming Growth Factor–ß in Tissue Fibrosis. J. Exp. Med. 2020, 217, e20190103. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, W.; Zeng, Z.; Lin, J.; Zhang, X.; Chen, L. Tgfb3 and Mmp13 Regulated the Initiation of Liver Fibrosis Progression as Dynamic Network Biomarkers. J. Cell. Mol. Med. 2021, 25, 867–879. [Google Scholar] [CrossRef]
- Reggio, S.; Rouault, C.; Poitou, C.; Bichet, J.-C.; Prifti, E.; Bouillot, J.-L.; Rizkalla, S.; Lacasa, D.; Tordjman, J.; Clément, K. Increased Basement Membrane Components in Adipose Tissue During Obesity: Links With TGFβ and Metabolic Phenotypes. J. Clin. Endocrinol. Metab. 2016, 101, 2578–2587. [Google Scholar] [CrossRef] [PubMed]
- Serini, G.; Gabbiani, G. Modulation of alpha-smooth muscle actin expression in fibroblasts by transforming growth factor-beta isoforms: An in vivo and in vitro study. Wound Repair Regen. 1996, 3, 278–287. [Google Scholar] [CrossRef]
- Loewen, M.S.; Walner, D.L.; Caldarelli, D.D. Improved Airway Healing Using Transforming Growth Factor Beta-3 In a Rabbit Model. Wound Repair Regen. 2001, 9, 44–49. [Google Scholar] [CrossRef]
- Ask, K.; Bonniaud, P.; Maass, K.; Eickelberg, O.; Margetts, P.J.; Warburton, D.; Groffen, J.; Gauldie, J.; Kolb, M. Progressive Pulmonary Fibrosis Is Mediated by TGF-β Isoform 1 but Not TGF-Β3. Int. J. Biochem. Cell Biol. 2008, 40, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E. TGF Beta −1, −2 and −3 in the Modulation of Fibrosis in the Cornea and Other Organs. Exp. Eye Res. 2021, 207, 108594. [Google Scholar] [CrossRef]
- Xue, K.; Zhang, J.; Li, C.; Li, J.; Wang, C.; Zhang, Q.; Chen, X.; Yu, X.; Sun, L.; Yu, X. The Role and Mechanism of Transforming Growth Factor Beta 3 in Human Myocardial Infarction-Induced Myocardial Fibrosis. J. Cell. Mol. Med. 2019, 23, 4229–4243. [Google Scholar] [CrossRef]
- Wu, Y.; Peng, Y.; Gao, D.; Feng, C.; Yuan, X.; Li, H.; Wang, Y.; Yang, L.; Huang, S.; Fu, X. Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-β3-dependent activation. Int. J. Low. Extrem. Wounds 2015, 14, 50–62. [Google Scholar] [CrossRef]
- Escasany, E.; Lanzón, B.; García-Carrasco, A.; Izquierdo-Lahuerta, A.; Torres, L.; Corrales, P.; Rodríguez, A.E.R.; Luis-Lima, S.; Álvarez, C.M.; Ruperez, F.J.; et al. Transforming Growth Factor β 3 Deficiency Promotes Defective Lipid Metabolism and Fibrosis in Murine Kidney. Dis. Model. Mech. 2021, 14, dmm048249. [Google Scholar] [CrossRef]
- Whitby, D.J.; Ferguson, M.W.J. The Extracellular Matrix of Lip Wounds in Fetal, Neonatal and Adult Mice. Development 1991, 112, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Fu, X.; Ge, S.; Sun, T.; Zhou, G.; Jiang, D.; Sheng, Z. Ontogeny of Expression of Transforming Growth Factor-β and Its Receptors and Their Possible Relationship with Scarless Healing in Human Fetal Skin. Wound Repair Regen. 2005, 13, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Foreman, D.M.; Ferguson, M.W. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J. Cell Sci. 1995, 108, 985–1002. [Google Scholar] [CrossRef]
