Enzymatic Synthesis of a Novel Coumarin Aminophosphonates: Antibacterial Effects and Oxidative Stress Modulation on Selected E. coli Strains
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Cytotoxic Studies of the Library of Coumarin α-Aminophoshonates 1–13 and Coumarin 14
2.3. The Analysis of Bacterial DNA Isolated from E. coli R2–R4 Strains Modified with Tested Coumarin α-Aminophoshonates
3. Materials and Methods
3.1. Microorganisms and Media
3.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.3. Chemicals
3.4. General Procedure for the Synthesis of Coumarin α-Aminophosphonates 1–13
- Dimethyl ((phenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino)methyl) phosphonate (1). Compound 1 was obtained according to the General method with 86% (367 mg, 0.86 mmol) as a yellow solid; m.p.: 198–199 °C, 1H NMR (400 MHz, CDCl3) δ 7.45 (ddd, J = 8.9, 6.0, 2.1 Hz, 3H), 7.40–7.29 (m, 3H), 6.67 (dd, J = 8.9, 2.4 Hz, 1H), 6.44 (dd, J = 10.2, 1.6 Hz, 2H), 5.85 (t, J = 8.8 Hz, 1H), 4.80 (dd, J = 24.2, 7.7 Hz, 1H), 3.80 (d, J = 10.9 Hz, 3H), 3.44 (d, J = 10.6 Hz, 3H); 13Ca NMR (100 MHz, CDCl3) δ 158.9, 156.6, 150.4, 143.2, 141.6, 134.1, 129.1, 129.0, 127.6, 124.3, 112.3, 99.7, 55.9, 54.3, 53.7, 53.7; 31P NMR (162 MHz, CDCl3) δ 23.6. HRMS (ESI) calcd. for C19H17F3NO5PNa [M + Na]+, 450.0694, found 450.0689.
- Dimethyl ((4-methoxyphenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (2). Compound 2 was obtained according to the General method with 92% (421 mg, 0.92 mmol) as a yellow solid; m.p.: 207–209 °C; 1H NMR (400 MHz, CHCl3) δ 7.44–7.40 (m, 1H), 7.37 (dd, J = 8.8, 2.3 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 6.64 (dd, J = 8.9, 2.4 Hz, 1H), 6.43 (d, J = 8.4 Hz, 2H), 5.76 (t, J = 8.6 Hz, 1H), 4.75 (dd, J = 23.7, 7.6 Hz, 1H), 3.79 (s, 3H), 3.77 (d, J = 10.6 Hz, 3H), 3.46 (d, J = 10.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.9, 156.6, 150.6, 150.5, 128.9, 128.8, 126.1, 125.8, 125.8, 114.6, 114.5, 112.3, 104.8, 99.7, 55.3, 54.2, 53.7, 53.6, 52.0; 31P NMR (162 MHz, CDCl3) δ 23.7. HRMS (ESI) calcd. for C20H19F3NO6PNa [M + Na]+, 480.0800, found 480.0794.
- Dimethyl ((4-methylphenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (3). Compound 3 was obtained according to the General method with 84% (371 mg, 0.84 mmol) as a yellow solid; m.p.: 194–196 °C; 1H NMR (400 MHz, CDCl3) δ 7.43 (dd, J = 8.9, 2.0 Hz, 1H), 7.33 (dd, J = 8.2, 2.3 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.64 (dd, J = 8.9, 2.4 Hz, 1H), 6.43 (d, J = 8.0 Hz, 2H), 5.66 (t, J = 8.8 Hz, 1H), 4.76 (dd, J = 23.9, 7.6 Hz, 1H), 3.78 (d, J = 10.8 Hz, 3H), 3.46 (d, J = 10.6 Hz, 3H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.9, 156.6, 150.8, 150.7, 138.5, 131.1, 131.0, 129.8, 129.7, 127.7, 127.6, 126.0, 112.3, 109.6, 109.5, 104.7, 99.7, 55.6, 54.3, 54.2, 53.7, 52.0, 21.1; 31P NMR (162 MHz, CDCl3) δ 23.7. HRMS (ESI) calcd. for C20H19F3NO5PNa [M + Na]+, 464.0851, found 464.0847.
- Dimethyl ((4-fluorophenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (4). Compound 4 was obtained according to the General method with 78% (347 mg, 0.78 mmol) as a yellow solid; m.p.: 182–184 °C; 1H NMR (400 MHz, CDCl3) δ 7.44 (ddt, J = 8.8, 5.5, 2.1 Hz, 3H), 7.12–6.99 (m, 2H), 6.65 (dd, J = 8.9, 2.4 Hz, 1H), 6.48–6.37 (m, 2H), 5.94 (t, J = 8.8 Hz, 1H), 4.80 (dd, J = 24.1, 7.7 Hz, 1H), 3.79 (d, J = 10.8 Hz, 3H), 3.51 (d, J = 10.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.8, 156.6, 150.5, 150.3, 130.0, 129.5,129.4, 129.3, 126.2, 116.3, 116.2, 116.1, 116.0, 112.1, 110.0, 104.9, 99.7, 60.3, 54.2, 54.1, 53.8, 53.7; 31P NMR (162 MHz, CDCl3) δ 23.3. HRMS (ESI) calcd. for C19H16F4NO5PNa [M + Na]+, 468.0600, found 468.0596.
- Dimethyl ((4-bromophenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (5). Compound 5 was obtained according to the General method with 69% (349 mg, 0.69 mmol) as a yellow solid; m.p.: 188–190 °C; 1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 8.4 Hz, 2H), 7.43 (dd, J = 8.9, 1.9 Hz, 1H), 7.37–7.29 (m, 2H), 6.63 (dd, J = 8.9, 2.4 Hz, 1H), 6.43 (d, J = 8.4 Hz, 2H), 5.84 (t, J = 8.8 Hz, 1H), 4.77 (dd, J = 24.4, 7.5 Hz, 1H), 3.80 (d, J = 10.9 Hz, 3H), 3.53 (d, J = 10.7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.7, 156.5, 150.2, 141.4, 133.4, 132.3, 132.2, 129.3, 126.2, 122.7, 112.1, 105.0, 99.8, 55.4, 54.3, 54.2, 53.9, 53.8; 31P NMR (162 MHz, CDCl3) δ 22.7. HRMS (ESI) calcd. for C19H16BrF3NO5PNa [M + Na]+, 527.9799, found 527.9794.
- Dimethyl ((4-iodophenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (6). Compound 6 was obtained according to the General method with 58% (320 mg, 0.58 mmol) as a yellow solid; m.p.: 209–211 °C; 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 7.8 Hz, 2H), 7.42 (dd, J = 8.9, 1.9 Hz, 1H), 7.21 (dd, J = 8.5, 2.3 Hz, 2H), 6.63 (dd, J = 8.9, 2.4 Hz, 1H), 6.42 (d, J = 7.8 Hz, 2H), 5.94 (dd, J = 9.7, 7.7 Hz, 1H), 4.76 (dd, J = 24.4, 7.6 Hz, 1H), 3.80 (d, J = 10.8 Hz, 3H), 3.54 (d, J = 10.7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.7, 156.5, 150.4, 150.2, 138.1, 134.1, 129.5, 126.2, 123.0, 112.1, 110.0, 105.0, 99.8, 94.3, 55.5, 54.3, 54.0, 53.9, 53.8; 31P NMR (162 MHz, CDCl3) δ 22.7. HRMS (ESI) calcd. for C19H16F3INO5PNa [M + Na]+, 575.9661, found 575.9655.
- Dimethyl ((4-chlorophenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (7). Compound 7 was obtained according to the General method with 62% (286 mg, 0.62 mmol) as a yellow solid; m.p.: 213–214 °C; 1H NMR (400 MHz, CDCl3) δ 7.44–7.39 (m, 2H), 7.34 (d, J = 8.7 Hz, 2H), 6.72–6.60 (m, 1H), 6.43 (d, J = 8.7 Hz, 2H), 5.80 (t, J = 8.6 Hz, 1H), 4.79 (dd, J = 24.3, 7.5 Hz, 1H), 3.80 (d, J = 10.8 Hz, 3H), 3.53 (d, J = 10.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.7, 156.5, 150.2, 134.6, 132.8, 129.3, 129.2, 129.0, 128.9, 126.2, 112.1, 110.0, 105.0, 99.8, 55.3, 54.3, 53.9, 53.8; 31P NMR (162 MHz, CDCl3) δ 22.9. HRMS (ESI) calcd. for C19H16F3ClNO5PNa [M + Na]+, 484.0304, found 484.0299.
- Dimethyl ((3-nitrophenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (8). Compound 8 was obtained according to the General method with 51% (241 mg, 0.51 mmol) as a yellow solid; m.p.: 195–197 °C; 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 2.2 Hz, 1H), 8.16 (dd, J = 8.2, 1.0 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 7.43 (dd, J = 8.9, 1.9 Hz, 1H), 6.67 (dd, J = 8.9, 2.4 Hz, 1H), 6.44 (s, 2H), 6.28 (t, J = 8.7 Hz, 1H), 4.98 (dd, J = 24.9, 7.7 Hz, 1H), 3.86 (d, J = 10.9 Hz, 3H), 3.65 (d, J = 10.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 156.5, 150.2, 150.0, 148.7, 137.2, 137.1, 133.8, 133.7, 129.9, 129.9, 126.4, 123.5, 123.5, 122.4, 122.3, 111.9, 105.2, 99.8, 55.3, 54.3, 54.1, 53.8; 31P NMR (162 MHz, CDCl3) δ 21.9. HRMS (ESI) calcd. for C19H16F3N2O7PNa [M + Na]+, 495.0545, found 495.0541.