- Ferguson, M.W.; Duncan, J.; Bond, J.; Bush, J.; Durani, P.; So, K.; Taylor, L.; Chantrey, J.; Mason, T.; James, G.; et al. Prophylactic Administration of Avotermin for Improvement of Skin Scarring: Three Double-Blind, Placebo-Controlled, Phase I/II Studies. Lancet 2009, 373, 1264–1274. [Google Scholar] [CrossRef]
- Bush, J.; Duncan, J.A.L.; Bond, J.S.; Durani, P.; So, K.; Mason, T.; O’Kane, S.; Ferguson, M.W.J. Scar-Improving Efficacy of Avotermin Administered into the Wound Margins of Skin Incisions as Evaluated by a Randomized, Double-Blind, Placebo-Controlled, Phase II Clinical Trial. Plast. Reconstr. Surg. 2010, 126, 1604–1615. [Google Scholar] [CrossRef]
- So, K.; McGrouther, D.A.; Bush, J.A.; Durani, P.; Taylor, L.; Skotny, G.; Mason, T.; Metcalfe, A.; Okane, S.; Ferguson, M.W.J. Avotermin for Scar Improvement Following Scar Revision Surgery: A Randomized, Double-Blind, within-Patient, Placebo-Controlled, Phase II Clinical Trial. Plast. Reconstr. Surg. 2011, 128, 163–172. [Google Scholar] [CrossRef]
- Juvista EU Phase 3 Trial Results. Available online: https://www.fiercebiotech.com/biotech/juvista-eu-phase-3-trial-results (accessed on 13 March 2023).
- Chang, Z.; Kishimoto, Y.; Hasan, A.; Welham, N.V. TGF-Β3 Modulates the Inflammatory Environment and Reduces Scar Formation Following Vocal Fold Mucosal Injury in Rats. Dis. Model. Mech. 2014, 7, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gil, V.; Pascual, G.; Pérez-Köhler, B.; Cifuentes, A.; Buján, J.; Bellón, J.M. Involvement of Transforming Growth Factor-Β3 and Betaglycan in the Cytoarchitecture of Postoperative Omental Adhesions. J. Surg. Res. 2014, 187, 699–711. [Google Scholar] [CrossRef]
- Karamichos, D.; Hutcheon, A.E.K.; Zieske, J.D. Reversal of Fibrosis by TGF-Β3 in a 3D in Vitro Model. Exp. Eye Res. 2014, 124, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Honardoust, D.; Varkey, M.; Marcoux, Y.; Shankowsky, H.A.; Tredget, E.E. Reduced decorin, fibromodulin, and transforming growth factor-β3 in deep dermis leads to hypertrophic scarring. J. Burn. Care Res. 2012, 33, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Barnard, J.A.; Lyons, R.M.; Moses, H.L. The Cell Biology of Transforming Growth Factor β. Biochimica et Biophysica Acta (BBA)-Rev. Cancer 1990, 1032, 79–87. [Google Scholar] [CrossRef]
- Martinez-Alvernia, E.A.; Rudnick, J.A.; Mankarious, L.A. Transforming growth factor β3 increases chondrocyte proliferation and decreases apoptosis in murine cricoid cartilage in vitro. Otolaryngol. Head Neck Surg. 2008, 138, 435–440. [Google Scholar] [CrossRef]
- James, A.W.; Xu, Y.; Lee, J.K.; Wang, R.; Longaker, M.T. Differential Effects of TGF-Β1 and TGF-Β3 on Chondrogenesis in Posterofrontal Cranial Suture-Derived Mesenchymal Cells in vitro. Plast. Reconstr. Surg. 2009, 123, 31–43. [Google Scholar] [CrossRef]
- Nakamura, S.I.; Kawai, T.; Kamakura, T.; Ookura, T. TGF-Β3 Is Expressed in Taste Buds and Inhibits Proliferation of Primary Cultured Taste Epithelial Cells. Vitr. Cell. Dev. Biol.-Anim. 2010, 46, 36–44. [Google Scholar] [CrossRef]
- Zeng, L.; Li, Y.; Yang, J.; Wang, G.; Margariti, A.; Xiao, Q.; Zampetaki, A.; Yin, X.; Mayr, M.; Mori, K.; et al. XBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels via Cross Talk with the PDGF Signaling. Arter. Thromb. Vasc. Biol. 2015, 35, 2134–2144. [Google Scholar] [CrossRef] [PubMed]
- Miyashita-Ishiwata, M.; El Sabeh, M.; Reschke, L.D.; Afrin, S.; Borahay, M.A. Hypoxia Induces Proliferation via NOX4-Mediated Oxidative Stress and TGF-Β3 Signaling in Uterine Leiomyoma Cells. Free. Radic. Res. 2022, 56, 163–172. [Google Scholar] [CrossRef]
- Gold, L.I.; Jussila, T.; Fusenig, N.E.; Stenba, F. TGF-β isoforms are differentially expressed in increasing malignant grades of HaCaT keratinocytes, suggesting separate roles in skin carcinogenesis. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2000, 190, 579–588. [Google Scholar] [CrossRef]
- Rodeck, U.; Bossler, A.; Graeven, U.; Fox, F.E.; Nowell, P.C.; Knabbe, C.; Kari, C. Transforming growth factor beta production and responsiveness in normal human melanocytes and melanoma cells. Cancer Res. 1994, 54, 575–581. [Google Scholar] [PubMed]
- van de Vijver, M.J.; He, Y.D.; van ’T Veer, L.; Dai, H.; Hart, A.A.M.; Voskuil, D.W.; Schreiber, G.J.; Peterse, J.L.; Robert, C.; Marton, M.J.; et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002, 347, 1999–2009. [Google Scholar] [CrossRef]
- van t’ Veer, L.; Dai, H.; van de Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; van der Koey, K.; Marton, M.J.; Witteveen, A.T.; et al. Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature 2002, 415, 530–536. [Google Scholar] [CrossRef]
- Bueno-de-Mesquita, J.M.; Linn, S.C.; Keijzer, R.; Wesseling, J.; Nuyten, D.S.A.; van Krimpen, C.; Meijers, C.; de Graaf, P.W.; Bos, M.M.E.M.; Hart, A.A.M.; et al. Validation of 70-Gene Prognosis Signature in Node-Negative Breast Cancer. Breast Cancer Res. Treat. 2009, 117, 483–495. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wilson, P.B.; Kumar, P.; Levine, E.; Hunter, R.D.; Kumar, S. Role of transforming growth factor β3 in lymphatic metastasis in breast cancer. Int. J. Cancer 1998, 79, 455–459. [Google Scholar]
- Amatschek, S.; Koenig, U.; Auer, H.; Steinlein, P.; Pacher, M.; Gruenfelder, A.; Dekan, G.; Vogl, S.; Kubista, E.; Heider, K.; et al. Tissue-Wide Expression Profiling Using CDNA Subtraction and Microarrays to Identify Tumor-Specific Genes. Cancer Res. 2004, 64, 844–856. [Google Scholar] [CrossRef]
- Ghellal, A.; Li, C.; Hayes, M.; Byrne, G.; Bundred, N.; Kumar, S. Prognostic Significance of TGF Beta 1 and TGF Beta 3 in Human Breast Carcinoma. Anticancer Res. 2000, 20, 4413–4418. [Google Scholar] [PubMed]
- Bristow, R.E.; Baldwin, R.L.; Yamada, D.S.; Korc, M.; Karlan, B.Y. Altered Expression of Transforming Growth Factor-Beta Ligands and Receptors in Primary and Recurrent Ovarian Carcinoma. Cancer 1999, 85, 658–668. [Google Scholar] [CrossRef]
- Rodriguez, G.C.; Nagarsheth, N.P.; Lee, K.L.; Bentley, R.C.; Walmer, D.K.; Cline, M.; Whitaker, R.S.; Isner, P.; Berchuck, A.; Dodge, R.K.; et al. Progestin-induced apoptosis in the macaque ovarian epithelium: Differential regulation of transforming growth factor-β. J. Natl. Cancer Inst. 2002, 94, 50–60. [Google Scholar] [CrossRef]
- Kloen, P.; Gebhardt, M.C.; Perez-atayde, A.; Rosenberg, A.E.; Springfield, D.S.; Gold, L.I.; Ph, D.; Mankin, H.J. Expression of transforming growth factor-β (TGF-β) isoforms in osteosarcomas: TGF-β3 is related to disease progression. Cancer 2000, 80, 2230–2239. [Google Scholar] [CrossRef]