- Dimethyl ((4-nitrophenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (9). Compound 9 was obtained according to the General method with 65% (307 mg, 0.65 mmol) as a yellow solid; m.p.: 199–201 °C; 1H NMR (400 MHz, CDCl3) δ 8.21 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 11.0 Hz, 2H), 7.47 – 7.39 (m, 1H), 6.63 (dd, J = 8.9, 2.4 Hz, 1H), 6.43 (d, J = 8.8 Hz, 2H), 6.01 (dd, J = 10.0, 7.4 Hz, 1H), 4.96 (dd, J = 25.2, 7.5 Hz, 1H), 3.83 (d, J = 10.8 Hz, 3H), 3.62 (d, J = 10.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.5, 156.5, 150.0, 149.9, 148.0, 142.1, 142.0, 128.6, 128.5, 124.1, 111.9, 105.3, 99.9, 55.6, 54.3, 54.2, 54.1, 54.0. 31P NMR (162 MHz, CDCl3) δ 21.8. HRMS (ESI) calcd. for C19H16F3N2O7PNa [M + Na]+, 495.0545, found 495.0538.
- Dimethyl ((furan-2-yl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (10). Compound 10 was obtained according to the General method with 76% (317 mg, 0.76 mmol) as a yellow solid; m.p.: 193–194 °C; 1H NMR (400 MHz, CDCl3) δ 7.50–7.42 (m, 1H), 7.41 (q, J = 1.6 Hz, 1H), 6.67 (dd, J = 8.9, 2.4 Hz, 1H), 6.57 (d, J = 2.4 Hz, 1H), 6.45 (s, 2H), 6.36 (dd, J = 3.4, 1.9 Hz, 1H), 5.52 (t, J = 8.0 Hz, 1H), 4.95 (dd, J = 23.5, 8.7 Hz, 1H), 3.81 (d, J = 10.8 Hz, 3H), 3.63 (d, J = 10.7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.8, 156.6, 150.3, 150.2, 147.5, 143.1, 126.2, 112.1, 111.0, 110.9, 109.5, 105.1, 99.6, 54.1, 53.9, 53.8, 48.2; 31P NMR (162 MHz, CDCl3) δ 21.1. HRMS (ESI) calcd. for C17H15F3NO6PNa [M + Na]+, 440.0487, found 440.0482.
- Dimethyl ((tiophen-2-yl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (11). Compound 11 was obtained according to the General method with 81% (351 mg, 0.81 mmol) as a yellow solid; m.p.: 205–207 °C; 1H NMR (400 MHz, CDCl3) δ 7.46 (dd, J = 9.0, 1.9 Hz, 1H), 7.30–7.25 (m, 1H), 7.20 (td, J = 2.9, 2.4, 1.7 Hz, 1H), 7.00 (ddd, J = 5.1, 3.6, 0.7 Hz, 1H), 6.70 (dd, J = 8.9, 2.4 Hz, 1H), 6.58 (s, 1H), 6.45 (s, 1H), 5.79 (t, J = 8.2 Hz, 1H), 5.11 (dd, J = 23.7, 8.0 Hz, 1H), 3.81 (d, J = 10.8 Hz, 3H), 3.61 (d, J = 10.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.8, 156.6, 150.4, 150.3, 137.6, 137.5, 127.4, 127.0, 126.9, 126.2, 126.1, 112.1, 110.1, 110.0, 105.1, 99.8, 54.4, 54.3, 53.9, 51.7, 50.1; 31P NMR (162 MHz, CDCl3) δ 21.7. HRMS (ESI) calcd. for C17H15F3NO5PSNa [M + Na]+, 456.0258, found 456.0253.
- Dimethyl ((naphthalen-1-yl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino) methyl)phosphonate (12). Compound 11 was obtained according to the General method with 33% (158 mg, 0.33 mmol) as a yellow solid; m.p.: 218–220 °C; 1H NMR (400 MHz, CDCl3) δ 7.97 (s, 1H), 7.86–7.69 (m, 3H), 7.62 (d, J = 8.6 Hz, 1H), 7.49–7.39 (m, 2H), 7.35 (dd, J = 8.9, 2.0 Hz, 1H), 6.76–6.66 (m, 1H), 6.61 (t, J = 8.6 Hz, 1H), 6.55 (s, 1H), 6.37 (s, 1H), 5.05 (dd, J = 24.3, 7.9 Hz, 1H), 3.85 (d, J = 10.9 Hz, 3H), 3.48 (d, J = 10.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.9, 156.5, 151.0, 150.9, 141.7, 141.4, 133.2, 131.8, 128.9, 128.9, 127.9, 127.7, 127.1, 127.0, 126.5, 126.0, 125.2, 125.1, 123.1, 120.3, 112.1, 109.5, 109.5, 104.6, 99.8, 56.0, 54.5, 54.3, 54.2, 53.8; 31P NMR (162 MHz, CDCl3) δ 23.4. HRMS (ESI) calcd. for C23H19F3NO5PNa [M + Na]+, 500.0851, found 500.0845.