- Arici, A.; Sozen, I. Transforming Growth Factor-Β3 Is Expressed at High Levels in Leiomyoma Where It Stimulates Fibronectin Expression and Cell Proliferation. Fertil. Steril. 2000, 73, 1006–1011. [Google Scholar] [CrossRef]
- Lee, B.; Nowak, R.A. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-β3 (TGFβ3) and altered responses to the antiproliferative effects of TGFβ. J. Clin. Endocrinol. Metab. 2001, 86, 913–920. [Google Scholar] [CrossRef]
- Wang, J.; Robbins, M.E.C. Radiation-induced alteration of rat mesangial cell transforming growth factor-β and expression of the genes associated with the extracellular matrix. Radiat. Res. 1996, 146, 561–568. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, Y.; Zhao, W.; Barcellos-Hoff, M.H.; Robbins, M.E.C. Radiation-Induced Alterations in Rat Mesangial Cell Tgfb1 and Tgfb3 Gene Expression Are Not Associated with Altered Secretion of Active Tgfb Isoforms. Radiat. Res. 1999, 152, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; O’malley, Y.; Wei, S.; Robbins, M.E.C. Irradiation of Rat Tubule Epithelial Cells Alters the Expression of Gene Products Associated with the Synthesis and Degradation of Extracellular Matrix. Int. J. Radiat. Biol. 2000, 76, 391–402. [Google Scholar] [CrossRef]
- Tao, S.; Liu, M.; Shen, D.; Zhang, W.; Wang, T.; Bai, Y. TGF-β/Smads Signaling Affects Radiation Response and Prolongs Survival by Regulating DNA Repair Genes in Malignant Glioma. DNA Cell Biol. 2018, 37, 909–916. [Google Scholar] [CrossRef]
- Yadav, P.; Shankar, B.S. Radio Resistance in Breast Cancer Cells Is Mediated through TGF-β Signalling, Hybrid Epithelial-Mesenchymal Phenotype and Cancer Stem Cells. Biomed. Pharmacother. 2019, 111, 119–130. [Google Scholar] [CrossRef]
- Finkelstein, J.N.; Johnston, C.J.; Baggs, R.; Rubin, P. Early Alterations in Extracellular Matrix and Transforming Growth Factor β Gene Expression in Mouse Lung Indicative of Late Radiation Fibrosis. Int. J. Radiat. Oncol. 1994, 28, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Rubin, P.; Johnston, C.J.; Williams, J.P.; McDonald, S.; Finkelstein, J.N. A Perpetual Cascade of Cytokines Postirradiation Leads to Pulmonary Fibrosis. Int. J. Radiat. Oncol. 1995, 33, 99–109. [Google Scholar] [CrossRef]
- Johnston, C.J.; Piedboeuf, B.; Baggs, R.; Rubin, P.; Finkelstein, J.N. Differences in Correlation of MRNA Gene Expression in Mice Sensitive and Resistant to Radiation-Induced Pulmonary Fibrosis. Radiat. Res. 1995, 142, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Ruifrok, A.C.C.; Mason, K.A.; Lozano, G.; Thames, H.D. Spatial and Temporal Patterns of Expression of Epidermal Growth Factor, Transforming Growth Factor Alpha and Transforming Growth Factor Beta 1-3 and Their Receptors in Mouse Jejunum after Radiation Treatment. Radiat. Res. 1997, 147, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, H.; Sung, C.-C.; Richter, K.K.; Hauer-Jensen, M. Cellular Sources of Transforming Growth Factor-β Isoforms in Early and Chronic Radiation Enteropathy. Am. J. Pathol. 1998, 153, 1531–1540. [Google Scholar] [CrossRef]
- Okunieff, P.; Cornelison, T.; Mester, M.; Liu, W.; Ding, I.; Chen, Y.; Zhang, H.; Williams, J.P.; Finkelstein, J. Mechanism and Modification of Gastrointestinal Soft Tissue Response to Radiation: Role of Growth Factors. Int. J. Radiat. Oncol. 2005, 62, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Seong, J.; Kim, S.H.; Chung, E.J.; Lee, W.J.; Suh, C.O. Early Alteration in TGF-β MRNA Expression in Irradiated Rat Liver. Int. J. Radiat. Oncol. 2000, 46, 639–643. [Google Scholar] [CrossRef]
- Schultze-Mosgau, S.; Wehrhan, F.; Amann, K.; Radespiel-Tröger, M.; Rödel, F.; Grabenbauer, G.G. In Vivo TGF-Β3 Expression during Wound Healing in Irradiated Tissue. Strahlenther. Onkol. 2003, 179, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Yirmibesoglu, E.; Karahacioglu, E.; Kilic, D.; Lortlar, N.; Akbulut, G.; Omeroglu, S. The Protective Effects of Ginkgo Biloba Extract (EGb-761) on Radiation-Induced Dermatitis: An Experimental Study. Clin. Exp. Dermatol. 2012, 37, 387–394. [Google Scholar] [CrossRef]
- Edin, N.J.; Sandvik, J.A.; Cheng, C.; Bergersen, L.; Pettersen, E.O. The Roles of TGF-Β3 and Peroxynitrite in Removal of Hyper-Radiosensitivity by Priming Irradiation. Int. J. Radiat. Biol. 2014, 90, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Robson, H.; Spence, K.; Anderson, E.; Potten, C.S.; Hendry, J.H. Differential Influence of TGFβ1 and TGFβ3 Isoforms on Cell Cycle Kinetics and Postirradiation Recovery of Normal and Malignant Colorectal Epithelial Cells. Int. J. Radiat. Oncol. 1997, 38, 183–190. [Google Scholar] [CrossRef]
- Potten, C.S.; Booth, D.; Haley, J.D. Pretreatment with transforming growth factor beta-3 protects small intestinal stem cells against radiation damage in vivo. Br. J. Cancer 1997, 75, 1454–1459. [Google Scholar] [CrossRef]
- Booth, D.; Haley, J.D.; Bruskin, A.M.; Potten, C.S. Transforming growth factor-β3 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem-cell cycling. Int. J. Cancer 2000, 86, 53–59. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, S.; Guo, R.; Yang, Z.; Wang, Q.; Xiao, F.; Wang, H.; Pan, X.; Zhu, M. Transforming Growth Factor Β3 Attenuates the Development of Radiation-Induced Pulmonary Fibrosis in Mice by Decreasing Fibrocyte Recruitment and Regulating IFN-γ/IL-4 Balance. Immunol. Lett. 2014, 162, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Edin, N.F.J.; Altaner, C.; Altanerova, V.; Ebbesen, P.; Pettersen, E.O. Low-dose-rate irradiation for 1 hour induces protection against lethal radiation doses but does not affect life span of DBA/2 mice. Dose-Response 2016, 14, 1559325816673901. [Google Scholar] [CrossRef]
- Rong, X.; Li, J.; Yang, Y.; Shi, L.; Jiang, T. Human Fetal Skin-Derived Stem Cell Secretome Enhances Radiation-Induced Skin Injury Therapeutic Effects by Promoting Angiogenesis. Stem Cell Res. Ther. 2019, 10, 383. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, M.R.; Patel, R.A.; Adem, S.; Diaz Deleon, N.M.; Shen, A.H.; Sokol, J.; Yen, S.; Chang, E.Y.; Nazerali, R.; Nguyen, D.; et al. The Antifibrotic Adipose-Derived Stromal Cell: Grafted Fat Enriched with CD74+ Adipose-Derived Stromal Cells Reduces Chronic Radiation-Induced Skin Fibrosis. Stem Cells Transl. Med. 2020, 9, 1401–1413. [Google Scholar] [CrossRef]