- Dimethyl ((phenyl)((2-oxo-4-(trifluoromethyl)-2H-chromen-7-yl)amino)methyl) phosphonate (13). Compound 13 was obtained according to the General method with 64% (239 mg, 0.64 mmol) as a yellow solid; m.p.: 205–207 °C; 1H NMR (400 MHz, CDCl3) δ 7.49–7.40 (m, 2H), 7.39–7.27 (m, 4H), 6.58 (dd, J = 8.7, 2.4 Hz, 1H), 6.40 (s, 1H), 5.95 (s, 1H), 5.49 (dd, J = 9.9, 7.7 Hz, 1H), 4.80 (dd, J = 24.2, 7.7 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 161.5, 155.5, 152.6, 149.6, 149.5, 134.5, 128.9, 128.5, 128.4, 127.7, 125.4, 111.6, 111.3, 110.2, 99.7, 56.0, 54.5, 53.7, 53.6, 18.4; 31P NMR (162 MHz, CDCl3) δ 23.9. HRMS (ESI) calcd. for C19H20NO5PNa [M + Na]+, 396.0977, found 396.0965.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIC | minimum inhibitory concentration |
MBC | minimum bactericidal concentration |
Oc | open circle |
Ccc | covalently closed circle |
BER | base excision repair |
Fpg | DNA-formamidopyrimidine glycosylase |
TBME | tert-butyl methyl ether |
LPS | Lipopolysaccharide |
CaLB | Candida antarctica Lipase B |
References
- Kaper, J.; Nataro, J.; Mobley, H. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Tuem, K.B.; Gebre, A.K.; Atey, T.M.; Bitew, H.; Yimer, E.M.; Berhe, D.F. Drug Resistance Patterns of Escherichia coli in Ethiopia: A Meta-Analysis. Hindawi BioMed Res. Int. 2018, 2018, 4536905. [Google Scholar] [CrossRef]
- Erb, A.; Stürmer, T.; Marre, R.; Brenner, H. Prevalence of antibiotic resistance in Escherichia coli: Overview of geographical, temporal, and methodological variations. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 83–90. [Google Scholar] [CrossRef]
- IACG. Interagency Coordination Group on Antimicrobial Resistance (2019) No Time to Wait: Securing the Future from Drug-Resistant Infections. Report to the Secretary-General of the United Nations; IACG: Hyderabad, India, 2019; p. 28. [Google Scholar]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health. 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Progress in the Chemistry of Naturally Occurring Coumarins. Prog. Chem. Org. Nat. Prod. 2017, 106, 241–304. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.D.H. The naturally occurring coumarins. Fortschr. Chem. Org. Naturst. 2002, 83, 1–619. [Google Scholar] [CrossRef] [PubMed]
- Soine, T.O. Naturally Occurring Coumarins and Related Physiological Activities. J. Pharm. Sci. 1964, 53, 231–264. [Google Scholar] [CrossRef]
- Kirsch, G.; Abdelwahab, A.B.; Chaimbault, P. Natural and Synthetic Coumarins with Effects on Inflammation. Molecules 2016, 21, 1322. [Google Scholar] [CrossRef]
- Kontogiorgis, C.; Detsi, A.; Hadjipavlou-Litina, D. Coumarin-based drugs: A patent review (2008–present). Expert Opin. Ther. Patents 2012, 22, 437–454. [Google Scholar] [CrossRef]
- Mustafa, Y.F.; Bashir, M.K.; Oglah, M.K. Original and Innovative Advances in the Synthetic Schemes of Coumarin-Based Derivatives: A Review. Syst. Rev. Pharm. 2020, 11, 598–612. [Google Scholar]
- Ismael, R.M.; Mustafa, Y.F.; Al-Qazaz, H.K. Coumarin-based products: Their biodiversity and pharmacology. Iraqi J. Pharm. 2021, 18, 162–179. [Google Scholar] [CrossRef]
- Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem. 2005, 12, 887–916. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, M.E.; De Kimpe, N.; Moglioni, A.; Vázquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: Old compounds with novel promising therapeutic perspectives. Curr. Med. Chem. 2010, 17, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Cho, M.; Karlsberg, K.; Zhou, D.; Yuan, Y.-C. Biochemical and Biological Characterization of a Novel Anti-aromatase Coumarin Derivative. J. Biol. Chem. 2004, 279, 48071–48078. [Google Scholar] [CrossRef]
- Kulkarni, M.V.; Kulkarni, G.M.; Lin, C.-H.; Sun, C.-M. Recent Advances in Coumarins and 1-Azacoumarins as Versatile Biodynamic Agents. Curr. Med. Chem. 2006, 13, 2795–2818. [Google Scholar] [CrossRef] [PubMed]
- Al-Majedy, Y.; Kadhum, A.A.; Ibraheem, H.; Al-Amiery, A.; Moneim, A.A.; Mohamad, A.B. A Systematic Review on Pharmacological Activities of 4-Methylumbelliferon. Syst. Rev. Pharm. 2018, 9, 49–54. [Google Scholar] [CrossRef]
- Coumarins. Available online: https://go.drugbank.com/categories/DBCAT000641 (accessed on 5 March 2022).