- Joiner, M.C.; Marples, B.; Lambin, P.; Short, S.C.; Turesson, I. Low-Dose Hypersensitivity: Current Status and Possible Mechanisms. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Marples, B.; Joiner, M.C. The Elimination of Low-Dose Hypersensitivity in Chinese Hamster V79-379A Cells by Pretreatment with X Rays or Hydrogen Peroxide. Radiat. Res. 1995, 141, 160–169. [Google Scholar] [CrossRef]
- Joiner, M.C.; Lambin, P.; Malaise, E.P.; Robson, T.; Arrand, J.E.; Skov, K.A.; Marples, B. Hypersensitivity to Very-Low Single Radiation Doses: Its Relationship to the Adaptive Response and Induced Radioresistance. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1996, 358, 171–183. [Google Scholar] [CrossRef]
- Wouters, B.G.; Skarsgard, L.D. Low-Dose Radiation Sensitivity and Induced Radioresistance to Cell Killing in HT-29 Cells Is Distinct from the “Adaptive Response” and Cannot Be Explained by a Subpopulation of Sensitive Cells. Radiat. Res. 1997, 148, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Short, S.C.; Kelly, J.; Mayes, C.R.; Woodcock, M.; Joiner, M.C. Low-Dose Hypersensitivity after Fractionated Low-Dose Irradiation in vitro. Int. J. Radiat. Biol. 2001, 77, 655–664. [Google Scholar] [CrossRef]
- Edin, N.J.; Olsen, D.R.; Stokke, T.; Pettersen, E.O. Recovery of Low-Dose Hyper-Radiosensitivity Following a Small Priming Dose Depends on Priming Dose-Rate. Int. J. Low Radiat. 2007, 4, 69–86. [Google Scholar] [CrossRef]
- Edin, N.J.; Sandvik, J.A.; Olsen, D.R.; Pettersen, E.O. The Elimination of Low-Dose Hyper-Radiosensitivity by Transfer of Irradiated-Cell Conditioned Medium Depends on Dose Rate. Radiat. Res. 2009, 171, 22–32. [Google Scholar] [CrossRef]
- Edin, N.J.; Altaner, Č.; Altanerova, V.; Ebbesen, P. TGF-b3 dependent modification of radiosensitivity in reporter cells exposed to serum from whole-body low dose-rate irradiated mice. Dose-Response 2015, 13. [Google Scholar] [CrossRef]
- Khalil, N.; O’Connor, R.N.; Flanders, K.C.; Shing, W.; Whitman, C.I. Regulation of type II alveolar epithelial cell proliferation by TGF-beta during bleomycin-induced lung injury in rats. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1994, 267, L498–L507. [Google Scholar] [CrossRef] [PubMed]
- Coker, R.K.; Laurent, G.J.; Shahzeidi, S.; Lympany, P.A.; du Bois, R.M.; Jeffery, P.K.; McAnulty, R.J. Transforming Growth Factors-Beta 1, -Beta 2, and -Beta 3 Stimulate Fibroblast Procollagen Production in vitro but Are Differentially Expressed during Bleomycin-Induced Lung Fibrosis. Am. J. Pathol. 1997, 150, 981–991. [Google Scholar] [PubMed]
- McCormack, E.S.; Borzillo, G.V.; Ambrosino, C.; Mak, G.; Hamablet, L.; Qu, G.Y.; Haley, J.D. Transforming Growth Factor-Β3 Protection of Epithelial Cells from Cycle-Selective Chemotherapy in vitro. Biochem. Pharmacol. 1997, 53, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Sonis, S.T.; Lindquist, L.; Van Vugt, A.; Stewart, A.A.; Stam, K.; Qu, G.-Y.; Iwata, K.K.; Haley, J.D. Prevention of chemotherapy-induced ulcerative mucositis by transforming growth factor β3. Cancer Res. 1994, 54, 1135–1138. [Google Scholar] [PubMed]