- Varga, P.R.; Dinnyési, E.; Tóth, S.; Szakács, G.; Keglevich, G. Optimized Synthesis and Cytotoxic Activity of α-Aminophosphonates Against a Multidrug Resistant Uterine Sarcoma Cell Line. Lett. Drug Des. Discov. 2023, 20, 365–371. [Google Scholar] [CrossRef]
- Shaikh, S.; Dhavan, P.; Singh, P.; Uparkar, J.; Vaidya, S.P.; Jadhav, B.L.; Ramana, M.M.V. Design, synthesis and biological evaluation of novel antipyrine based α-aminophosphonates as anti-Alzheimer and anti-inflammatory agent. J. Biomol. Struct. Dyn. 2023, 41, 386–401. [Google Scholar] [CrossRef]
- Elsherbiny, D.A.; Abdelgawad, A.M.; Shaheen, T.I.; Abdelwahed, N.A.M.; Jockenhoevel, S.; Ghazanfari, S. Thermoresponsive nanofibers loaded with antimicrobial α-aminophosphonate-o/w emulsion supported by cellulose nanocrystals for smart wound care patches. Int. J. Biol. Macromol. 2023, 233, 123655. [Google Scholar] [CrossRef]
- Maruyama, H.B.; Arisawa, M.; Sawada, T. Alafosfalin, a new inhibitor of cell wall biosynthesis: In vitro activity against urinary isolates in Japan and potentiation with beta-lactams. Antimicrob. Agents Chemother. 1979, 16, 444–451. [Google Scholar] [CrossRef]
- Kenawy, E.R.S.; Azaam, M.M.; Saad-Allah, K.M. Synthesis and antimicrobial activity of α-aminophosphonates containing chitosan moiety. Arab. J. Chem. 2015, 8, 427–432. [Google Scholar] [CrossRef]
- Abdel-Megeed, M.F.; Badr, B.E.; Azaam, M.M.; El-Hiti, G.A. Synthesis and Antimicrobial Activities of a Novel Series of Heterocyclic α-Aminophosphonates. Arch. Pharm. 2012, 345, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Poola, S.; Nagaripati, S.; Tellamekala, S.; Chintha, V.; Kotha, P.; Yagani, J.R.; Golla, N.; Cirandur, S.R. Green synthesis, antibacterial, antiviral and molecular docking studies of α-aminophosphonates. Synth. Commun. 2020, 50, 2655–2672. [Google Scholar] [CrossRef]
- Kawase, M.; Varu, B.; Shah, A.; Motohashi, N.; Tani, S.; Saito, S.; Debnath, S.; Mahapatra, S.; Dastidar, S.G.; Chakrabarty, A.N. Antimicrobial Activity of New Coumarin Derivatives. Arzneimittelforschung 2001, 51, 67–71. [Google Scholar] [CrossRef]
- Litim, B.; Cheraiet, Z.; Meliani, S. Synthesis and potent antimicrobial activity of novel coumarylthiazole α-aminophosphonates derivatives. Mol. Divers. 2022, 26, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Koleva, A.I.; Petkova-Yankova, N.I.; Nikolova, R.D. Synthesis and Chemical Properties of 3-Phosphono-coumarins and 1,2-Benzoxaphosphorins as Precursors for Bioactive Compounds. Molecules 2019, 24, 2030. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-C.; Zeng, C.-M.; Avula, S.R.; Peng, X.-M.; Geng, R.-X.; Zhou, C.-H. Novel coumarin aminophosphonates as potential multitargeting antibacterial agents against Staphylococcus aureus. Eur. J. Med. Chem. 2023, 245, 114891. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Madej, A.; Paprocki, D.; Szymczak, M.; Ostaszewski, R. Coumarin Derivatives as New Toxic Compounds to Selected K12, R1–R4 E. coli Strains. Materials 2020, 13, 2499. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Wilk, M.; Parul, P.; Szymczak, M.; Kramkowski, K.; Raj, S.; Skiba, G.; Sulejczak, D.; Kleczkowska, P.; Ostaszewski, R. The Synthesis and Evaluation of Aminocoumarin Peptidomimetics as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials 2021, 14, 5725. [Google Scholar] [CrossRef]
- Koszelewski, D.; Kowalczyk, P.; Śmigielski, P.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Szymczak, M.; Ostaszewski, R. Relationship between Structure and Antibacterial Activity of α-Aminophosphonate Derivatives Obtained via Lipase-Catalyzed Kabachnik−Fields Reaction. Materials 2022, 15, 3846. [Google Scholar] [CrossRef]
- Varga, P.R.; Keglevich, G. Synthesis of α-Aminophosphonates and Related Derivatives; The Last Decade of the Kabachnik–Fields Reaction. Molecules 2021, 26, 2511. [Google Scholar] [CrossRef] [PubMed]
- Keglevich, G.; Bálint, E. The Kabachnik–Fields Reaction: Mechanism and Synthetic Use. Molecules 2012, 17, 12821–12835. [Google Scholar] [CrossRef] [PubMed]
- Rasal, S.A.; Tamore, M.S.; Shimpi, N.G. Ultrasoundmediated synthesis of novel α-aminophosphonates using graphene nanosheets-silver nanoparticles (GNS-AgNPs) as a recyclable heterogeneous catalyst. ChemistrySelect 2019, 4, 2293–2300. [Google Scholar] [CrossRef]
- Fiore, C.; Sovic, I.; Lukin, S.; Halasz, I.; Martina, K.; Delogu, F.; Ricci, P.C.; Porcheddu, A.; Shemchuk, O.; Braga, D.; et al. Kabachnik–Fields Reaction by Mechanochemistry: New Horizons from Old Methods. ACS Sustain. Chem. Eng. 2020, 8, 18889–18902. [Google Scholar] [CrossRef]
- Kundeab, S.P.; Kanade, K.G.; Karalea, B.K.; Akolkara, H.N.; Arbuj, S.S.; Randhavanea, P.V.; Shindea, S.T.; Shaikha, M.H.; Kulkarni, A.K. Nanostructured N doped TiO2 efficient stable catalyst for Kabachnik–Fields reaction under microwave irradiation. RSC Adv. 2020, 10, 26997–27005. [Google Scholar] [CrossRef]
- Gallardo-Macias, R.; Nakayama, K. Tin(II) compounds as catalysts for the Kabachnik–Fields reaction under solvent-free conditions: Facile synthesis of α-aminophosphonates. Synthesis 2010, 1, 57–62. [Google Scholar] [CrossRef]
- Hosseini-Sarvari, M. TiO2 as a new and reusable catalyst for one-pot threecomponent syntheses of α-aminophosphonates in solvent-free conditions. Tetrahedron 2008, 64, 5459–5466. [Google Scholar] [CrossRef]
- Rezaei, Z.; Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Jafari, M.R.; Zare, H.R. Design and one-pot synthesis of α-aminophosphonates and bis(α-aminophosphonates) by iron(III) chloride and cytotoxic activity. Eur. J. Med. Chem. 2009, 44, 4266–4275. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Wang, W.; Zhang, L.; Wu, S.; Mao, D. A facile synthesis of α-aminophosphonates catalyzed by ytterbium perfluorooctanoate under solvent-free conditions. J. Fluor. Chem. 2011, 132, 102–106. [Google Scholar] [CrossRef]
- Ambica, K.S.; Taneja, S.C.; Hundal, M.S.; Kapoor, K.K. Onepot synthesis of α-aminophosphonates catalyzed by antimony trichloride adsorbed on alumina. Tetrahedron Lett. 2008, 49, 2208–2212. [Google Scholar] [CrossRef]
- Akiyama, T.; Sanada, M.; Fuchibe, K. Bronsted acid-mediated synthesis of α-amino phosphonates under solventfree conditions. Synlett 2003, 10, 1463–1464. [Google Scholar] [CrossRef]
- Amira, A.; Aouf, Z.; K’tir, H.; Chemam, Y.; Ghodbane, R.; Zerrouki, R.; Aouf, N. Recent Advances in the Synthesis of α-Aminophosphonates: A Review. ChemistrySelect 2021, 6, 6137–6149. [Google Scholar] [CrossRef]
- Huang, X.; Li, Z.; Wang, D.; Li, Y. Bovine serum albumin: An efficient and green biocatalyst for the one-pot four-component synthesis of pyrano[2,3-c]pyrazoles. Chin. J. Catal. 2016, 37, 1461–1467. [Google Scholar] [CrossRef]
- Aissa, R.; Guezane-Lakoud, S.; Kolodziej, E.; Toffano, M.; Aribi-Zouioueche, L. Diastereoselective synthesis of bis(a-aminophosphonates) by lipase catalytic promiscuity. New J. Chem. 2019, 43, 8153–8159. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Somero, G.N. Proteins and Temperature. Annu. Rev. Physiol. 1995, 57, 43–68. [Google Scholar] [CrossRef]
- Guezane-Lakoud, S.; Toffano, M.; Aribi-Zouioueche, L. Promiscuous lipase catalyzed a new P–C bond formation: Green and efficient protocol for one- pot synthesis of α- aminophosphonates. Heteroat. Chem. 2017, 28, e21408. [Google Scholar] [CrossRef]
- Zandieh, H.; Mokhtari, J.; Larijani, K. Synthesis of α-amino phosphonates catalyzed by copper-based metal organic frameworks. J. Organometal. Chem. 2022, 957, 122156. [Google Scholar] [CrossRef]
- Keglevich, G.; Kiss, N.Z.; Grün, A.; Bálint, E.; Kovács, T. Advantages of the Microwave Tool in Organophosphorus Syntheses. Synthesis 2017, 49, 3069–3083. [Google Scholar] [CrossRef]