- Sonis, S.T.; Van Vugt, A.G.; Brien, J.P.O.; Muska, A.D.; Bruskin, A.M.; Rose, A.; Haley, J.D. Transforming growth factor-β3 mediated modulation of cell cycling and attenuation of 5-fluorouracil induced oral mucositis. Oral Oncol. 1997, 33, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Wymenga, A.N.M.; van der Graaf, W.T.A.; Hofstra, L.S.; Spijkervet, F.K.L.; Timens, W.; Timmer-Bosscha, H.; Sluiter, W.J.; van Buuren, A.H.J.A.W.; Mulder, N.H.; de Vries, E.G.E. Phase I Study of Transforming Growth Factor-beta3 Mouthwashes for Prevention of Chemotherapy-Induced Mucositis. Clin. Cancer Res. 1999, 5, 1363–1368. [Google Scholar]
- Foncuberta, M.C.; Cagnoni, P.J.; Brandts, C.H.; Mandanas, R.; Fields, K.; Derigs, H.G.; Reed, E.; Sonis, S.T.; Fay, J.; LeVeque, F.; et al. Topical Transforming Growth Factor-Beta3 in the Prevention or Alleviation of Chemotherapy-Induced Oral Mucositis in Patients with Lymphomas or Solid Tumors. J. Immunother. 2001, 24, 384–388. [Google Scholar] [CrossRef]
- Sagkrioti, E.; Biz, G.M.; Takan, I.; Asfa, S.; Nikitaki, Z.; Zanni, V.; Kars, R.H.; Hellweg, C.E.; Azzam, E.I.; Logotheti, S.; et al. Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants 2022, 11, 2286. [Google Scholar] [CrossRef]
- Edin, N.J.; Olsen, D.R.; Stokke, T.; Sandvik, J.A.; Ebbesen, P.; Pettersen, E.O. Mechanisms of the Elimination of Low Dose Hyper-Radiosensitivity in T-47D Cells by Low Dose-Rate Priming. Int. J. Radiat. Biol. 2009, 85, 1157–1165. [Google Scholar] [CrossRef]
- Edin, N.J.; Sandvik, J.A.; Vollan, H.S.; Reger, K.; Görlach, A.; Pettersen, E.O. The Role of Nitric Oxide Radicals in Removal of Hyper-Radiosensitivity by Priming Irradiation. J. Radiat. Res. 2013, 54, 1015–1028. [Google Scholar] [CrossRef]
- Edin, N.F.J. The Role of Interleukin-13 in the Removal of Hyper-Radiosensitivity by Priming Irradiation. J. Radiat. Res. 2014, 55, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Marples, B.; Wouters, B.G.; Joiner, M.C. An Association between the Radiation-Induced Arrest of G2-Phase Cells and Low-Dose Hyper-Radiosensitivity: A Plausible Underlying Mechanism? Radiat. Res. 2003, 160, 38–45. [Google Scholar] [CrossRef]
- Short, S.C.; Woodcock, M.; Marples, B.; Joiner, M.C. Effects of Cell Cycle Phase on Low-Dose Hyper-Radiosensitivity. Int. J. Radiat. Biol. 2003, 79, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Authier, H.; Cassaing, S.; Coste, A.; Balard, P.; Gales, A.; Berry, A.; Bans, V.; Bessières, M.H.; Pipy, B. Interleukin-13 Primes INO Synthase Expression Induced by LPS in Mouse Peritoneal Macrophages. Mol. Immunol. 2008, 45, 235–243. [Google Scholar] [CrossRef]
- Suresh, V.; Mih, J.D.; George, S.C. Measurement of IL-13-Induced INOS-Derived Gas Phase Nitric Oxide in Human Bronchial Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2007, 37, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Vodovotz, Y.; Chesler, L.; Chong, H.; Kim, S.J.; Simpson, J.T.; DeGraff, W.; Cox, G.W.; Roberts, A.B.; Wink, D.A.; Barcellos-Hoff, M.H. Regulation of transforming growth factor β1 by nitric oxide. Cancer Res. 1999, 59, 2142–2149. [Google Scholar]
- van der Vliet, A.; O’Neill, C.A.; Halliwell, B.; Cross, C.E.; Kaur, H. Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite: Evidence for hydroxyl radical production from peroxynitrite. FEBS Lett. 1994, 339, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, B.; Rubbo, H.; Kirk, M.; Barnes, S.; Freeman, B.A.; Radi, R. Peroxynitrite-Dependent Tryptophan Nitration. Chem. Res. Toxicol. 1996, 9, 390–396. [Google Scholar] [CrossRef]
Cell Line | Radiation Regime | Results | Reference |
---|---|---|---|
IEC6 and Widr Cells | 0–10 Gy, 137Cs | TGF-β3 treatment resulted in decreased plating efficiency for IEC6 cells and increased for Widr cells. Increasing preincubation time with TGF-β3 reduced surviving fraction of Widr cells after 5 Gy. TGF-β3 treatment increased the radiosensitivity of Widr cells by reducing the shoulder region of the survival curve. TGF-β3 induced G1 arrest after 5 Gy in IEC6 cells and S-phase accumulation in Widr cells. | [119] |
T98G and T-47D cells | 0–5 Gy, 60Co | TGF-β3 treatment at a concentration of 0.001 ng/mL removed the default low-dose HRS of T-98G cells. At a higher concentration of 0.01 ng/mL, the treatment in addition increased radioresistance to doses up to 5 Gy for T98G and T-47D cells. | [118] |
Organ System | Model | Radiation Regime | Results | Reference |
---|---|---|---|---|
GI | BDF1 mice | Survival: 15.8–17.4 Gy, 300 kV X-rays; CMC: 8–16 Gy,137Cs | TGF-β3 injections before irradiation increased the number of surviving intestinal crypts for doses from 12–16 Gy. TGF-β3 injections increased survival after 15.8 Gy, but not 17.4 Gy abdominal irradiation. | [120] |
GI | BDF1 mice | Survival: 15–17 Gy, 300 kV X-rays; CMC: 8–16 Gy,137Cs | TGF-β3 injections before irradiation increased survival and decreased recovery time of damaged intestinal crypts. Longer exposure to TGF-β3 increased the protection of intestinal crypts from radiation doses from 12–14 Gy. TGF-β3 treatment increased survival after 15.8 Gy abdominal irradiation. | [121] |
Lung | C57BL/6 mice | 20 Gy, 60Co | Weekly TGF-β3 injections after irradiation decelerated and decreased the severity of pulmonary fibrosis with a significant reduction in collagen deposition 3 and 6 months after irradiation. A significant reduction in the number of fibrocytes was observed 1 and 6 months after irradiation. | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanson, I.; Pitman, K.E.; Edin, N.F.J. The Role of TGF-β3 in Radiation Response. Int. J. Mol. Sci. 2023, 24, 7614. https://doi.org/10.3390/ijms24087614
Hanson I, Pitman KE, Edin NFJ. The Role of TGF-β3 in Radiation Response. International Journal of Molecular Sciences. 2023; 24(8):7614. https://doi.org/10.3390/ijms24087614
Chicago/Turabian StyleHanson, Ingunn, Kathinka E. Pitman, and Nina F. J. Edin. 2023. "The Role of TGF-β3 in Radiation Response" International Journal of Molecular Sciences 24, no. 8: 7614. https://doi.org/10.3390/ijms24087614
APA StyleHanson, I., Pitman, K. E., & Edin, N. F. J. (2023). The Role of TGF-β3 in Radiation Response. International Journal of Molecular Sciences, 24(8), 7614. https://doi.org/10.3390/ijms24087614