- Tajbakhsh, M.; Heydari, A.; Alinezhada, H.; Ghaneia, M.; Khaksarb, S. Coupling of Aldehydes, Amines, and Trimethyl Phosphite Promoted by Amberlyst-15: Highly Efficient Synthesis of α-Aminophosphonates. Synthesis 2008, 3, 352–354. [Google Scholar] [CrossRef]
- Kim, H.J.; Bhuniya, S.; Mahajan, R.K.; Puri, R.; Liu, H.; Ko, K.C.; Lee, J.Y.; Kim, J.S. Fluorescence turn-on sensors for HSO4−. Chem. Commun. 2009, 2009, 7128–7130. [Google Scholar] [CrossRef] [PubMed]
- Koszelewski, D.; Ostaszewski, R.; Smigielski, P.; Hrunyk, A.; Kramkowski, K.; Laskowski, Ł.; Laskowska, M.; Lizut, R.; Szymczak, M.; Michalski, J.; et al. Pyridine Derivatives—A New Class of Compounds That Are Toxic to E. coli K12, R2–R4 Strains. Materials 2021, 14, 5401. [Google Scholar] [CrossRef] [PubMed]
- Samsonowicz-Górski, J.; Kowalczyk, P.; Koszelewski, D.; Brodzka, A.; Szymczak, M.; Kramkowski, K.; Ostaszewski, R. The Synthesis and Evaluation of Amidoximes as Cytotoxic Agents on Model Bacterial E. coli Strains. Materials 2021, 14, 7577. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Trzepizur, D.; Szymczak, M.; Skiba, G.; Kramkowski, K.; Ostaszewski, R. 1,2-Diarylethanols—A New Class of Compounds That Are Toxic to E. coli K12, R2–R4 Strains. Materials 2021, 14, 1025. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Madej, A.; Szymczak, M.; Ostaszewski, R. α-Amidoamids as New Replacements of Antibiotics—Research on the Chosen K12, R2–R4 E. coli Strains. Materials 2020, 13, 5169. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Gawdzik, B.; Trzepizur, D.; Szymczak, M.; Skiba, G.; Raj, S.; Kramkowski, K.; Lizut, R.; Ostaszewski, R. δ -Lactones—A New Class of Compounds That Are Toxic to E. coli K12 and R2–R4 Strains. Materials 2021, 14, 2956. [Google Scholar] [CrossRef]
- Gawdzik, B.; Kowalczyk, P.; Koszelewski, D.; Brodzka, A.; Masternak, J.; Kramkowski, K.; Wypych, A.; Ostaszewski, R. The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. Membranes 2022, 12, 238. [Google Scholar] [CrossRef]
- Sahrawat, P.; Kowalczyk, P.; Koszelewski, D.; Szymczak, M.; Kramkowski, K.; Wypych, A.; Ostaszewski, R. Influence of Open Chain and Cyclic Structure of Peptidomimetics on Antibacterial Activity in E. coli Strains. Molecules 2022, 27, 3633. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Koszelewski, D.; Gawdzik, B.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Lizut, R.; Ostaszewski, R. Promiscuous Lipase-Catalyzed Markovnikov Addition of H-Phosphites to Vinyl Esters for the Synthesis of Cytotoxic α -Acyloxy Phosphonate Derivatives. Materials 2022, 15, 1975. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Borkowski, A.; Czerwonka, G.; Cłapa, T.; Cieśla, J.; Misiewicz, A.; Borowiec, M.; Szala, M. The microbial toxicity of quaternary ammonium ionic liquids is dependent on the type of lipopolysaccharide. J. Mol. Liq. 2018, 266, 540–547. [Google Scholar] [CrossRef]
- Borkowski, A.; Kowalczyk, P.; Czerwonka, G.; Cieśla, J.; Cłapa, T.; Misiewicz, A.; Szala, M.; Drabik, M. Interaction of quaternary ammonium ionic liquids with bacterial membranes—Studies with Escherichia coli R1–R4-type lipopolysaccharides. J. Mol. Liq. 2017, 246, 282–289. [Google Scholar] [CrossRef]
- Maciejewska, A.; Kaszowska, M.; Jachymek, W.; Lugowski, C.; Lukasiewicz, J. Lipopolysaccharide-linked Enterobacterial Common Antigen (ECALPS) Occurs in Rough Strains of Escherichia coli R1, R2, and R4. Int. J. Mol. Sci. 2020, 21, 6038. [Google Scholar] [CrossRef] [PubMed]
- Aedh, A.I.; Al-Swedan, A.D.; Mohammed, A.A.; Alwadai, B.M.; Alyami, A.Y.; Alsaaed, E.A.; Almurdhimah, N.M.; Zaki, M.S.; Othman, A.E.; Hasan, A. Occurrence of Multidrug-Resistant Strains of Acinetobacter spp.: An Emerging Threat for Nosocomial-Borne Infection in Najran Region, KSA. Trop. Med. Infect. Dis. 2023, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Salmanov, A.; Shchehlov, D.; Artyomenko, V.; Svyrydiuk, O.; Maliarchuk, R.; Bortnik, I.; Mamonova, M.; Korniyenko, S.; Rud, V.; Gudym, M.; et al. Nosocomial transmission of multi-drug-resistant organisms in Ukrainian hospitals: Results of a multi-centre study. J. Hosp. Infect. 2023, 132, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Connors, W.M.; Pihil, A.; Dounce, A.L.; Stotz, E.I. Purification of liver esterase. Biol. Chem. 1950, 184, 29–36. [Google Scholar] [CrossRef]
- Kublicki, M.; Koszelewski, D.; Brodzka, A.; Ostaszewski, R. Wheat germ lipase: Isolation, purification and applications. Crit. Rev. Biotechnol. 2022, 42, 184–200. [Google Scholar] [CrossRef]
Entry | Catalyst | T (°C) | Solvent | Yield [%] f |
---|---|---|---|---|
1 | None | 30 | TBME | <1 |
2 | Porcine pancreas lipase (PpL) | 30 | TBME | 52 |
3 | Novozym 435 | 30 | TBME | 71 |
4 | Candida antarctica B lipase (CaLB) | 30 | TBME | 63 |
5 | Wheat germ lipase (WgL) b | 30 | TBME | 51 |
6 | Pseudomonas cepacia lipase (PcL) | 30 | TBME | 48 |
7 | Pseudomonas fluorescence lipase (PfL) | 30 | TBME | 37 |
8 | Candida cylindracea lipase (CcL) | 30 | TBME | 44 |
9 | Candida rugosa lipase (CrL) | 30 | TBME | 47 |
10 | Rhizomucor miehei lipase (RmL) | 30 | TBME | 23 |
11 | Pig liver acetone powder (PLAP) b | 30 | TBME | 59 |
12 | Novozym 435 | 30 | - | 83 (85) g |
13 | Novozym 435 | 30 | 2-MeTHF | 81 |
14 | Novozym 435 | 30 | EtOAc | 79 |
15 | Novozym 435 | 30 | ethanol | 32 |
16 | Novozym 435 | 20 | - | 75 |
17 | Novozym 435 | 40 | - | 82 |
18 | Novozym 435 | 50 | - | 76 |
19 | Novozym 435 c | 30 | - | 86 |
20 | Bovine serum albumin (BSA) | 30 | - | 8 |
21 | Denatured Candida antarctica B lipase d | 30 | TBME | <1 |
22 | Cu-MOF e | 30 | - | 18 |
23 | CuI (MW irradiation) e | 30 | - | 42 |
24 | BF3-Et2O e | 30 | - | 31 |
25 | Amberlyst 15 e | 30 | - | 25 |
No. of Samples | 4, 5, 6 | 7, 8, 10 | 11, 12, 14 | Type of Test |
---|---|---|---|---|
K12 | ** | ** | ** | MIC |
R2 | ** | ** | ** | MIC |
R3 | ** | ** | ** | MIC |
R4 | ** | ** | ** | MIC |
K12 | ** | ** | *** | MBC |
R2 | ** | ** | *** | MBC |
R3 | ** | ** | *** | MBC |
R4 | ** | ** | *** | MBC |
K12 | *** | *** | * | MBC/MIC |
R2 | *** | *** | * | MBC/MIC |
R3 | *** | *** | * | MBC/MIC |
R4 | *** | *** | * | MBC/MIC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koszelewski, D.; Kowalczyk, P.; Brodzka, A.; Hrunyk, A.; Kramkowski, K.; Ostaszewski, R. Enzymatic Synthesis of a Novel Coumarin Aminophosphonates: Antibacterial Effects and Oxidative Stress Modulation on Selected E. coli Strains. Int. J. Mol. Sci. 2023, 24, 7609. https://doi.org/10.3390/ijms24087609
Koszelewski D, Kowalczyk P, Brodzka A, Hrunyk A, Kramkowski K, Ostaszewski R. Enzymatic Synthesis of a Novel Coumarin Aminophosphonates: Antibacterial Effects and Oxidative Stress Modulation on Selected E. coli Strains. International Journal of Molecular Sciences. 2023; 24(8):7609. https://doi.org/10.3390/ijms24087609
Chicago/Turabian StyleKoszelewski, Dominik, Paweł Kowalczyk, Anna Brodzka, Anastasiia Hrunyk, Karol Kramkowski, and Ryszard Ostaszewski. 2023. "Enzymatic Synthesis of a Novel Coumarin Aminophosphonates: Antibacterial Effects and Oxidative Stress Modulation on Selected E. coli Strains" International Journal of Molecular Sciences 24, no. 8: 7609. https://doi.org/10.3390/ijms24087609
APA StyleKoszelewski, D., Kowalczyk, P., Brodzka, A., Hrunyk, A., Kramkowski, K., & Ostaszewski, R. (2023). Enzymatic Synthesis of a Novel Coumarin Aminophosphonates: Antibacterial Effects and Oxidative Stress Modulation on Selected E. coli Strains. International Journal of Molecular Sciences, 24(8), 7609. https://doi.org/10.3390/ijms24087609